Rounding in Mixed-Integer Model Predictive Control

We derive practical stability results for finite-control set and mixed-integer model predictive control. Thereby, we investigate the evolution of the closed-loop system in the presence of control rounding and draw conclusions about optimality. The paper integrates integral approximation strategies with the inherent robustness properties of conventional model predictive control with stabilizing terminal conditions. We propose … Read more

Optimal Control of Semilinear Graphon Systems

Controlling the dynamics of large-scale networks is essential for a macroscopic reduction of overall consumption and losses in the context of energy supply, finance, logistics, and mobility. We investigate the optimal control of semilinear dynamical systems on asymptotically infinite networks, using the notion of graphons. Graphons represent a limit object of a converging graph sequence … Read more

Integer Control Approximations for Graphon Dynamical Systems

Graphons generalize graphs and define a limit object of a converging graph sequence. The notion of graphons allows for a generic representation of coupled network dynamical systems. We are interested in approximating optimal switching controls for graphon dynamical systems. To this end, we apply a decomposition approach comprised of a relaxation and a reconstruction step. … Read more