A Parameterized Proximal Point Algorithm for Separable Convex Optimization

In this paper, we develop a Parameterized Proximal Point Algorithm (P-PPA) for solving a class of separable convex programming problems subject to linear and convex constraints. The proposed algorithm is provable to be globally convergent with a worst-case $O(1/t)$ convergence rate, where $t$ is the iteration number. By properly choosing the algorithm parameters, numerical experiments … Read more

Generalized Symmetric ADMM for Separable Convex Optimization

The Alternating Direction Method of Multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a Generalized Symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to solve the multi-block separable convex programming. This GS-ADMM partitions the data into two … Read more