Amenable cones are particularly nice

Amenability is a geometric property of convex cones that is stronger than facial exposedness and assists in the study of error bounds for conic feasibility problems. In this paper we establish numerous properties of amenable cones, and investigate the relationships between amenability and other properties of convex cones, such as niceness and projectional exposure. We … Read more

Memory-efficient structured convex optimization via extreme point sampling

Memory is a key computational bottleneck when solving large-scale convex optimization problems such as semidefinite programs (SDPs). In this paper, we focus on the regime in which storing an n × n matrix decision variable is prohibitive. To solve SDPs in this regime, we develop a randomized algorithm that returns a random vector whose covariance … Read more

Improving Efficiency and Scalability of Sum of Squares Optimization: Recent Advances and Limitations

It is well-known that any sum of squares (SOS) program can be cast as a semidefinite program (SDP) of a particular structure and that therein lies the computational bottleneck for SOS programs, as the SDPs generated by this procedure are large and costly to solve when the polynomials involved in the SOS programs have a … Read more