Optimal Extragradient-Based Stochastic Bilinearly-Coupled Saddle-Point Optimization

We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $\min_{\mathbf{x}}\max_{\mathbf{y}}~F(\mathbf{x}) + H(\mathbf{x},\mathbf{y}) – G(\mathbf{y})$, where one has access to stochastic first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$. Building upon standard stochastic extragradient analysis for variational inequalities, we present a stochastic \emph{accelerated gradient-extragradient (AG-EG)} descent-ascent algorithm that combines extragradient and Nesterov’s … Read more

ROOT-SGD: Sharp Nonasymptotics and Asymptotic Efficiency in a Single Algorithm

We study the problem of solving strongly convex and smooth unconstrained optimization problems using stochastic first-order algorithms. We devise a novel algorithm, referred to as \emph{Recursive One-Over-T SGD} (ROOTSGD), based on an easily implementable, recursive averaging of past stochastic gradients. We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and … Read more