A Polynomial-time Algorithm with Tight Error Bounds for Single-period Unit Commitment Problem

This paper proposes a Lagrangian dual based polynomial-time approximation algorithm for solving the single-period unit commitment problem, which can be formulated as a mixed integer quadratic programming problem and proven to be NP-hard. Tight theoretical bounds for the absolute errors and relative errors of the approximate solutions generated by the proposed algorithm are provided. Computational … Read more

Set-Completely-Positive Representations and Cuts for the Max-Cut Polytope and the Unit Modulus Lifting

This paper considers a generalization of the “max-cut-polytope” $\conv\{\ xx^T\mid x\in\real^n, \ \ |x_k| = 1 \ \hbox{for} \ 1\le k\le n\}$ in the space of real symmetric $n\times n$-matrices with all-ones-diagonal to a complex “unit modulus lifting” $\conv\{xx\HH\mid x\in\complex^n, \ \ |x_k| = 1 \ \hbox{for} \ 1\le k\le n\}$ in the space of … Read more

Tightness of a new and enhanced semidefinite relaxation for MIMO detection

In this paper, we consider a fundamental problem in modern digital communications known as multi-input multi-output (MIMO) detection, which can be formulated as a complex quadratic programming problem subject to unit-modulus and discrete argument constraints. Various semidefinite relaxation (SDR) based algorithms have been proposed to solve the problem in the literature. In this paper, we … Read more