Continuous convex sets and zero duality gap for convex programs

This article uses classical notions of convex analysis over euclidean spaces, like Gale & Klee’s boundary rays and asymptotes of a convex set, or the inner aperture directions defined by Larman and Brøndsted for the same class of sets, to provide a new zero duality gap criterion for ordinary convex programs. On this ground, we … Read more

Zero duality gap for convex programs: a general result

This article addresses a general criterion providing a zero duality gap for convex programs in the setting of the real locally convex spaces. The main theorem of our work is formulated only in terms of the constraints of the program, hence it holds true for any objective function fulfilling a very general qualification condition, implied … Read more