Second-order Characterizations of Tilt Stability with Applications to Nonlinear Programming

The paper is devoted to the study of tilt-stable local minimizers of general optimization problems in finite-dimensional spaces and its applications to classical nonlinear programs with twice continuously differentiable data. The importance of tilt stability has been well recognized from both theoretical and numerical aspects of optimization, and this notion has been extensively studied in … Read more

Full Stability in Finite-Dimensional Optimization

The paper is devoted to full stability of optimal solutions in general settings of finite-dimensional optimization with applications to particular models of constrained optimization problems including those of conic and specifically semidefinite programming. Developing a new technique of variational analysis and generalized differentiation, we derive second-order characterizations of full stability, in both Lipschitzian and H\”olderian … Read more

Second-order growth, tilt stability, and metric regularity of the subdifferential

This paper sheds new light on several interrelated topics of second-order variational analysis, both in finite and infinite-dimensional settings. We establish new relationships between second-order growth conditions on functions, the basic properties of metric regularity and subregularity of the limiting subdifferential, tilt-stability of local minimizers, and positive definiteness/semidefiniteness properties of the second-order subdifferential (or generalized … Read more

Second-order variational analysis and characterizations of tilt-stable optimal solutions in finite and infinite dimensions

The paper is devoted to developing second-order tools of variational analysis and their applications to characterizing tilt-stable local minimizers of constrained optimization problems in finite-dimensional and infinite-dimensional spaces. The importance of tilt stability has been well recognized from both theoretical and numerical aspects of optimization. Based on second-order generalized differentiation, we obtain qualitative and quantitative … Read more

Nonsmooth cone-constrained optimization with applications to semi-infinite programming

The paper is devoted to the study of general nonsmooth problems of cone-constrained optimization (or conic programming) important for various aspects of optimization theory and applications. Based on advanced constructions and techniques of variational analysis and generalized differentiation, we derive new necessary optimality conditions (in both “exact” and “fuzzy” forms) for nonsmooth conic programs, establish … Read more

DC approach to regularity of convex multifunctions with applications to infinite systems

The paper develops a new approach to the study of metric regularity and related well-posedness properties of convex set-valued mappings between general Banach spaces by reducing them to unconstrained minimization problems with objectives given as the difference of convex (DC) functions. In this way we establish new formulas for calculating the exact regularity bound of … Read more

Subdifferentials of nonconvex supremum functions and their applications to semi-infinite and infinite programs with Lipschitzian data

The paper is devoted to the subdifferential study and applications of the supremum of uniformly Lipschitzian functions over arbitrary index sets with no topology. Based on advanced techniques of variational analysis, we evaluate major subdifferentials of the supremum functions in the general framework of Asplund (in particular, reflexive) spaces with no convexity or relaxation assumptions. … Read more