A Fast Newton Method Under Local Lipschitz Smoothness

A new, fast second-order method is proposed that achieves the optimal \(\mathcal{O}\left(|\log(\epsilon)|\epsilon^{-3/2}\right) \) complexity to obtain first-order $\epsilon$-stationary points. Crucially, this is deduced without assuming the standard global Lipschitz Hessian continuity condition, but onlyusing an appropriate local smoothness requirement. The algorithm exploits Hessian information to compute a Newton step and a negative curvature step when … Read more