Time-series aggregation for the optimization of energy systems: goals, challenges, approaches, and opportunities

The rising significance of renewable energy increases the importance of representing time-varying input data in energy system optimization studies. Time-series aggregation, which reduces temporal model complexity, has emerged in recent years to address this challenge. We provide a comprehensive review of time-series aggregation for the optimization of energy systems. We show where time series affect … Read more

Stochastic Dual Dynamic Programming for Optimal Power Flow Problems under Uncertainty

We propose the first computationally tractable framework to solve multi-stage stochastic optimal power flow (OPF) problems in alternating current (AC) power systems. To this end, we use recent results on dual convex semi-definite programming (SDP) relaxations of OPF problems in order to adapt the stochastic dual dynamic programming (SDDP) algorithm for problems with a Markovian … Read more

On the Fairness of Aggregator’s Incentives in Residential Demand Response

The main motivation of this work is to provide an optimization-based tool for an aggregator involved in residential demand response (DR) programs. The proposed tool comply with the following requirements, which are widely accepted by the residential DR literature: (i) the aggregated consumption should be optimized under a particular utility’s target, such as the minimization … Read more

ADMM-based Unit and Time Decomposition for Price Arbitrage by Cooperative Price-Maker Electricity Storage Units

Decarbonization via the integration of renewables poses significant challenges for electric power systems, but also creates new market opportunities. Electric energy storage can take advantage of these opportunities while providing flexibility to power systems that can help address these challenges. We propose a solution method for the optimal control of multiple price-maker electric energy storage … Read more

Linearizing Bilinear Products of Shadow Prices and Dispatch Variables in Bilevel Problems for Optimal Power System Planning

This work presents a general method for linearizing bilinear terms in the upper level of bilevel optimization problems when the bilinear terms are products of the primal and dual variables of the lower level. Bilinear terms of this form often appear in energy market optimization models where the dual variable represents the market price of … Read more

Designing reliable future energy systems by iteratively including extreme periods in time-series aggregation

Generation Capacity Expansion Planning (GCEP) requires high temporal resolution to account for the volatility of renewable energy supply. Because the GCEP optimization problem is often computationally intractable, time-series input data are often aggregated to representative periods using clustering. However, clustering removes extreme events, which are important to achieve reliable system designs. We present a method … Read more

Robust Integration of Electric Vehicles Charging Load in Smart Grid’s Capacity Expansion Planning

Battery charging of electric vehicles (EVs) needs to be properly coordinated by electricity producers to maintain network reliability. In this paper, we propose a robust approach to model the interaction between a large fleet of EV users and utilities in a long-term generation expansion planning problem. In doing so, we employ a robust multi-period adjustable … Read more

Markov Chain Sampling of Hidden Relay States for Economic Dispatch with Cascading Failures

Independent system operators (ISO) of electric power networks aim to dispatch electricity economically while maintaining system reliability. NERC (North America Electric Reliability Council) requires the transmission network to be (N-1)-secure, i.e., to have sufficient supply to satisfy demand in the event of the failure of any single resource in the network. Such a policy is … Read more

Market Integration of Behind-the-Meter Residential Energy Storage

A new business opportunity beckons with the emergence of prosumers. This article proposes an innovative business model to harness the potential of aggregating behind-the-meter residential storage in which the aggregator compensates participants for using their storage system on an on-demand basis. A bilevel optimization model is developed to evaluate the potential of this proposed business … Read more

On the Structure of Decision Diagram-Representable Mixed Integer Programs with Application to Unit Commitment

Over the past decade, decision diagrams (DDs) have been used to model and solve integer programming and combinatorial optimization problems. Despite successful performance of DDs in solving various discrete optimization problems, their extension to model mixed integer programs (MIPs) such as those appearing in energy applications has been lacking. More broadly, the question on which … Read more