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The rise of e-commerce promises particularly great benefits for the
practice of large-scale optimization. The World Wide Web already
offers information, advice, and remote access to software for solv-
ing optimization problems. A variety of client programs are helping
to increase the scope and convenience of these tools. More sophis-
ticated application service providers will further disseminate opti-
mization modeling environments and solvers, making their power
and variety readily available to a broader range of customers and
applications.
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Breakthroughs in computing have frequently led to advances in large-scale opti-
mization, and we can expect the rise of e-commerce to continue this trend. Optimiza-
tion is proving to be particularly well suited to Internet innovations, mainly for two
reasons.

First, there is no one way to solve optimization problems. Hundreds of solvers have
been developed to take advantage of the features of particular problem types. For
many problem types, varied implementations of diverse methods compete on speed,
reliability, cost, and convenience.

Second, new optimization applications typically involve building new models — as
evidenced, for example, by the optimization model statements in appendices to many
Interfaces papers. To support this model-building activity, specialized modeling sys-
tems have been developed for building, analyzing, and maintaining optimization mod-
els. These systems handle models independently of the choice of solver, and so can
be hooked to a variety of solvers. Conversely, popular solvers work with a selection of
modeling systems.

The analyst who wants to build an optimization application must consequently sort
through quite a tangle of software. This is in contrast to the situation to such areas as
statistics or simulation, where the software principally consists of integrated packages
of modeling tools and model-analysis methods. And this is where Internet services
enter the picture, as providers of guidance and access to the daunting variety of opti-
mization software.

Preliminaries

By optimization we mean any desired minimization or maximization of some objec-
tive function of numerical decision variables, subject to constraints on the values of the
variables. Optimization also encompasses the special cases in which there are no con-
straints or no objective, and admits the possibility of approximating the minimum or
maximum as well as computing it exactly or to a tight tolerance. Optimization is syn-
onymous with the more traditional but less descriptive mathematical programming,
which gives rise to such terms as integer programming and nonlinear programming
that we use occasionally for common problem types.

Optimization software includes solvers or codes for finding optimal (or at least very
good) values for decision variables, as well as modeling systems that help to prepare
problems for solvers and to deal with the solutions that solvers return. Solvers are
specialized to many different mathematical problem types, and modeling systems are
designed for certain broader categories of problems. The software that we consider is
primarily general-purpose, however, in that it is not tailored to a particular application
or even to an application class (such as crew scheduling or supply-chain management).
To date, most of the interesting developments in optimization on the Internet have
concerned general-purpose software, but because many application-specific packages
are built on top of general-purpose codes or systems, the same developments have
implications for application-specific optimization software as well.

We distinguish three categories of customers for general-purpose optimization soft-
ware. Modelers work directly with solvers and modeling systems to build optimization
models and to find ways of getting acceptable solutions. Application developers create
software that runs solvers, but as part of larger packages that take care of such generic
functions as managing data and presenting a graphical interface. Users run application



packages that perform optimization at some stage. Modelers benefit most immediately
from innovations that help people to choose and experiment with optimization soft-
ware. Some application developers are also modelers, while others deal mainly with
the inputs and outputs of optimization models set up by modelers. Users may not
even realize that they are running solvers, though they are often aware of optimization
goals such as minimizing costs or maximizing profits. Enhanced optimization services
ultimately affect users and application developers as well as modelers, though in a less
direct way.

Many of the services we describe were developed under the auspices of the Opti-
mization Technology Center of Argonne National Laboratory and Northwestern Uni-
versity. Reconceiving optimization as an Internet resource is a major mission of the
center’s Network-Enabled Optimization System (NEOS) project.

Online Optimization Resources

The earliest use of the Internet in optimization was to provide software for down-
loading. Thus many noncommercial solvers have long been available via the ftp proto-
col, generally from sites maintained by their developers. The premier central site for
downloading mathematical software, the Netlib repository [Dongarra and Grosse 1987],
was begun in the early 1980s and includes a variety of solvers. Netlib is also the home
of the 1p/data collection of benchmark linear programs, compiled by David Gay [1985]
from diverse sources. Analogous collections, such as MIPLIB, MINLPLIB, TSPLIB, SDPLIB,
and OR-Library, have since been compiled for other problem types.

The advent of the World Wide Web has encouraged more extensive online resource
collections, incorporating lists of hypertext links to downloads but also much other
information and advice. Thus several websites now cover the field of optimization
generally, and numerous others address specialized optimization topics.

The Decision Tree for Optimization Software, developed by Hans Mittelmann and
Peter Spellucci, organizes non-commercial optimization software by problem type. This
site also lists test problems, books, tutorials, modeling systems, automatic differen-
tiation packages, and model analysis tools; a particularly impressive compilation of
Benchmarks for Optimization Software includes dozens of tables, each comparing a
selection of solvers on test problems of a particular type. The ZIB MATHPROG site also
offers pointers to many classes of public-domain optimization codes and to related
information.

The Optimization Technology Center’s NEOS Guide [Czyzyk, Owen, and Wright
1997] incorporates three overviews:

— the Optimization Tree, a thumbnail sketch of the best-known classes and
subclasses of optimization problems;

— the Optimization Software Guide, a categorized listing of codes and pack-
ages updated from the survey by Moré and Wright [1993]; and

— Frequently Asked Questions for linear and nonlinear programming, includ-
ing links to noncommercial codes and to commercial codes that offer freely
downloadable demo versions.

The NEOS Guide Case Studies [Czyzyk, Wisniewski, and Wright 1999] provide elemen-
tary descriptions and interactive demonstrations of the diet problem, portfolio op-




timization, quadratic assignment, stochastic programming, the minimal surface-area
problem, and the cutting-stock problem.

The e-Optimization.community website aims to be a “web meeting place” for op-
timization users and developers. It features a “who’s who” of people in optimization
as well as listings of optimization resources, applications, vendors, case studies, and
news. Much of this information is stored in a database that can be searched on a va-
riety of criteria and can be updated or extended automatically through web form sub-
missions. Optimization Online offers a similar kind of service specialized to research
reports and papers on optimization.

Harvey Greenberg’s Mathematical Programming Glossary defines hundreds of terms
relating to optimization problems and methods. Many entries include examples and
hyperlink cross-references.

Among the specialized sites are ones for global optimization, cutting and packing,
semidefinite programming, and complementarity problems.

Optimization Servers

In the mid-1990s, developers of optimization software began to conceive of World
Wide Web services that would allow prospective users to try their software without
having to download or install it. The initial optimization servers tended to use e-mail
or ftp to move problem files in one or both directions, with the associated web pages
advertising and explaining the service. Designs soon evolved, however, to make use of
web forms on pages that were integral part of servers’ operations.

As of mid-2000, at least 10 websites can be identified as providing optimization
services. All are free, in that they charge nothing to those who submit requests; de-
mand is kept under control by a variety of explicit or implicit nonmonetary limitations.
OptiW, MILP, and the NEOS Guide Interactive Simplex Tool focus on small-scale demon-
strations of standard methods, mainly for educational purposes. Six others (described
below) have been created by developers of particular modeling languages or solvers to
encourage familiarity with their products. A final example, the NEOS Server, provides a
single mechanism for access to a variety of solvers and representations.

The solvers behind these servers can also be purchased to support more intensive
or commercial use. Yet all have originated from academic or research organizations.
Companies that sell optimization software have put up similar servers from time to
time, but have been quicker to discontinue them when development or marketing pri-
orities have changed.

Solver servers. Four servers are dedicated to particular solvers. They recognize al-
gebraic expressions, such as x"2 + 6.0*x =y - 2"k or IF x1 > 0 THEN g = 0. 5*p*arctg(v),
as input via web forms, and return results in web pages. Each solver handles nonlin-
earities that in some respects go beyond the traditional local numerical optimization
of smooth (differentiable) nonlinear functions. Three are hosted in Russia and Finland,
perhaps reflecting servers’ usefulness for publicizing research outside major centers of
optimization software development.

BARON, developed by Nick Sahinidis’s optimization group in the Department of
Chemical Engineering at the University of Illinois, combines interval analysis and a
branch-and-bound framework to seek globally optimal solutions to nonlinear optimiza-
tion problems in continuous and integer variables [Tawarmalani and Sahinidis 1999].



A dozen modules provide related solvers specialized to specific problem types. Input
can be copied to a web form or supplied from a local file; output is returned on a sub-
sequent web page. Submissions require a password, which can be obtained by writing
to an address provided on the web input page.

HIRON, developed by the Russian VasBo (or Practical Optimization) Club, solves
nonlinear problems by means of a hybrid strategy of local and global methods. Its
server makes available a subset of its computational options, for unconstrained, possi-
bly nondifferentiable optimization problems of two to five variables. Input is through
a specialized web form with a large window for nonlinear expressions and small ones
for variable bounds and algorithmic parameters.

NIMBUS, developed by Kaisa Miettinen and Marko M. Midkela [2000] at the University
of Jyvaskyla, Finland, is designed for multiobjective optimization problems that may in-
corporate nondifferentiable functions and integer variables. The modeler interacts with
the solver to establish priorities for different objectives and to decide between alterna-
tive solutions. The server accepts problem specifications through a highly structured
series of web forms, one for each nonlinear objective, nonlinear constraint, variable
bound, linear constraint coefficient, and so forth. Problem size is limited implicitly by
the inconvenience of maintaining many variables, objectives, and constraints in this
way, though users can register to save problems at the server site.

UniCalc, developed by a team led by Alexander Semenov at the Russian Research
Institute of Artificial Intelligence [Babichev et al. 1993], applies interval arithmetic to
the analysis of possibly nondifferentiable equations and inequalities, optionally with
integer variables. The emphasis is on finding solutions to constraints, but there are
limited facilities for optimization as well. The server accepts problems of up to 10 vari-
ables and 20 constraints, with some provision for arrays and indexing in the algebraic
expressions.

Modeling language servers. Two servers are dedicated to particular modeling lan-
guages for optimization problems. Both are based on algebraic notation, like the lan-
guages used by the solver servers, but are able to express much more complex models
and generate much larger problems, because they incorporate the concepts of sets and
indexing in a more comprehensive way.

LPL, developed by Tony Hiirlimann [1999], is a modeling language for linear and
integer programming. It also accepts constraints connected by logical operators, such
as AND or NOT, which it translates to linear constraints in terms of additional zero-one
variables. Modelers can submit LPL formulations and data to the LPL server by typing
or pasting into a web form or by specifying a local filename; the server applies an
internal solver and returns results on a subsequent web page. Problems are limited to
100 variables and 100 constraints. (A PC version for larger problems, with hooks for
other solvers, can be downloaded free of charge.)

AMPL, developed by Robert Fourer, David Gay and Brian Kernighan [1990], is a mod-
eling language for linear and nonlinear optimization, with special features for integer,
network, and complementarity problems. Users of the Try AMPL! server can request
any example from the AMPL book [Fourer, Gay, and Kernighan 1993], or may provide
their own model, data, and commands by typing or pasting into a web form or by speci-
fying a local filename. To encourage experimentation, the server interface employs web
forms (Figure 1) that display results of previous submissions and that allow the input to
the most recent submission to be changed and resubmitted. A pull-down menu offers a
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Figure 1: The “Try AMPL!” server’s result screen includes an output window (at top) and a
solver menu and other controls. The contents of the commands and model/data windows may
be modified and resubmitted.

choice of eight solvers. Problems are limited to 300 variables and 300 constraints plus
objectives, and one minute of computer time. (Versions without the time limitation are
bundled with the AMPL book and can be downloaded free of charge.)

The NEOS Server. The NEOS Server for Optimization [Czyzyk, Mesnier, and Moré
1997; Gropp and Moré 1997] is the most ambitious realization to date of the optimiza-
tion server idea. A cooperative effort of over 40 designers, developers, collaborators,
and administrators at the Optimization Technology Center, it provides access to over
two dozen solvers of many kinds (Figure 2). Modelers can submit problems to be solved

— by entering local filenames into web forms;
— by sending an e-mail message in a specified format;

— by using a TCP/IP socket-based submission tool, a specialized interface for
problem submission available in Java and in Unix tcl/tk versions.

The server returns an output listing by whichever mechanism was used for the input.
The NEOS Server project has taken several steps to encourage a steady growth in
the number of connected solvers. The project solicits solvers of all kinds, including
ones that are proprietary to varying degrees (but whose owners have been willing to
permit their use at no charge through the server). Although the server’s location is
fixed, it is able to connect to solvers anywhere on the Internet, so that available com-
puting resources can grow along with the number of solvers. Finally, the server offers
standard and documented procedures for adding solvers, permitting new solvers to be
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Figure 2: The NEOS Server accepts optimization requests in several ways and distributes them
to requested solvers that may reside anywhere on the Internet.

registered automatically through the same mechanism that is used for ordinary opti-
mization requests.

The large number of registered solvers precludes standardization on any one input
format. The server design instead allows any text file to be passed through to a solver,
so that the formats currently recognized have been determined largely by what the
solvers are able to accept. These formats are of three main types:

— Low-level formats explicitly describe every constraint and objective. They
include MPS for linear programs, SIF for nonlinear programs, SMPS for
stochastic programs, and sparse SDPA for semidefinite programs. To ac-
commodate the large file sizes these formats often require, the server rec-
ognizes several common compression schemes.

— C or Fortran programs represent constraints and objectives by comput-
ing function values at points that solvers specify. For solvers that require
derivatives, the server can run these programs through the automatic dif-
ferentiation tools ADIFOR and ADOL-C to add code that computes exact
derivatives efficiently.

— High-level algebraic formulations describe optimization problems in con-
cise, symbolic formats, using modeling languages such as AMPL [Fourer,
Gay, and Kernighan 1993], GAMS [Brooke, Kendrick, and Meeraus 1992],
and MP-MODEL. An accompanying data file specifies the model instance to
be solved. The server runs the language processing software that converts
models and data to low-level forms that solvers require.

All of these cases can be seen to involve certain preprocessing steps that the server
must undertake before routing submissions to solvers and results back to users.

In 1999-2000, the NEOS Server typically received several hundred submissions each
week, with peak loads over a thousand (Figure 3). In any system of this complexity, var-
ied problems arise: machines go down, software crashes or terminates in unexpected
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Figure 3: Bars show weekly optimization requests handled by the NEOS Server from August
1999 to July 2000. Inside refers to requests from domains associated with the NEOS project,
and Outside to all other requests.

ways, and solvers run much longer than expected. Questions from users are automati-
cally logged and distributed to a mailing list of Optimization Technology Center mem-
bers and affiliates, who work out informally who answers which queries. The server’s
developers have used this experience to implement refinements that improve reliability.

The NEOS Server abandons any submission not finished after some specified pe-
riod, currently one week. It also keeps a separate list of tighter restrictions for each
registered solver. Solver-specific limits may be placed on execution time and on hourly,
daily, or monthly submissions — from all sources, from any one domain or user, or
from addresses matching a given regular expression. Some solvers also impose their
own restrictions, such as limits on the numbers of variables of certain kinds.

Submission limits are one of several factors that have combined to keep demand
for the NEOS server to the levels seen in Figure 3:

— Successful operation of solvers often requires expertise beyond the infor-
mation available at the NEOS website.

— Absence of a service guarantee limits most use to prototyping, experimen-
tation, and educational projects.

— Format and location of the output listings are inconvenient for high-volume
or large-scale applications.

These limitations are addressed by several aspects of the @NEOS project described
later in this article.

Optimization Clients

In any use of a remote server, some local client program is invoked to manage the
communications. For the optimization servers described so far, the main interest is
in what happens at the server side, while the client is generally a browser that sends
problems and receives results via ordinary web pages. Client-server interactions are



mediated by the most basic of web components: browser-based interpreters for Hy-
pertext Markup Language (HTML) pages, servers for Hypertext Transfer Protocol (HTTP)
requests and responses, and server-side connections to solvers via Common Gateway
Interface (CGI) scripts.

These universally recognized standards do not offer sufficient speed and interac-
tivity for many optimization applications, however, as Bhargava and Krishnan [1998]
make clear in their survey of Web technologies for operations research and manage-
ment science. More convenient and powerful uses of the Internet in optimization take
advantage of newer technology to better balance the work between client and server
while maintaining or improving the quality of client-server communication.

Alternative client-server arrangements. Two spin-offs of the NEOS Server project,
iNEOS and AMPL Remote Access, have experimented with configurations that permit a
greater amount of the work to be done on the client side, with the effort partitioned
in such a way that speed of communication is not essential. Prototypes employed
the experimental Nexus communication library [Foster, Kesselman, and Tuecke 1994].
More recent versions conduct communications via CORBA, which offers the greater
stability and portability of an established standard, together with the advantages of an
object-oriented design. The client program gains access to CORBA services through a
unified C/C++ application programming interface.

The iNEOS project [Good et al. 2000] is motivated by diverse situations in which an
optimization problem’s objective and constraint functions cannot be sent to a remote
solver. The steps for computing these functions may not be expressible in a form
that the server recognizes — such as an AMPL model or a single C or Fortran program
— or may require greater computational resources than the server can provide. Each
function evaluation may involve a simulation run, for example. In other cases, the
modeler may not want to risk revealing propriety information to a remote site.

Fortunately, many solvers for nonlinear problems require only that the objective
and constraint function values — and perhaps gradients — be computable at points that
they generate. These solvers need no details of the function computations. The iNEOS
client takes advantage of this characteristic by arranging for a remote solver to return
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Figure 4: The iNEOS client enables a remote solver to return function evaluation requests to a
local computer.
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function evaluation requests to the local computer (Figure 4). The extra communication
takes only a small fraction of the total time required, particularly when the function
evaluations are time-consuming. This approach has been applied experimentally to
problems of parameter estimation in materials science [Carcione et al. 1999] and fluid
dynamics.

AMPL Remote Access addresses another situation in which the server cannot do all
of the desired computing. Users of advanced optimization modeling languages have
access to rich interactive environments for managing projects, analyzing models, dis-
playing results, and stepping through iterative schemes that require a series of opti-
mizations. Much of this is lost when models and data are sent as jobs to be queued
for translation and solution at a server. The NEOS Server, in particular, returns only a
text-format listing that is not well suited to further manipulation and analysis.

The AMPL Remote Access client remedies this situation by allowing local AMPL in-
teractive sessions to directly invoke remote NEOS solvers (Figure 5). From the perspec-
tive of the AMPL system and its users, the Remote Access client looks like any other
solver; its invocation requires only a minor change to the usual solver option settings.
The translation of an AMPL model and data to an explicit problem file is done locally,
however, rather than on the server as in the current NEOS setup. Behind the scenes,
the client takes care of sending the problem file to the requested solver, retrieving the
results, and leaving a result file where AMPL expects to find it.

Metacomputing clients. Certain computational methods for very large problems
lend themselves to decomposition into pieces that that are sufficiently independent to
be run on separate workstations, coordinated via standard network connections. Cre-
ators and users of such an arrangement, a so-called metacomputer [Smarr and Catlet
1992] or computational grid [Foster and Kesselman 1999], can be assisted by specially
designed metacomputing software that automatically addresses many issues of fault
tolerance, task scheduling, and interprocess communication. Still, the operational de-
tails are sufficiently complex to make client front ends attractive. Systems such as



[ Ew £t Yes Fasese Toeh bew [ 2]
-
ot

T L R A ——

-
CRIE T e [ Y e r———— | 4 o

MW Naritonng Sisering Meriace for the Suass

B *

Wall Clock Tine

Curmul CPU Sme 5§ 534032407 seconds Number Workers

Nom CPU Sme 2241540406 seconds Av. Number Workers 711
Curmrent Scluton 6124 Paraled ES

Nodes Explored 2981267828 Instant Pool Pert

Tasks Explored Tda01 Equv. Pocl Perf o !

Tasks n Pool

Show Al | Hide Al |

» Resulis Staun

Clrvent Best Soltion 6124
Conrenn Best Fernmutaton
pRg - 13
pll) -4
pi2y - 37
pi-23
pHl -0
pisi -2 o)

e [ v

Figure 6: This web browser display, managed by iMW, reports the progress of a metacomputer
solver for a quadratic assignment problem. The metacomputer has been running for about 24
hours to this point, and is currently coordinating computations on 576 workstations.

NetSolve [Arnold et al. 2000] and Ninf [Nakada, Sato, and Sekiguchi 1999], for example,
offer client-server interfaces for scientific computing tools on the computational grid
provided by the Internet.

An optimization solver running on a metacomputer could be made available through
the NEOS server like any other solver running on a remote machine [Ferris, Mesnier, and
Moré 2000]. This mode of operation is problematical, however, because it gives users
no way to see what is happening during the often lengthy, complex runs. The develop-
ment of clients better suited to this purpose has been a major goal of the MetaNEQOS
project, which has pursued approaches relying on web browsers and on optimization
modeling systems.

For the underlying management of the metacomputer, the metaNEOS approaches
rely on Condor [Litzkow, Livny, and Mutka 1988; Epema et al. 1996], a tool for manag-
ing large heterogeneous collections of workstations as computing resources. Condor
allocates jobs to unused machines within a designated pool, and saves the status of a
job at periodic checkpoints so that it may restart from the most recent checkpoint if a
machine becomes unavailable before the job’s completion. For metaNEOS applications,
each job is typically an optimization subproblem of some kind.

The iMW package [Good and Goux 1999] manages metacomputer runs through a
web-based tool for submitting, monitoring, and steering solvers that run on metacom-
puters. A CORBA connection, in this case between the web server and the metacom-
puter controller, periodically refreshes a browser display (Figure 6) that reports such
progress information as the amount of time and work expended, the number of Condor
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pool machines currently being used, and the best solution found so far. On the basis
of this information, the modeler can also convey instructions through the browser in-
terface to the solver during its run.

To use iMW for a particular optimization method applied to a particular problem,
one first implements the method for Condor using the MW development framework
[Goux et al. forthcoming]. MW, also developed in the metaNEOS project, is a C++ class
library that facilitates implementation of algorithms on a Condor metacomputer; it
must be tailored to a particular application by reimplementation of three base classes,
specifying the activities of the master process, the inputs and outputs of each worker
process, and the activities of each worker. The iMW tool, implemented as a Java servlet,
can be viewed as a middle tier between users and MW-based solvers. It handles com-
munication in both directions throughout a run and can be customized in various ways
[Good and Goux 1999]. MW/iMW solvers are under development for problems in integer
linear and nonlinear programming, stochastic optimization, and quadratic assignment.

The Condor/modeling language interface [Ferris and Munson 2000] addresses im-
plementation of an iterative optimization scheme on a metacomputer at a much higher
conceptual level than iMW, using the commands of an optimization modeling language.
Once an ordinary command script for some method has been implemented, conversion
to the Condor interface can be as simple as replacing a solve command by an invoca-
tion of a condor_spawn command file, and adding an appropriately placed correspond-
ing condor_retrieve. Specifics have been worked out for the AMPL [Fourer, Gay, and
Kernighan 1993] and GAMS [Brooke, Kendrick, and Meeraus 1992] languages, and have
been applied to a problem in feature selection that requires many independent integer
programs to be solved simultaneously. Because this arrangement is much easier to
set up than an MW/iMW-based solver, it makes metacomputing much more accessible
to someone who has a straightforward use for optimizations carried out in parallel. It
does not currently support the sophisticated communications options of iMW, however,
or MW’s facilities for programming master-worker schemes in detail.

Applets. The servers and clients described so far return their results as files or
displays of text. Yet graphical displays can be essential to the effective use of opti-
mization in many applications. For optimization on networks, in particular, displays of
node and arc structures can be tailored to aid in comprehension and analysis of diverse
problems, algorithms, and results.

When the client is a web browser, the limitations of current designs derive from
their use of the html format for defining web pages. One widely supported way of
circumventing these limitations is by writing an application in the Java programming
language and compiling it into a machine-independent code file known as a web applet.
An applet can be embedded in a web page much like an image; but when the page is
viewed, the applet code runs on the browser’s built-in Java Virtual Machine as a pro-
gram that can create its own windows and produce graphical displays of considerable
generality. This provides a way to make a graphically sophisticated application avail-
able via the Internet without requiring its installation on the local machine.

The Java applet framework has inspired web-based graphical demonstrations of
diverse optimization models and methods:

— TSPfast and TSPx illustrate elementary methods for the “traveling sales-
man” problem of finding short tours through given locations.
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Figure 7: This GIDEN applet window depicts an intermediate state in the solution of a maxi-
mum flow problem by an augmenting path method.

— The NEOS QAP Case Study supports experiments with quadratic assignment
problems applied to facility location.

— The GA Playground offers a toolkit for experimenting with local-search
heuristics known as genetic algorithms, in applications to a variety of stan-
dard optimization problems.

— RIOT, a Remote Interactive Optimization Testbed, collects over a dozen ap-
plet demonstrations of optimization methods for scheduling, design, rout-
ing, network flow, portfolio selection, numerous graph problems, and other
applications.

Visualization and Optimization [C.V. Jones 1998] also describes and links to a number
of applets, along with examples of several alternative technologies.

GIDEN, developed by Jonathan Owen, Collette Coullard, and David Dilworth [1997],
is a more ambitious Java-based optimization project. It provides an interactive soft-
ware environment for the visualization of network optimization problems, solutions,
and algorithms. Features include a graphical interface for building and modifying net-
works, an expandable toolkit of animated solvers, and a library of network-related data
structures. The current GIDEN toolkit includes a variety of solvers for each of several
classic network optimization problems, including minimum spanning tree, maximum
flow, shortest path, and minimum-cost flow. New problems and solvers can be added
in a modular way.

Version 1 of GIDEN can be run as an applet that creates its own network modeling
window (Figure 7). Network diagrams and associated data are depicted in the window
by selecting built-in examples or by building a new example through a combination of
Edit menu entries and mouse clicks. Solvers, chosen from the Solvers menu, may be
run straight through or stepped along in a variety of ways, with colors depicting the cur-
rent state of the algorithm. An optional auxiliary window steps through corresponding
pseudocode for the algorithm.

Version 2 of GIDEN, which provides a much richer set of network creation and dis-

12



play facilities, is currently available only as a stand-alone Java program, requiring a
computer on which a Java Virtual Machine has been installed as an application inde-
pendent of any browser. The reasons for this difference point up some of the challenges
of the applet approach. Java programs past the demo stage can take considerably more
time to load and to run using a browser than under a dedicated Java Virtual Machine.
Moreover, although in principle an applet runs in the same way through a browser on
any computer, larger and more complex Java programs are more likely to require fine
tuning to ensure compatibility, particularly if they do a lot of graphics.

An equally serious and perhaps more surprising difficulty is that, to ensure security,
browsers do not normally allow applets to write local files. This rules out any serious
use of applets to create new network problems, unless the developer is willing to set
up a central site to register users and store their files. An alternative approach is to use
a signed applet, which requests specified permissions, such as to read and write local
files, by presenting a certificate attesting to its authenticity. Permissions are granted
only if the local browser has a matching certificate in its database or if the user grants
an exception for the current session. Such an arrangement may strike an acceptable
balance between security and ease of use.

Whereas the GIDEN applet encapsulates both the graphical interface and the solvers,
some of the RIOT applets handle only the graphical interface, while sending algorithmic
work to remote solvers. For attacking large or hard network optimization problems by
use of computationally intensive solvers, this client-server approach may be advanta-
geous. Network optimization systems commonly use the same data structures for both
the solver and the display routines, however, making a local/remote division problem-
atical. Features that animate the actions of the solver, for instructional purposes or
to report progress, also tend to require a close tie between the solver and the graph-
ical display routines. Finally, solvers for many small or easy network problems are
fast enough that the delay involved in communicating with a remote solver would be
significant.

If a client-server arrangement is desirable but the applet framework is too restric-
tive, then there remains the alternative of writing independent client programs in Java,
C++, or any other programming language that affords an adequate graphical inter-
face. Microsoft’s ActiveX Controls can integrate client program downloading with the
browser interface, or ordinary downloading via ftp may suffice. Distribution then be-
comes more of an effort, however, as the client program must be separately compiled
for each platform on which it is to run.

Application Service Providers

Do optimization clients and servers have commercial potential? We have seen a va-
riety of configurations that have been implemented successfully, in the sense that they
have been publicly available and have operated as intended over a period of time. None
charge for their services, however. A number of thorny issues remain to be resolved
before optimization on the Internet can grow beyond the prototype stage into a viable
form of e-commerce.

One promising paradigm for commercialization of optimization servers is the con-
cept of an application service provider that rents the use of software via the Internet
rather than selling software to be installed on customers’ computers. An ASP typi-
cally offers an integrated package that includes use of specified software on a remote
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server, upgrades and maintenance, user support, and possibly access to advanced com-
puting resources. An organization that buys an ASP’s services hopes to spend less
than it would by adding equivalent internal staff and equipment. Potential savings are
particularly attractive for software that requires specialized expertise and computing
resources, as is the case with much of the software used in operations research and
management science applications.

Growing interest in ASPs has helped to motivate a variety of software for running ex-
isting applications on remote servers. Products such as Microsoft’s Windows Terminal
Server, Citrix’s MetaFrame and New Moon’s LiftOff permit centralized servers to run
complex software systems, including full graphical user interfaces, that function on
each local client as if the software had been installed locally. The details of the client-
server link vary from one package to the next, both in the degree to which they combine
proprietary communications protocols with standard Web technology, and in the bal-
ance between work done on the client and on the server.

An ASP’s business can thus be built around any software product, using widely
available tools. Developers of specialized optimization applications have in fact taken
an interest in creating ASPs in this way; publicly available demonstration versions have
been made available by, for example, LogicTools and MultiSimplex.

The prospects for general-purpose optimization ASPs are harder to assess, how-
ever, owing to the special nature of the optimization software marketplace. In simu-
lation, statistics, vehicle routing, logistics, supply-chain management, and other appli-
cation areas of operations research and management science, popular general-purpose
software tends to consist of integrated packages of modeling and solving tools; each
package has one developer that is the obvious source of maintenance and support for
ASP services. The general-purpose optimization software market is much more decen-
tralized, however, offering a broad menu of solvers for varied purposes and an inde-
pendent choice of a modeling languages and environments. Modelers and application
developers often combine optimization products from different sources, requiring a
flexible sort of expertise that is not easily centralized.

Thus while any of the general-purpose optimization servers we have described
could be considered a prototypical ASP, the process of “scaling up” these prototypes
to full-fledged optimization e-commerce sites poses great challenges to the ASP con-
cept. Although current developments in optimization client design provide a good
start in addressing these challenges, the full benefits of ASPs to optimization will only
be achieved through significant enhancements to every part of the client-server system:

— Servers will require sophisticated allocation strategies that can cope with
exceptionally variable solver resource requirements, together with coordi-
nation mechanisms that can balance the interests of model builders and
solver providers.

— Solvers will need more standardized interface libraries that simplify the
work of connecting to the server and that support frequent communication
with the server and clients.

— Modelers and application developers will want better guidance in choosing
among solvers and in selecting solver features and options.

— Users will benefit from availability of a programming interface that makes
the server callable from within specialized applications.
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Work is underway to integrate the current NEOS Server into a more highly automated
system, called @NEOS, that will provide a test-bed for improvements in many of these
areas.

Servers. The greatest obstacle to effective resource allocation for optimization re-
quests is the potential for exponential growth. Even the best integer programming
solvers, for instance, sometimes require a running time to optimality that would ex-
ceed the lifetime of any component, human or machine, of the system. Even the most
experienced modelers elicit this behavior in experimenting with new formulation and
solution strategies.

An optimization server thus needs some way to protect itself (and its customers)
from requests that can soak up all available resources. A time limit or a charge pro-
portional to resource use would seem easy to implement, but could readily become
the kind of nuisance factor that only discourages the use of central resources. Servers
will instead need to adopt more flexible strategies that can take advantage of prior
experience with different problems and solvers.

A first step would be to build a database of solver performance that could be auto-
matically updated as optimization requests are carried out. A new adaptive scheduler
could then employ information from the database, together with specific customer
preferences, in making initial allocations of computing resources to requests. For long-
running jobs, such a scheduler could also monitor performance and take simple ac-
tions, such as increasing or decreasing a job’s priority, moving a job to a faster or
slower machine, suspending a job while querying its owner for instructions, and termi-
nating a job.

The next step would be to introduce a broader conception of the optimization
server, not simply as a tool to carry out whatever work is requested, but as a broker
between customers and solvers. Solver providers would correspondingly assume the
role of independent agents competing for customers’ business. The central issue in the
implementation of an ASP would then become the design of a coordination mechanism
for acting on service requests.

Since each party to an optimization request has its own interests, it is no simple
matter to devise a mechanism that keeps all of them satisfied. The broker could assign
requests to agents based on some overall model of solver performance and resource
availability, for example, or could conduct a kind of auction in which agents bid for cus-
tomers’ business. Requests could be scheduled after they were assigned to agents, or
scheduling could be made an integral part of the assignment process. Pricing could in-
volve agent “rents” as well as charges determined by various measures of resource use.

All of these e-commerce aspects of an optimization server have been considered to
some extent in studies of earlier systems, including

— DecisionNet [Bhargava, Krishnan, and Mueller 1997; Bhargava, Chowdhary,
and Krishnan forthcoming], a prototype broker for “decision technologies”
such as optimization; and

— IBIZA [Arora et al. forthcoming], a computational workbench for creating
and simulating electronic markets in information products.

It remains to put these ideas to the test in contexts specific to optimization. Service
logs from the NEOS Server and its @NEOS extensions should help to provide data for
this purpose.
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Solvers. For every solver added to an existing optimization server, an appropriate
front end or interface routine must be written. Although this work is straightforward
in principle, it can be time-consuming, particularly as there is seldom any one person
familiar with the requirements of both the server and the solver to be added.

One particularly challenging aspect of front end design is to manage interaction
with the solver while it is running. Servers need to communicate with running solvers
to support adaptive scheduling. Clients want to monitor or control lengthy solver runs,
particularly within complex schemes (like metacomputing applications) that require
multiple solves and processors.

To encourage solver developers to undertake this interface work and to ensure reli-
able results, an established optimization server will need to provide an interface library
that encapsulates most of the details. Such a library will have a purpose similar to, for
example, the AMPL interface library [Gay 1997], but with an object-oriented design and
support for common interface standards such as CORBA. One of the planned @NEOS
extensions to the NEOS Server is a library of this sort.

Modelers and application developers. The NEOS Server already offers over 25 dif-
ferent solvers, yet they are only a sample of those available. Each solver offers as many
as several dozen distinct algorithmic options. For the person who must develop and
debug an optimization model, the proliferation of solvers can quickly become too much
of a good thing.

As an example, consider that the NEOS Solvers list already offers seven alterna-
tives for general nonlinear optimization: CONOPT, DONLP2, FILTER, LANCELOT, LOQO,
MINOS, and SNOPT. The server’s website provides for each of these an introductory
page and a hyperlink to a list of option names and one-line descriptions. A link is also
provided to any guide or reference material that the solver’s developers have made
available, but using this material requires a considerable investment of time as well as
a knowledge of nonlinear programming theory and algorithms. Even experienced mod-
elers often resort to trying solvers one after another with their default options, sticking
with the first one that seems to return useful results.

The NEOS Server might deal with this situation by linking more closely to informa-
tion available in the NEOS Guide and by incorporating better on-line option descrip-
tions. The @NEOS project envisions a more automated solution, however, provided
by an advanced solver query engine. Such a system would most likely be built as a
kind of database query manager, taking as input a list of problem characteristics and
producing as output a list of suggested solvers.

As an example, the query engine’s input list of characteristics in the nonlinear case
could include,

— for the objective, whether it is to be minimized or maximized, whether it
is linear, quadratic, or more general in form, how many separable terms it
contains, and whether it is convex, concave, or neither;

— for the constraints, the numbers of equalities and inequalities having anal-
ogous properties, as well as a measure of the sparsity of the derivative
(Jacobian) matrix.

Information in the database would indicate the degree to which different solvers would
require or prefer the presence or absence of different characteristics. The mechanisms
for storing and applying this information are not as yet well understood, though there
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has been some work on the problem in the context of other mathematical software
[Lucks and Gladwell 1992]. The output would include a ranked list of solvers, and
preferably also a list of suggested option combinations for each solver.

A solver query engine could communicate directly with modelers, but its useful-
ness would then depend on the willingness and ability of people to give correct lists
of characteristics for the problems they want to solve. If problem characteristics could
instead be automatically extracted from modelers’ submissions, the query engine could
operate much more reliably. This suggests the desirability of an optimization problem
analyzer that would accept any of several problem formats as input and would pro-
duce as output the lists of problem characteristics required by the query engine. For
nonlinear optimization there is already a utility along these lines, MProbe [Chinneck
forthcoming], which takes the output of the AMPL modeling language translator as its
input, and produces a variety of tables and graphs concerning problem size, convexity,
and other useful properties. The same approach might well be used to produce a list
of characteristics relevant to solver choice.

Given a problem analyzer whose output feeds into a solver query engine, an opti-
mization ASP could generate solver suggestions tailored to each problem submitted,
taking into account which solvers were currently available. The server could then pro-
ceed by sending the problem to the solver ranked #1 by the query engine, automating
the solver choice entirely. Making the choice such a black box might encourage over-
confidence in the system’s abilities, however; it would also be desirable for the query
engine to optionally return a ranked list of solvers, together perhaps with some indi-
cation as to why solvers ranked as they did. This could help a customer to track down
why, say, a model thought to be linear was recommended only for nonlinear solvers.

As a further enhancement, the query engine might extract information from the
database of the server’s adaptive scheduler via some automatic and ongoing process.
This would allow it to rank solvers based on actual as well as expected performance.

Users. An optimization model is seldom an end in itself. Most models are intended
to be built into more general application software, so as to provide a convenient in-
terface for some broader function. Applications of this kind have become widespread
throughout the manufacturing and service industries, with particularly fast growth in
such areas as production planning, transportation, and logistics. Developers are also
now starting to build optimization into web-based applications, to provide fast con-
figuration decisions for complex products such as telecommunications equipment and
secured loans. Users of these products are seldom required to know much about opti-
mization, and indeed are often unaware that a minimization or maximization is being
carried out to produce some of the information displayed.

Application software of this kind could make good use of an optimization server.
In this context the application would act as a client, but would access optimization
services not by use of web pages and buttons, but through equivalent procedure calls.
The conversion of the NEOS Server to a callable “automatic” NEOS has been the first
major goal of the @NEQOS project. It has already been tested to some extent, though
in a general-purpose setting, as a component of the AMPL Remote Access modeling
environment.

As the optimization server is enhanced in the various ways previously described, the
equivalent procedure calls will need to be extended accordingly. Thus a carefully de-
signed application program interface for Internet optimization services would do much
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to encourage development of client applications. An API of this kind would provide a
standard and general way for applications to invoke remote optimization services, and
could thus serve as a catalyst to greatly expand the benefits of optimization on the
Internet into a variety of powerful and flexible environments.

Further Directions

In most of the initial development of optimization as an Internet resource, the basic
unit of request has been the solution of one problem using one solver. Many of the same
ideas could be applied to allow two or more remote solvers to be used in combination
to attack especially hard problems. Dotti et al. [2000] describe one possibility, an
architecture that would permit researchers at several institutions to experiment with
metaheuristics for combinatorial optimization problems by combining diverse heuristic
methods that are shared as network resources.

We can also expect that Internet resources of the kinds we have described for opti-
mization will be concurrently developed for other modeling techniques. Future network
services should thus be able to support iterative schemes that involve combinations of
solvers for optimization, statistical estimation, and numerical computation generally.
The same services could also provide access to tools for problem analysis and for data-
base access. The MMM method management system [Glinther et al. 1997] is a prototype
for the integration of diverse computational software into such an arrangement; it pro-
vides a common framework to facilitate the use of outputs from one tool as inputs to
other, possibly quite different tools.

The idea of optimization servers as Internet resources is also likely to be expanded
to facilitate remote access to optimization models and data. Developers of models for
particular applications might post them to a kind of model server, for example; a user
of this server would send the inputs required by a chosen model and would receive the
model’s specified outputs. In this way optimization at a higher conceptual level could
also come to be viewed as an Internet resource.

Web Links

ActiveX Controls www.microsoft.com/com/tech/activex.asp

adding solvers (NEOS Server) www-neos.mcs.anl.gov/neos/solvers/ADMIN:ADDSOLVER/
ADIFOR www.mcs.anl.gov/adifor/

ADOL-C www.math.tu-dresden.de/wir/project/adolc/

AMPL www.ampl.com/ampl1/

AMPL Remote Access www.ampT.com/ampT1/NEOS/

applet java.sun.com/applets/

application service provider www.aspindustry.org/

BARON archimedes.scs.uiuc.edu/cgi/run.pl

Benchmarks for Optimization Software plato.la.asu.edu/topics/benchm.html
complementarity problems www.cs.wisc.edu/cpnet/

cooperative effort (NEOS Server) www-neos.mcs.anl.gov/neos/collab.html
CORBA www.omg.org/

18



cutting and packing prodlog.wiwi.uni-halle.de/sicup/

DecisionNet www.heinz.cmu.edu/project/dnet/

Decision Tree for Optimization Software plato.la.asu.edu/guide.html
e-Optimization.Community www.e-optimization.com/

Frequently Asked Questions (NEOS Guide) www.mcs.anl1.gov/otc/Guide/faq/
GA Playground arieldolan.com/ofiles/ga/gaa/gaa.html

GAMS www.gams.com/

GIDEN giden.iems.nwu.edu/

global optimization solon.cma.univie.ac.at/ neum/glopt.html

HIRON vasbo.comtel.ru/hiron.htm

iMW www.mcs.anl.gov/metaneos/softtools/imw.html

iNEOS www.mcs.anl1.gov/metaneos/softtools/ineos.html

Interactive Simplex Tool www.mcs.an1.gov/otc/Guide/CaseStudies/simplex/
LiftOff www.newmoon.com/

LogicTools www.logic-tools.com/

Ip/data netlib.bell-1abs.com/netlib/1p/data/

LPL www2-iiuf.unifr.ch/tcs/1pl1/

LPL server www2-iiuf.unifr.ch/tcs/1p1/Tplwww/Iplfile.htm

Mathematical Programming Glossary
www . cudenver.edu/ "hgreenbe/glossary/glossary.html

MetaFrame www.citrix.com/

MetaNEOS www.mcs.anl.gov/metaneos/

MILP pinnacle.edrc.cmu.edu:8080/milp.shtml

MINLPLIB www.mcs.dundee.ac.uk/ sleyffer/MINLP_TP/

MIPLIB softlib.rice.edu/softlib/catalog/mipTlib.html

MMM http://meta-mmm.wiwi.hu-berlin.de

MP-MODEL www-neos.mcs.anl.gov/neos/solvers/IP:MPMOD-XPRESS/
MProbe www.sce.carleton.ca/faculty/chinneck/mprobe.html

MPS (format)
www.mcs.anl.gov/otc/Guide/OptWeb/continuous/constrained/linearprog/mps.html

MultiSimplex www.multisimplex.com/

MW www.cs.wisc.edu/condor/mw/

NEOS Guide www.mcs.anl.gov/otc/Guide/

NEOS Guide Case Studies www.mcs.anl.gov/otc/Guide/CaseStudies/
NEOS Server for Optimization www-neos.mcs.anl.gov/neos/

NEOS Solvers www-neos.mcs.anl.gov/neos/server-solvers.html

Netlib netlib.bel1-1abs.com/ or www.netlib.org/
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NetSolve www.cs.utk.edu/netsolve/

Nexus www.globus.org/nexus/

NIMBUS nimbus.math.jyu.fi/

Ninf ninf.etl.go.jp/

Optimization Online www.optimization-online.org

Optimization Software Guide (NEOS Guide) www.mcs.an1.gov/otc/Guide/SoftwareGuide/
Optimization Technology Center www.mcs.anl.gov/otc/

Optimization Tree (NEOS Guide) www.mcs.anl1.gov/otc/Guide/OptWeb/

OptiW fb0445.mathematik.tu-darmstadt.de:8081/optiwww/themen.html
OR-Library mscmga.ms.ic.ac.uk/info.html

QAP Case Study www.mcs.anl.gov/otc/Guide/CaseStudies/qap/

RIOT riot.ieor.berkeley.edu/riot/

SDPLIB www.nmt.edu/ sdplib/

semidefinite programming www.zib.de/helmberg/semidef.html

servlet java.sun.com/product/servlet/

SIF (format) www.numerical.rl.ac.uk/Tancelot/sif/sifhtml.html

signed applet java.sun.com/security/signExample/

SMPS (format) ttg.sba.dal.ca/sba/profs/hgassmann/smps.html

sparse SDPA (format) www.nmt.edu/ sdp1ib/FORMAT

submission tool (NEOS Server) www-neos.mcs.anl.gov/neos/server-submit.html
Try AMPL! www.amp1.com/amp1/TRYAMPL/

TSPfast www.wxs.n1/ onno.waalewijn/tspfast.html

TSPLIB www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/

TSPx www.wxs.n1l/ onno.waalewijn/tspx.html

UniCalc www.rriai.org.ru/UniCalc/calculate.html

Visualization and Optimization www.chesapeake2.com/cvj/itorms/

Windows Terminal Server www.microsoft.com/ntserver/terminalserver/default.asp

Z1IB MATHPROG ftp.zib.de/pub/Packages/mathprog/index.html
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