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Benchmarking Optimization Software with COPS�

Elizabeth D� Dolany and Jorge J� Mor�ez

Abstract

We describe version ��� of the COPS set of nonlinearly constrained optimization

problems� We have added new problems� as well as streamlined and improved most of

the problems� We also provide a comparison of the LANCELOT� LOQO� MINOS� and

SNOPT solvers on these problems�

Introduction

The COPS ��� test set provides a modest selection of di�cult nonlinearly constrained opti


mization problems from applications in optimal design� �uid dynamics� parameter estima


tion� and optimal control� In this report we describe version ��� of the COPS problems� The

formulation and discretization of the original problems have been streamlined and improved�

We have also added new problems�

The presentation of COPS follows the original report� but the description of the problems

has been streamlined� For each problem we discuss the formulation of the problem and the

structural data in Table ��� on the formulation� The aim of presenting this data is to

provide an approximate idea of the size and sparsity of the problem�

Table ���� Description of test problems

Variables
Constraints
Bounds
Linear equality constraints
Linear inequality constraints
Nonlinear equality constraints
Nonlinear inequality constraints
Nonzeros in r�f�x�
Nonzeros in c��x�

We also include the results of computational experiments with the LANCELOT� LOQO�

MINOS� and SNOPT solvers� These computational experiments di�er from the original ���

results in that we have deleted problems that were considered to be too easy� Moreover�

in the current version of the computational experiments� each problem is tested with four

variations�
�This work was supported by the Mathematical� Information� and Computational Sciences Division

subprogram of the O�ce of Advanced Scienti�c Computing� U�S� Department of Energy� under Contract
W�	
�
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An important di�erence between this report and the original ��� report is that the tables

that present the computational experiments are generated automatically from the testing

script� This is explained in more detail below�

Testing Methods

We have performed our trials on sixty
eight variants of seventeen di�erent applications�

which constitute version ��� of the COPS set� The implementations are written in the

AMPL modeling language for use with the AMPL �version ��������� interfaces to nonlin


early constrained optimization solvers of interest to us� The solvers include LANCELOT

�AMPL driver �����	�
�� LOQO ���� ������	���� MINOS ��� ��������	�� and SNOPT ���
�

�����������

We have devised a script for running a problem on each solver successively� so as to

minimize the e�ect of �uctuation in the machine load� The script tracks the wall
clock

time from the start of the solve� killing any process that runs for more than ����� seconds�

which we declare unsuccessful� We cycle through all problem variants� recording the wall


clock time as well as the combination of AMPL system time �to interpret the model and

compute varying amounts of derivative information required by each solver� and solver time�

We consider the times returned by AMPL denitive� but we initially record the wall
clock

times to check for discrepancies in the solvers� methods of calculating execution time� We

include no problem results for which the AMPL time and the wall
clock time di�er by more

than ten percent� To further ensure consistency� we have veried that the AMPL time

results we present could be reproduced to within ten percent accuracy� All computations

were done on a SparcULTRA� running Solaris ��

Once all the runs have completed� a parser searches the output les for key text patterns

indicating whether the solver completed successfully� The script then gathers the data we

need into tables and other les for later calculations�

The AMPL interfaces to these solvers provide numerous options� We set options for

each solver and execute our nal complete runs with the same options for all problems� The

options involve setting the output level so that we can gather the data we want� increasing

the iteration limits as much as allowed� and increasing the super
basics limits for MINOS

and SNOPT to ����� None of the failures we record in the nal trials include any solver

error messages about having violated these limits�

We realize that testing optimization software is a notoriously di�cult problem and that

there may be objections to the testing presented in this report� For example� performance

of a particular solver may improve signicantly if non
default options are given� Another

objection is that we only use one starting point per problem and that the performance of a

solver may be sensitive to the choice of starting point� We also have used the default stopping

criteria of the solvers� This choice may bias results but should not a�ect comparisons that

rely on large time di�erences� In spite of these objections� we feel that it is essential that we

provide some indication of the performance of optimization solvers on interesting problems�

This report is an e�ort in this direction�

�



� Largest Small Polygon

Find the polygon of maximal area� among polygons with nv sides and diameter d � ��

Formulation

This is a classic problem �see� for example� Graham ������ If �ri� �i� are the coordinates of

the vertices of the polygon� then we must minimize

f�r� �� � ��

�

nv��X
i��

ri��ri sin��i�� � �i�

subject to the constraints

r�i � r�j � �rirj cos��i � �j� � �� � � i � nv� i � j � nv �

�i � �i��� � � i � nv�
�i � ��� ��� ri � �� � � i � nv�

Our implementation follows ���� and xes the last vertex by setting rnv � � and �nv � ��

By xing a vertex at the origin� we can add the bounds ri � ��

The optimal solution is not usually a regular hexagon� as was shown by Graham �����

Another interesting feature of this problem is the presence of order n�v nonlinear nonconvex

inequality constraints� We also note that as nv � �� we expect the maximal area to

converge to the area of a unit
diameter circle� ��� � ������� This problem has many local

minima� For example� for nv � � a square with sides of length ��
p

� and an equilateral

triangle with another vertex added at distance � away from a xed vertex are both global

solutions with optimal value f � �
�
� Indeed� the number of local minima is at least O�nv ���

Thus� general solvers are usually expected to nd only local solutions� Data for this problem

appears in Table ����

Table ���� Largest
small polygon problem data

Variables �nv
Constraints � �

�
nv � 
��nv � 
�

Bounds �nv
Linear equality constraints �
Linear inequality constraints nv � 

Nonlinear equality constraints �
Nonlinear inequality constraints �

�
nv�nv � 
�

Nonzeros in r�f�x� �nv
Nonzeros in c��x� �nv�nv � 
�

Performance

Results for the AMPL implementation are summarized in Table ���� A polygon with almost

equal sides is the starting point� Global solutions for several nv are shown in Figure ����

�



Table ���� Performance on largest small polygon problem

Solver nv � �� nv � �� nv � �� nv � 
��

LANCELOT 
��	 s 	��
� s 

��� s z

f �����
�e��
 ��	���e��
 ������e��
 z

c violation �����e��� 
������e��� ��
���e��� z

iterations �
 
�� 
�� z

LOQO 	��� s 	��
� s ���� s z

f �����
�e��
 �������e��
 �������e��
 z

c violation 
��e��� ���e��� 
��e��� z

iterations 

� ��	 ��� z

MINOS ��

 s ���� s ���� s 	���
 s
f ����		e��
 ����
�	e��
 �������e��
 �����	e��


c violation 
��e�
	 ���e�
� ���e�
	 
�	e�
�
iterations �� 
��� �
�� �
�

SNOPT 
�
� s 
���� s �
��� s ����� s
f �������e��
 ����
�e��
 ������e��
 ������e��


c violation ���e�
� ��
e�
� 
�
e��� 
��e���
iterations �
 ��� ��� ���

y Errors or warnings� z Timed out�
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Figure ���� Polygons of maximal area with nv � �� ��� �� �left� center� right�
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� Distribution of Electrons on a Sphere

Given np electrons� nd the equilibrium state distribution �of minimal Coulomb potential�

of the electrons positioned on a conducting sphere�

Formulation

This problem� known as the Thomson problem of nding the lowest energy conguration of

np point charges on a conducting sphere� originated with Thomson�s plum pudding model

of the atomic nucleus� This problem is representative of an important class of problems in

physics and chemistry that determine a structure with respect to atomic positions�

The potential energy for np points �xi� yi� zi� is dened by

f�x� y� z� �

np��X
i��

npX
j�i��

�
�xi � xj�

� � �yi � yj�
� � �zi � zj�

�
���

� �

and the constraints on the np points are

x�i � y�i � z�i � �� i � �� � � � � np�

Data for this problem appears in Table ����

This problem has many local minima at which the objective value is relatively close to

the objective value at the global minimum� Experimental and theoretical results ���� ���

show that

min
�
f�v�� � � � � vnp� � kvik � �� � � i � np

� � �
�
n�p��� ��� � � � �

�
�

np

����

�

Also� the number of local minima grows exponentially with np� Thus� determining the

global minimum is computationally di�cult� and solvers are usually expected to nd only

a local minimum�

Table ���� Electrons on a sphere problem data

Variables 	np
Constraints np
Bounds �
Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints np

Nonlinear inequality constraints �
Nonzeros in r�f�x� �n�p
Nonzeros in c��x� 	np

Performance

Results for the AMPL implementation are summarized in Table ���� The starting point is

a quasi
uniform distribution of the points on a unit sphere� The best solution for np � ���

is shown in Figure ����

�



Table ���� Performance on electrons on a sphere problem

Solver np � �� np � �� np � 
�� np � ���

LANCELOT 	�� s �� s �	�	� s 	�
�� s
f ���	
�e��� 
����
e��	 �����
e��	 
��	�e���

c violation ��	�	�e��� ������e�� ��	��
�e��� 
����
�e���
iterations �� �� �� 
��
LOQO ��� s ���� s 
����� s ��	��� s

f ���	
�e��� 
����
e��	 ����	�e��	 
��	�e���
c violation ��e��� ���e��� 	��e��� 
��e���
iterations �� �� 
	� ���
MINOS ���� s 	��� s z ����� s

f ���	
�e��� 
����
e��	 z 
������e���y
c violation ���e�� 
��e�
� z ���e���y
iterations 
��	 
��
 z 
��

SNOPT ���� s 
��� s �	��� s 
����� s
f ���	
�e��� 
����
e��	 �����
e��	 
��	��e���

c violation ���e��� 
�e�
� ���e�
� ���e�
�
iterations ��� ��	 �� 

�


y Errors or warnings� z Timed out�

MINOS cannot solve the problem for np 	 ��� For np � ��� it gives the error message

unbounded �or badly scaled� problem�

Figure ���� Optimal distribution of electrons on a sphere� np � ���
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� Hanging Chain

Find the chain �of uniform density� of length L suspended between two points with minimal

potential energy�

Implementation

This classical problem �see Cesari ���� pages�������� was suggested by Hans Mittelmann�

In this problem we need to determine a function x�t�� the shape of the chain� that minimizes

the potential energy Z �

�

x
p

� � x�� dt

subject to the constraint on the length of the chain�Z �

�

p
� � x�� dt � L�

and the end conditions x��� � a and x��� � b� We reformulate this problem as a control

problem in terms of the function u � x�� The optimal control version of the problem isZ �

�

x
p

� � u� dt

subject to a di�erential equation and a constraint on the length of the chain�

x� � u�

Z �

�

p
� � u� dt � L�

We discretize the integrals and the di�erential equation with the trapezoidal rule on a

uniform mesh with nh intervals� Data for this problem appears in Table ����

Table ���� Hanging chain problem data

Variables �nh
Constraints nh � 

Bounds �
Linear equality constraints nh
Linear inequality constraints �
Nonlinear equality constraints 

Nonlinear inequality constraints �
Nonzeros in r�f�x� 	nh
Nonzeros in c��x� �nh

Performance

Results for the AMPL implementation are summarized in Table ��� with a � �� b � �� and

L � �� The starting point is the quadratic

x�t� � ��jb� aj� t�t � �tm� � a�

�



where tm � ���� if b 	 a and tm � ���� otherwise� evaluated at the mesh points� This

choice is convex and satises the boundary data� The control function u is set to x�� The

optimal chain is shown in Figure ����

Table ���� Performance on hanging chain problem

Solver nh � �� nh � 
�� nh � ��� nh � ���

LANCELOT 
	��
 s ����� s ���� s ������ s
f �����	�e��� �������e��� ������	e��� �����e���

c violation 	�	
	
�e��� ���
���e��� ���
���e��� ������e���
iterations ��� 

�� 	��� 	��	

LOQO 
���� s ���� s 
���� s 
���	� s
f �������e��� ������e��� �����
e��� ������e���

c violation 	�	e�� ��	e�
� ���e�
� ���e���
iterations ��	 ��� �� ���
MINOS 
��� s ���� s 
���� s �	�� s

f �������e��� ������e��� �����
e��� ������e���
c violation ��
e�� ���e��� ���e��� 	�	e���
iterations �� ��� 

�� �	
�
SNOPT ���� s 	���� s ��� s z

f �������e��� ������e��� �����
e��� z

c violation ���e��� ���e��� 
��e��� z

iterations ��� ��
 �� z

y Errors or warnings� z Timed out�
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Figure ���� Hanging chain of length L � �
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� Shape Optimization of a Cam

Maximize the area of the valve opening for one rotation of a convex cam with constraints

on the curvature and on the radius of the cam�

Formulation

The formulation of this problem is due to Anitescu and Serban ���� We assume that the

shape of the cam is circular over an angle of �
�
� of its circumference� with radius rmin� The

design variables ri� i � �� � � � � n � represent the radius of the cam at equally spaced angles

distributed over an angle of �
�
�� We maximize the area of the valve opening by maximizing

f�r� � �r�v

�
�

n

nX
i��

ri

	

subject to the constraints on r� The design parameter rv is related to the geometry of the

valve� We also require that rmin � ri � rmax� The requirement that the cam be convex is

expressed by requiring that

area�ri��� ri��� � area�ri��� ri� � area�ri� ri����

where area�ri� rj� is the area of the triangle dened by the origin and the points ri and rj
on the cam surface� This convexity constraint can also be expressed as

�ri��ri�� cos��� � ri�ri�� � ri���� i � �� � � � � n� ��

where r�� � r� � rmin� rn�� � rmax� rn�� � rn and � � �����n � ��� The curvature

requirement is expressed by

�� �
�
ri�� � ri

�

�
� �� i � �� � � � � n�

This is a departure from ���� where the curvature constraint was expressed in terms of

�ri�� � ri�
�� Data for this problem appears in Table ����

Table ���� Optimal design of a cam problem data

Variables n

Constraints �n � �
Bounds n

Linear equality constraints �
Linear inequality constraints n � 

Nonlinear equality constraints �
Nonlinear inequality constraints n� 

Nonzeros in r�f�x� �
Nonzeros in c��x� �n

We follow ��� and use rmin � ��� and rmax � ��� for the bounds on r� rv � ��� in the

area of the valve� and � � ��� in the curvature constraint� Since the optimal cam shape

is symmetric� we consider only half of the design angle� The problem was originally ���

formulated for the full angle of �
�
��

�



Performance

Results for the AMPL implementation are summarized in Table ���� We use a starting

guess of ri � �rmin � rmax���� The cam shape for � � ��� appears in Figure ���� We note

that the number of active constraints increases with � up to a threshold of �� � ���� after

which increasing � does not change the optimal solution�

Table ���� Performance on optimal cam shape problem

Solver n � 
�� n � ��� n � ��� n � ��

LANCELOT ����� s 
���� s 
�����	 s 
���	 s
f ��	�
�e���y ��	��	e���y �������e���y �����	e���

c violation ������e���y ��
�
��e���y 	����	�e���y �������e���
iterations 	
� ��
 ��� ��	
LOQO ��� s 
��
 s ���� s 
���� s

f ����
�e��� ������e��� ������e��� �������e���
c violation ��
e�
� 
��e�

 ��	e�
	 
��e�
�
iterations �	 �	 

	 

�

MINOS ��� s 
�	� s ���� s �
��� s
f ����
�e��� ������e��� �������e���y �������e���

c violation ���e�
� 
��e�
� ��	e�
�y 	��e�
	
iterations ��� �� ��� ��
�
SNOPT ��� s 
��� s ��� s ���
� s

f ����
�e��� ����	��e��� �������e��� ���	�	�e���
c violation 
�	e�
� 
�e��� ��	e��� ���e���
iterations 	
� �� 

�
 ��	�

y Errors or warnings� z Timed out�

LANCELOT stops prematurely with the message step got too small for n � ���� ���� ����

and its solution for n � ���� while showing the best value� violates the problem constraints

to an extent obvious in a graph of the solution� MINOS quits for n � ��� because the

current point cannot be improved�

Figure ���� Cam shape for � � ����

��



� Isometrization of ��pinene

Determine the reaction coe�cients in the thermal isometrization of �
pinene� The linear

kinetic model ��� is

y�� � ���� � ���y�
y�� � ��y�
y�	 � ��y� � ��	 � ���y	 � ��y� �����

y�� � �	y	
y�� � ��y	 � ��y��

where �i � � are the reaction coe�cients� Initial conditions for ����� are known� The

problem is to minimize

X

j��

ky�
j� ��� zjk�� �����

where zj are concentration measurements for y at time points 
�� � � � � 

�

Formulation

Our formulation of the �
pinene problem as an optimization problem follows ���� ��� We

use a k
stage collocation method� a uniform partition with nh subintervals of ��� 

�� and

the standard ��� pages �������� basis representation�

vi �
kX

j��

�t� ti�
j

j� hj��
wij � t � �ti� ti����

for the components of the solution y of ������ The constraints in the optimization problem

are the initial conditions in ������ the continuity conditions� and the collocation equations�

The continuity equations at each interior grid point are a set of ��nh � �� linear equations�

The collocation equations are a set of �knh nonlinear equations obtained by requiring that

the collocation approximation satisfy ����� at the collocation points� Data for this problem

appears in Table ����

Table ���� Isometrization of �
pinene data

Variables ��k � 
�nh � �
Constraints ��k � 
�nh
Bounds �
Linear equality constraints �nh
Linear inequality constraints �
Nonlinear equality constraints �knh
Nonlinear inequality constraints �
Nonzeros in r�f�x� ���k � 
��

Nonzeros in c��x� 
�k�k � 
�nh

��



Performance

We provide results for the AMPL formulation with k � � in Table ���� The initial values

for the � parameters are �i � ���� The initial basis parameters are chosen so that the

collocation approximation is piecewise constant and interpolates the data� The solution

and data are shown in Figure ����

Table ���� Performance on isometrization problem

Solver nh � �� nh � �� nh � 
�� nh � ���

LANCELOT 
�����
 s ������� s z z

f 
������e��
y 
��	�	�e��
y z z

c violation 
�����e���y �������e���y z z

iterations 	�� 
�� z z

LOQO ��� s ��
� s ���� s 
��� s
f 
���
�e��
 
����
e��
 
����
e��
 
����
e��


c violation 
�	e�

 ���e�
	 ���e�
	 ��e�
	
iterations 	� 	� �	 �


MINOS 
�� s ���� s �
��� s 
���� s
f 
���
�e��
 
����
e��
 
����
e��
 �������e���y

c violation ���e�
	 ���e�
	 ��	e�
� 
��e���y
iterations 	� �	� 
	�� 	���
SNOPT 	��� s 
	�
 s ���
 s �	���� s

f 
���
�e��
 
����
e��
y 
����
e��
 
����
e��
y
c violation 	��e�
	 ���e�
	y ���e�
	 ��
e�
	y
iterations ��� 
��� ���� ���

y Errors or warnings� z Timed out�

LANCELOT stops with the message step got too small� near the solution for nh � ���

MINOS fails completely on nh � ��� with unbounded �or badly scaled� problem� while

SNOPT manages a �p�rimal feasible solution� which could not satisfy dual feasibility for

both nh � ��� ����
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Figure ���� Solution and data for the �
pinene problem
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� Marine Population Dynamics

Given estimates of the abundance of the population of a marine species at each stage �for

example� nauplius� juvenile� adult� as a function of time� determine stage specic growth

and mortality rates� The model for the population dynamics of the ns
stage population is

y�j � gj��yj�� � �mj � gj�yj � � � j � ns� �����

where mi and gi are the unknown mortality and growth rates at stage i with g� � gns � ��

This model assumes that the species eventually dies or grows into the next stage� with

the implicit assumption that the species cannot skip a stage� Initial conditions for the

di�erential equations are unknown� since the stage abundance measurements at the initial

time might also be contaminated with experimental error� We minimize the error between

computed and observed data�

nmX
j��

ky�
j �m� g�� zjk��

where zj are the stage abundance measurements� This problem is based on the work of

Rothschild� Sharov� Kearsley� and Bondarenko �����

Formulation

Our formulation of the marine population dynamics uses a k
stage collocation method� a

uniform partition with nh subintervals of ��� 
nm�� and the standard ��� pages �������� basis

representation�

vi �
kX

j��

�t� ti�
j

j� hj��
wij � t � �ti� ti����

for the components of the solution y of ������ The constraints in the optimization problem

are the continuity conditions and the collocation equations� The continuity equations are a

set of ns�nh � �� linear equations� The collocation equations are a set of k ns nh nonlinear

equations obtained by requiring that the collocation approximation satisfy ����� at the

collocation points �ij � ti � h�j for i � �� � � � � nh and j � �� � � � � k�

Table ���� Marine population dynamics problem data

Variables �k� 
�nsnh � �ns � 

Constraints �k � 
�nsnh � ns
Bounds �ns � 

Linear equality constraints ns�nh � 
�
Linear inequality constraints �
Nonlinear equality constraints knsnh

Nonlinear inequality constraints �
Nonzeros in r�f�x� �k� 
��nsnm
Nonzeros in c��x� ��k� 
��k � ��nsnh

��



The parameters in the problem are the nsnh initial conditions� the ns mortality rates�

the ns � � growth rates� and the �k � ��nsnh basis parameters in the representation of the

collocation approximation� Data for this problem appears in Table ����

We do not impose any initial conditions on the di�erential equations� since initial mea


surements are usually contaminated with experimental error� Introducing these extra de


grees of freedom into the problem formulation should allow solvers to nd a better t to

the data� A signicant di�erence between this problem and other parameter estimation

problems is that the population dynamics data usually contains large observation errors�

Performance

We provide results for the AMPL formulation with k � � in Table ���� We use a simulated

dataset with ns � � stages� The initial basis parameters are chosen so that the collocation

approximation is piecewise constant and interpolates the data�

Table ���� Performance on marine population dynamics problem

Solver nh � �� nh � �� nh � 
�� nh � ���

LANCELOT ��	��� s 
���		 s 	
����� s z

f 
������e���y 
������e���y 
������e���y z

c violation 
���	�e���y 	������e���y ������e���y z

iterations ��� �
 ��	 z

LOQO ���� s ���� s 
���	 s 	�� s
f 
������e��� 
������e��� 
������e��� 
������e���

c violation ��	e�
� ���e�
� ��e�

 ��e�
�
iterations �� �� �� ��
MINOS ��� s 
���� s 
���	 s ����
 s

f 
������e��� 
������e��� ��
���e��� �������e���y
c violation ���e�
� ��	e�

 ���e�� 	��e���y
iterations �	
 �� ���
 ����
SNOPT ��	� s 
��� s ������ s 
������ s

f 
������e��� 
������e��� 
������e��� 
������e���
c violation ���e�
� 
�
e�

 ��	e�
� ���e�


iterations 
�	� 
�� 	�	
 ���	

y Errors or warnings� z Timed out�

LANCELOT returns the message step got too small for the values of nh for which

it terminates within �� ��� wall
clock seconds� The intermediate solution returned by

LANCELOT upon termination is in close agreement with the optimal solutions returned

by the other solvers� MINOS makes no progress with nh � ���� returning with the error

unbounded �or badly scaled� problem�

The graph on the left of Figure ��� shows the populations for stages �� �� �� and �� while

the graph on the right shows the populations for stages �� �� �� and �� In both cases� the t

between the model and the data is not always tight�

For this problem we are using a relatively small number of collocation points �k � ���

since in this case the number of parameters grows quickly with the number of stages� The

quality of the solution does not seem to be a�ected� at least as measured by the population

��



curves and the mortality and growth parameters�
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Figure ���� Marine populations for stages �� �� �� � �left� and �� �� �� � �right�

Figure ��� plots the mortality and growth parameters for the eight stages� Mortality

parameters are marked 	� while growth parameters are marked 
� The mortality parameters

for stages � and � are not zero� but they are on the order of ���	 and ����� respectively�
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Figure ���� Mortality �	� and growth �
� parameters for the marine populations stages
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	 Flow in a Channel

Analyze the �ow of a �uid during injection into a long vertical channel� assuming that the

�ow is modeled by the boundary value problem

u���� � R �u�u�� � uu���� � � � t � ��
u��� � �� u��� � �� u���� � u���� � ��

�����

where u is the potential function� u� is the tangential velocity of the �uid� and R is the

Reynolds number�

Formulation

We use a k
stage collocation method to formulate this problem as an optimization problem

with a constant merit function and equality constraints representing the solution of ������

We use a uniform partition with nh subintervals of ��� ��� and the standard ��� pages ��������

basis representation�

u�t� �
mX
j��

�t� ti�
j��

�j � ���
vij �

kX
j��

�t � ti�
j�m��

�j � m� ��� hj��
wij � t � �ti� ti����

for u� Note that u � Cm����� ��� where m � � is the order of the di�erential equation�

The constraints in the optimization problem are the initial conditions in ������ the

continuity conditions� and the collocation equations� There are m � � initial conditions�

The continuity equations are a set of m�nh� �� linear equations� The collocation equations

are a set of k nh nonlinear equations obtained by requiring that u satisfy ����� at the

collocation points �ij � ti�h�j for i � �� � � � � nh and j � �� � � � � k� The collocation points �j
are the roots of the kth degree Legendre polynomial� The parameters in the optimization

problem are the �m� k�nh parameters vij and wij in the representation of u� Data for this

problem appears in Table ����

Table ���� Flow in a channel problem data

Variables �k� ��nh
Constraints �k� ��nh
Bounds �
Linear equality constraints �nh
Linear inequality constraints �
Nonlinear equality constraints knh

Nonlinear inequality constraints �
Nonzeros in r�f�x� �
Nonzeros in c��x� k�k � �nh

Performance

Results for the AMPL implementation with k � � and R � �� are summarized in Table ����

The starting point is the function t��� � �t� evaluated at the mesh points� Solutions for

��



several R are shown in Figure ���� This problem is easy to solve for small Reynolds numbers

but becomes increasingly di�cult to solve as R increases�

Table ���� Performance on �ow in channel problem

Solver nh � �� nh � 
�� nh � ��� nh � ���

LANCELOT z z z z

f z z z z

c violation z z z z

iterations z z z z

LOQO 
��� s ���� s ���	 s ����� s
f 
������e��� 
������e��� 
������e��� 
������e���

c violation ��
e�
� 
�
e�

 ���e�

 
��e�


iterations 	� �� �� 	�
MINOS 
��� s 	��� s 

�
� s 	���� s

f 
������e��� 
������e��� 
������e��� 
������e���
c violation 	�e�
	 ���e�
	 ���e�
	 	�e���
iterations 
�
 	�
 ��
 ���
SNOPT ��
� s ���� s ����
 s ��� s

f 
������e��� 
������e��� 
������e��� 
������e���
c violation ��
e��� ���e��� ��
e��� 	��e���
iterations 	� �� 
�� ����

y Errors or warnings� z Timed out�

LANCELOT is unable to solve even simple versions of the problem� advancing very

slowly toward the solution �as judged from the value of the merit function��
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Figure ���� Tangential velocity u� for Reynolds numbers R � �� ���� ���
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 Robot Arm

Minimize the time taken for a robot arm to travel between two points�

Formulation

This problem originated in the thesis of Monika M�ossner
Beigel �Heidelberg University�� In

her formulation the arm of the robot is a rigid bar of length L that protrudes a distance

� from the origin to the gripping end and sticks out a distance L � � in the opposite

direction� If the pivot point of the arm is the origin of a spherical coordinate system� then

the problem can be phrased in terms of the length � of the arm from the pivot� the horizontal

and vertical angles ��� � from the horizontal plane� the controls �u�� u�� u��� and the nal

time tf � Bounds on the length and angles are

��t� � ��� L�� j��t�j � �� � � �t� � ��

and for the controls�

ju�j � �� ju�j � �� ju�j � ��

The equations of motion for the robot arm are

L��� � u�� I��
�� � u� � I�

�� � u�� �����

where I is the moment of inertia� dened by

I� �
��L� ��	 � �	�

�
sin���� I� �

��L� ��	 � �	�

�
�

The boundary conditions are

���� � ��tf � � ���� ���� � �� ��tf � �
��

�
� ��� � �tf � �

�

�
�

����� � ����� � ���� � ���tf � � ���tf� � ��tf � � ��

This model ignores the fact that the spherical coordinate reference frame is a noninertial

frame and should have terms for coriolis and centrifugal forces�

Implementation

In the implementation of Vanderbei ���� the controls u are eliminated by substitution� and

thus the equality constraints in ����� become the inequalities

jL���j � �� jI����j � �� jI���j � ��

In this implementation ����� is expressed in terms of a rst
order system with the additional

variables ��� ��� and �� Discretization is done with a uniform time step and the trapezoidal

rule over nh intervals� Data for this problem is shown in Table ����

��



Table ���� Robot arm problem data

Variables ��nh � 
� � 

Constraints �nh
Bounds ��nh � 
�
Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints �nh
Nonlinear inequality constraints �
Nonzeros in r�f�x� �
Nonzeros in c��x� 	�nh

Performance

Results for the AMPL implementation appear in Table ���� All solvers were given the same

initial values� The initial values for � and  were set to the functions � � ��� and  � ���

evaluated at the grid points� Similarly� initial values for � were set to the discrete version

of the parabola

��t� �
��

�

�
t

tf

��

�

which matches three of the boundary conditions� The initial values for all the controls were

set to zero� and tf � � initially�

Table ���� Performance on robotic arm problem

Solver nh � �� nh � 
�� nh � ��� nh � ���

LANCELOT ���� s ���	 s 
�� s ���� s
f �������e���y ��������e�
�y ��������e�
�y ��������e�
�y

c violation ��
�e���y �������e���y 
������e���y ���	���e��	y
iterations � 	 	 	
LOQO 
��	 s ���� s z z

f ��
���e��� ��
����e��� z z

c violation ���e�
� ���e�

 z z

iterations �� 	� z z

MINOS ��� s ��� s 	���� s 
�
�
 s
f ��
���e��� ��
����e��� ��
�
	e��� ��
�
�e���

c violation ���e�
	 
��e�
� ���e�
� ���e�
	
iterations �	� ��� ��� 
	�
SNOPT 
���� s 	��� s 	
���� s ���
��	 s

f ��
���e��� 
�����
e��
y ��
�
��e��� ��
�
�
e���
c violation 
��e�
� 	��e���y 
��e�
� ��
e�
�
iterations �
 
�� ���� ����

y Errors or warnings� z Timed out�

��



LANCELOT reports that it could not �nd a feasible solution for any of the versions

we try for this implementation� For nh � ���� SNOPT encounters di�culties� which it

describes as an error evaluating nonlinear expressions�

Figure ��� shows the variables �� ��  for the robot arm as a function of time� We also

show in Figure ��� the controls u�� u� � u� as a function of time� Note that the controls for

the robot arm are bang
bang� Also note that the functions �� ��  for the robot arm are

continuously di�erentiable� but since the second derivatives are directly proportional to the

controls� the second derivatives are piecewise continuous�
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Figure ���� Variables �� ��  for the robot arm as a function of time
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Figure ���� Control variables u�� u�� u� for the robot arm as a function of time
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� Particle Steering

Minimize the time taken for a particle� acted upon by a thrust of constant magnitude� to

achieve a given altitude and terminal velocity�

Formulation

The equations of motion are

�y� � a cos�u�� �y� � a sin�u�� �����

where �y�� y�� is the position of the particle� u is the control angle with

ju�t�j � �

�
�

and a is the constant magnitude of thrust� The particle is initially at rest so that

y���� � y���� �  y���� �  y���� � ��

The problem is to minimize the travel time tf so that the particle achieves a given height

y��tf � and terminal velocity �  y��tf ��  y��tf���

This is a classical �see Bryson and Ho ��� pages ������� problem in dynamic optimization�

We use a � ��� for the magnitude of thrust and the boundary conditions ���

y��tf � � ��  y��tf � � ���  y��tf� � ��

Discretization is done using a uniform time step and the trapezoidal rule for the integration

of the system over nh intervals� Data for this problem is shown in Table ����

Table ���� Particle steering problem data

Variables ��nh � 
� � 

Constraints �nh
Bounds nh � 

Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints �nh
Nonlinear inequality constraints �
Nonzeros in r�f�x� �
Nonzeros in c��x� ��nh

Performance

Results for the AMPL implementation are given in Table ���� The initial values for y� and

y	 �  y� are chosen as the functions

y��t� � �

�
t

tf

�
� y	�t� � ��

�
t

tf

�
�

��



Table ���� Performance on particle steering problem

Solver nh � �� nh � 
�� nh � ��� nh � ���

LANCELOT 	��	 s 
����� s �
��� s ����� s
f �������e��
 �������e��
 �����e��
 �������e��
y

c violation �������e��� 
����
�e��� ��
��
�e��� ���
��e���y
iterations 	�� �
� �
� ���
LOQO ��	�	 s z z z

f ������e��
 z z z

c violation ��
e�
� z z z

iterations ��
�	 z z z

MINOS 
�� s ���� s ���� s 
�	��� s
f ������e��
 �������e��
 �������e��
 �������e��


c violation ���e�
	 
�
e�� ���e�
	 ���e�
�
iterations �� ��� 

�� ����

SNOPT 	��� s 
	��	 s �	�
 s 
���	� s
f ������e��
 �������e��
 �������e��
 ������	e��


c violation ���e�� 
��e��� ��e��� ���e���
iterations ��� ��� 
��� �	�

y Errors or warnings� z Timed out�

Initial values for y�� y� �  y�� and u are set to zero� The initial value for the nal time is

tf � �� Plots of the height y� and control u as a function of the horizontal position y� are

in Figure ����

Only LANCELOT returns an error here� for nh � ���� of step got too small� Even so�

it comes near to the optimal solution value�
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Figure ���� Height and control as a function of position for the particle steering problem
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�� Goddard Rocket

Maximize the nal altitude of a vertically launched rocket� using the thrust as a control

and given the initial mass� the fuel mass� and the drag characteristics of the rocket�

Formulation

This is a classical problem in dynamic optimization that is typical of control problems with

a singular arc� See Bryson ��� pages �������� for background information� The equations

of motion for the rocket are

h� � v� v� �
T �D�h� v�

m
� g�h�� m� � �T

c
� ������

where h is the altitude from the center of the earth� v is the vertical velocity� T is the rocket

thrust� D is the aerodynamic drag� g is the gravitational force� and c is a constant that

measures the impulse of the rocket fuel� The thrust must satisfy

� � T �t� � Tmax�

The drag and the gravitational force are dened by

D�h� v� � �
�
Dcv

� exp

�
�hc

�
h � h���

h���

��
� g�h� � g�

�
h���

h

��

�

where Dc and hc are constants� and g� is the gravitational force at the earth�s surface� The

rocket is initially at rest �v��� � ��� and the mass at the end of the �ight is a fraction of

the initial mass�

m�tf � � mcm����

where tf is the �ight time and mc is a constant� In addition to the bounds on the thrust�

there are bounds

m�tf� � m�t� � m���� h�t� � h���� v�t� � ��

on the mass� altitude� and velocity of the rocket� These bounds are a direct consequence of

the equations of motion �������

The equations of motion can be made dimension free by scaling the equations and

choosing the model parameters in terms of h���� m���� and g�� We follow ��� and use

Tmax � ��� g�m���� Dc � vc
m���

g�
� c � �

�
�g�h��������

With these choices we can assume� without loss of generality� that h��� � m��� � g� � ��

We also follow ��� and choose

hc � ���� mc � ���� vc � ����

We discretize the equations of motion with the trapezoidal rule� and a uniform mesh with

nh intervals� Data for this problem appears in Table �����

��



Table ����� Goddard rocket problem data

Variables ��nh � 
� � 

Constraints 	nh
Bounds 	�nh � 
�
Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints 	nh
Nonlinear inequality constraints �
Nonzeros in r�f�x� �
Nonzeros in c��x� �
nh

Performance

Results for the AMPL implementation are shown in Table ����� For starting points we use

tf � � and the functions h � ��

v�t� �
t

tf

�
�� t

tf

�
� m�t� � �mf �m��

�
t

tf

�
� m��

evaluated at the grid points� The initial value for the thrust is T � Tmax���

For the rocket problem with nh � ���� ���� MINOS makes no progress� declaring it to

be an unbounded �or badly scaled� problem�

Table ����� Performance on Goddard rocket problem

Solver nh � �� nh � 
�� nh � ��� nh � ���

LANCELOT z z z z

f z z z z

c violation z z z z

iterations z z z z

LOQO 	�	� s 	�	 s ���� s 
���� s
f 
��
�
e��� 
��
�	e��� 
��
�	e��� 
��
�	e���

c violation ��
e�
� ���e�
� ��e�
� ���e�
�
iterations 
�	 �� �	 �

MINOS 
��� s ��� s 
�
� s 	��	 s
f 
��
��e��� 
��
��e��� ���	��e��	y ��

���e��	y

c violation ��e�
	 ��
e�
� 	��e��	y 
�
e��	y
iterations �	 	� 
�
 		�
SNOPT 	��� s ��� s 	
�� s ���� s

f 
��
�
e��� 
��
��e��� 
��
�
e��� 
��
�	e���
c violation 
��e��� ��
e�� 	��e��� ���e���
iterations 
�
� ���� 
�� ����

y Errors or warnings� z Timed out�

Figure ���� shows the altitude and mass of the rocket as a function of time� Note that

altitude increases until a maximum altitude of h � ���� is reached� while the mass of the

rocket steadily decreases until the nal mass of m�tf� � ��� is reached at t � ������

��



Figure ���� shows the velocity and thrust as a function of time� The thrust is bang


singular
bang� with the region of singularity occurring when

� � T �t� � Tmax�

This gure shows that the optimal �ight path involves using maximal thrust until t � ������

and no thrust for t � ������ at which point the nal mass is reached� and the rocket coasts

to its maximal altitude� The oscillations that appear at the point of discontinuity in the

thrust parameter can be removed by using more grid points�
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Figure ����� Altitude and mass for the Goddard rocket problem
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Figure ����� Velocity and thrust for the Goddard rocket problem
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�� Hang Glider

Maximize the nal horizontal position of a hang glider while in the presence of a thermal

updraft�

Formulation

The formulation of this problem follows ���� The equations of motion for the hang glider

are

x�� �
�

m
��L sin����D cos����� y�� �

�

m
�L cos����D sin����� g� ������

where �x� y� is the position of the glider� m is the mass of the glider� g is the gravitational

constant� and the function � is dened by

sin��� �
w�x� y��

v�x� x�� y��
� cos��� �

x�

v�x� x�� y��
�

where

v�x� x�� y�� �
p
x�� � w�x� y���� w�x� y�� � y� � u�x��

u�x� � uc��� r�x�� exp��r�x��� r�x� �

�
x

rc
� ���

��

�

and constants uc � ��� and rc � ���� The updraft function u is positive in a neighborhood

of x � ��� rc but drops to zero exponentially away from x � ��� rc� The functions D and L

are dened by

D�x� x�� y�� cL� �
�

�

�
c� � c�c

�
L

�
�Sv�x� x�� y���� L�x� x�� y�� cL� �

�

�
cL�Sv�x� x�� y����

where S is the wing area� � is the air density� cL is the aerodynamic lift coe�cient� and

c� � c�c
�
L is the drag coe�cient� For this glider

c� � ������ c� � ��������� S � ��� � � �����

The aerodynamic lift coe�cient cL must satisfy the bounds

� � cL�t� � cmax�

and we also impose the natural bounds x � � and x� � �� In this problem cmax � ����

m � ���� g � ����� and the boundary conditions are

x��� � �� y��� � ����� y�tf � � ����

x���� � x��tf � � ������ y���� � y��tf � � �������

Discretization is done with a uniform time step and the trapezoidal rule over nh intervals�

Data for this problem is shown in Table �����

��



Table ����� Hang glider problem data

Variables ��nh � 
� � 

Constraints �nh
Bounds 	�nh � 
�
Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints �nh
Nonlinear inequality constraints �
Nonzeros in r�f�x� �
Nonzeros in c��x� ��nh

Performance

Results for the AMPL implementation are shown in Table ����� For starting points we use

tf � � and the functions x� � x����� y� � y����� and

x�t� � x��� � x����

�
t

tf

�
� y�t� � y��� � �y�tf�� y����

�
t

tf

�
�

evaluated at the grid points� The initial value for the control is cL�t� � cmax�

MINOS fails to produce a solution for any of the problem versions we present it� declaring

each an infeasible problem �or bad starting guess��

Table ����� Performance on hang glider problem

Solver nh � �� nh � 
�� nh � ��� nh � ���

LANCELOT z �

��� s ��	��� s z

f z 
�����
e��	 
����e��	 z

c violation z ��	����e�� ������e��� z

iterations z 		 �	� z

LOQO z �
��� s ���
�	 s z

f z 
�����
e��	 
����e��	 z

c violation z ��
e�

 
��e�
� z

iterations z 
���� ���� z

MINOS ���� s ��� s ������ s �	���� s
f ��
��	e���y ������
e���y �������e��	y ���	�	�e��	y

c violation 	��e��	y ���e���y ���e���y ��
e���y
iterations ��� 
��	 
��� �	�

SNOPT 

�
� s ����� s ����	� s 
����� s
f 
���	�e��	 
�����
e��	 
����e��	 
������e��	

c violation 
��e�
� 
�e�
� 
��e�

 ��
e�


iterations 
��� 	��
 ���� 
	��

y Errors or warnings� z Timed out�

Figure ���� shows the altitude and control function cL as a function of time� The glider

starts at an altitude of y��� � ���� and descends until the glider meets the updraft centered

at x � ���� As a result the glider climbs and then descends to the desired nal altitude of

y�tf � � ��� at time tf � ����

��
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Figure ����� Altitude and control cL for the hang glider problem

Figure ���� shows velocities x� and y� as a function of time� Note� in particular� the

erratic behavior of the velocities while the control is in the bang
region where cL�t� � cmax�
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Figure ����� Velocities x� and y� for the hang glider problem
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�� Catalytic Cracking of Gas Oil

Determine the reaction coe�cients for the catalytic cracking of gas oil into gas and other

byproducts� The nonlinear model ���� that describes the process is

y�� � ���� � �	�y
�
� ������

y�� � ��y
�
� � ��y�

with coe�cients �i � � for i � �� � � � � �� Initial conditions for ������ are known� The problem

is to minimize
��X
j��

ky�
j� ��� zjk��

where zj are concentration measurements for y at time points 
�� � � � � 
���

Formulation

Our formulation of the catalytic cracking of gas oil problem as an optimization problem

follows ���� ��� We use a k
stage collocation method� a uniform partition of the interval

��� 
��� with nh intervals� and the standard ��� pages ������� basis representation�

vi �
kX

j��

�t� ti�
j

j� hj��
wij � t � �ti� ti����

for the components of the solution �y�� y�� of ������� The constraints in the optimization

problem are the initial conditions in ������� the continuity conditions� and the collocation

equations� The continuity equations are a set of ��nh� �� linear equations� The collocation

equations are a set of �knh nonlinear equations obtained by requiring that the collocation

approximation satisfy ������ at the collocation points� Data for this problem appears in

Table �����

Table ����� Catalytic cracking of gas oil data

Variables ��k � 
�nh � 	
Constraints ��k � 
�nh
Bounds 	
Linear equality constraints �nh
Linear inequality constraints �
Nonlinear equality constraints �knh
Nonlinear inequality constraints �
Nonzeros in r�f�x� ��k�

Nonzeros in c��x� 	k�k � 
�nh

Performance

We provide results for the AMPL formulation with k � � in Table ����� The initial values for

the � parameters are �i � ���� The initial basis parameters are chosen so that the collocation

��



approximation is piecewise constant and interpolates the data� Data is generated by solving

������ numerically using the Tjoa and Biegler ���� values � � ���� �� �� and applying a

relative random perturbation of size ����� Figure ���� shows the solution and the data�

Table ����� Performance on catalytic cracking of gas oil problem

Solver nh � �� nh � 
�� nh � ��� nh � ���

LANCELOT �
�� s 	���� s z z

f ���	�		e��	 ���	��
e��	 z z

c violation ���
���e��� ������e��� z z

iterations ��� ��	 z z

LOQO 
�	� s 	�	� s 

�� s ����� s
f ���	���e��	 ���	���e��	 ���	���e��	 ���	���e��	

c violation ��e��� 
�e��� 
��e��� 
�
e���
iterations �
 �� 	
 �	
MINOS ���� s 
���� s ����� s 
�
��� s

f ���	���e��	 ���	���e��	 ���	���e��	 ���	���e��	
c violation ���e�
� ��	e�
� 
�	e�� ���e���
iterations 		� ��� ��� 
���
SNOPT ���� s 
���
 s ���� s 
����
 s

f ���	���e��	 ���	���e��	 ���	���e��	 ���	���e��	
c violation ���e�
� 
��e�� ���e�� ���e���
iterations ��� 

�� �
� �
��

y Errors or warnings� z Timed out�
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Figure ����� Solution and data for the catalytic cracking of gas oil problem
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�� Methanol to Hydrocarbons

Determine the reaction coe�cients for the conversion of methanol into various hydrocarbons�

The nonlinear model ���� ��� that describes the process is

y�� � �
�

��� � ��y�
��� � ���y� � y�

� �	 � ��

�
y�

y�� �
��y����y� � y��

��� � ���y� � y�
� �	y� ������

y�	 �
��y��y� � ��y��

��� � ���y� � y�
� ��y�

with coe�cients �i � � for i � �� � � � � �� Initial conditions for ������ are known� The problem

is to minimize
��X
j��

ky�
j� ��� zjk��

where zj are concentration measurements for y at time points 
�� � � � � 
���

Formulation

Our formulation of the methanol
to
hydrocarbons problem as an optimization problem fol


lows ���� ��� We use a k
stage collocation method� a uniform partition of the interval ��� 
���

with nh intervals� and the standard ��� pages ���
���� basis representation�

vi �
kX

j��

�t� ti�
j

j� hj��
wij � t � �ti� ti����

for the components of the solution �y�� y�� y	� of ������� The constraints in the optimization

problem are the initial conditions in ������� the continuity conditions� and the collocation

equations� The continuity equations are a set of ��nh� �� linear equations� The collocation

equations are a set of �knh nonlinear equations obtained by requiring that the collocation

approximation satisfy ������ at the collocation points� Data for this problem appears in

Table �����

Table ����� Methanol
to
hydrocarbons data

Variables 	�k � 
�nh � �
Constraints 	�k � 
�nh
Bounds �
Linear equality constraints 	nh
Linear inequality constraints �
Nonlinear equality constraints 	knh
Nonlinear inequality constraints �
Nonzeros in r�f�x� �k�

Nonzeros in c��x� �k�k � 
�nh

��



Performance

We provide results for the AMPL formulation with k � � in Table ����� The initial values for

the � parameters are �i � ���� The initial basis parameters are chosen so that the collocation

approximation is piecewise constant and interpolates the data� Data is generated by solving

������ numerically using � � ������ ���� ����� ���� ���� as given in Maria ���� and applying a

relative random perturbation of size ����� Figure ���� shows the solution and the data�

Table ����� Performance on methanol
to
hydrocarbons problem

Solver nh � �� nh � 
�� nh � ��� nh � ���

LANCELOT 
����� s 
������ s z z

f ����	��e��	 ������	e��	 z z

c violation ����
	�e��� ����	�e��� z z

iterations ��
 ��� z z

LOQO ��
	 s ���� s 
�� s ���� s
f �������e��	 �������e��	 �������e��	 �������e��	

c violation 	��e��� ���e�� 
��e��� 
��e��
iterations 
� �
 	� ��

MINOS ���� s 
	��� s �
�	 s ��	��� s
f ������e��	 �������e��	 ������e��	 ������e��	

c violation ���e�
	 ��e�
	 ���e�
� 	��e�
	
iterations �� ��� 
�	� ����
SNOPT 
���� s 	��	 s 
	
��� s �
��
� s

f ������e��	 �������e��	 ������e��	 ������e��	
c violation ��e��� ��e�

 
��e��� 
�	e���
iterations ��� 
�� ���� ��	

y Errors or warnings� z Timed out�
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Figure ����� Solution and data for the methanol
to
hydrocarbons problem
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�� Catalyst Mixing

Determine the optimal mixing policy of two catalysts along the length of a tubular plug

�ow reactor involving several reactions�

Formulation

The nonlinear model ���� that describes the reactions is

x���t� � u�t����x��t�� x��t�� ������

x���t� � u�t��x��t�� ��x��t��� ��� u�t��x��t��

Initial conditions for ������ are x���� � � and x���� � �� The control variable u represents

the mixing ratio of the catalysts and must satisfy the bounds

� � u�t� � ��

The problem is to minimize

�� � x��tf � � x��tf �� ������

where the nal time is xed at tf � ��

We discretize the control and state variables along a uniform mesh with nh intervals

and with the standard trapezoidal rule� Data for this problem appears in Table �����

Table ����� Catalyst mixing data

Variables 	�nh � 
�
Constraints �nh
Bounds nh � 

Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints �nh
Nonlinear inequality constraints �
Nonzeros in r�f�x� �
Nonzeros in c��x� 
�nh

Performance

Results for the AMPL implementation are shown in Table ����� For starting points we use

u � �� x� � �� and x� � � evaluated at the grid points�

The catalyst mixing problem is a typical bang
singular
bang problem� The singularity

leads to nonunique values of the control in the singular region� and thus it is possible to

obtain di�erent values for the control� Figure ���� shows the controls obtained by two

di�erent solvers�

The results in Table ���� show that all the solvers are successful for nh � ��� but that

the objective function value �uctuates somewhat� This is probably due to the bang
singular


bang nature of the problem� The most common approach to dealing with singular control

��



Table ����� Performance on catalyst mixing problem

Solver nh � 
�� nh � ��� nh � ��� nh � ��

LANCELOT ���
 s 	
��� s ���� s �����
 s
f �������e��� ����
�	e��� �������e��� ����
��e���

c violation ��	
��e��� 
��	���e��� �������e��� 	������e���
iterations �� �� 
�� 
��
LOQO ���� s 
�	� s 	�
 s ��� s

f �������e��� ������
e��� �������e��� �������e���
c violation ���e�� ���e�� 
��e�� 
��e��
iterations �� �� �� ��
MINOS ��	� s ���� s ��	� s 
�� s

f �������e��� ����	��e��� �����
e��� �������e���
c violation ���e�
� ���e�
� 
�
e�
� 
�
e�
�
iterations �	 ��� 
�� 
�

SNOPT 	��� s 
��	� s ���� s 

��� s
f �������e��� ������
e��� �������e��� ������
e���

c violation 
�e�� 
�e��� 	��e�� ���e���
iterations 	�� �
� 
	� ��	�

y Errors or warnings� z Timed out�

problems is to add a penalty to the objective function that leads to a smooth control� for

example�

�

Z �

�

u��t�� dt

for some positive value of �� Values of � � � seems to work well for this problem� but an

appropriate value is di�cult to nd�
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Figure ����� Controls obtained by two di�erent solvers for the catalyst mixing problem
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�� Elastic�Plastic Torsion

Determine the stress potential in an innitely long cylinder when torsion is applied�

Formulation

The elastic
plastic torsion problem ���� pages ������ can be formulated in terms of the

cross
section D of the cylinder� and the torsion angle c per unit length� The stress potential

u minimizes the quadratic q � K �� R�

q�v� �

Z
D



�

�
krv�x�k�� c v�x�

�
dx�

over the convex set K� where

K � fv � H�
� �D� � jvj � dist�x� �D�� x � Dg�

dist�x� �D� is the distance from x to the boundary of D� and H�
��D� is the space of functions

with gradients in L��D� that vanish on the boundary of D�

A nite element approximation to the elastic
plastic torsion problem is obtained by

triangulating D and minimizing q over the space of piecewise linear functions with values

vi�j at the vertices of the triangulation� We follow ���� �� by choosing D � ��� ��� ��� ��� and

using a triangulation with� respectively� nx and ny internal grid points in the coordinate

directions� Data for this problem appears in Table �����

Table ����� Elastic
plastic torsion problem data

Variables nxny

Constraints �
Bounds nxny
Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints �
Nonlinear inequality constraints �
Nonzeros in r�f�x� �nxny � ��nx � ny�
Nonzeros in c��x� �

Performance

We provide results for the AMPL formulation with c � � in Table ����� For these results

we x nx � �� and vary ny � The starting guess is the function dist�x� �D� evaluated at the

grid nodes� Figure ���� shows the potential in the torsion problem with c � �� The number

of active constraints in this problem increases with c� Also

lim
c��

vc�x� � dist�x� �D��

where vc is the potential as a function of c�

��



Table ����� Performance on elastic
plastic torsion problem

Solver ny � �� ny � �� ny � �� ny � 
��

LANCELOT 	��
 s ��
 s 

�� s 
��
� s
f ���
��
�e��
 ���
��e��
 ���

��e��
 ���
�	�e��


c violation �������e��� �������e��� �������e��� �������e���
iterations 
� 
 
� �

LOQO ���� s ���� s 

��� s 
��� s

f ���
��
�e��
 ���
��e��
 ���

��e��
 ���
�	�e��

c violation 
��e�
� 
��e�
� 	�	e�
� 	��e�
�
iterations 
� 
� �
 �

MINOS 
��	
 s 	��
� s ������ s z

f ���
��
�e��
 ���
��e��
 ���

��e��
 z

c violation ���e��� ���e��� ���e��� z

iterations �
� 
��� ���� z

SNOPT 
���� s 
������ s z z

f ���
��
�e��
 ���
��e��
 z z

c violation ���e��� ���e��� z z

iterations 

	� ���� z z

y Errors or warnings� z Timed out�
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Figure ����� Elastic plastic torsion problem with c � �
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�� Journal Bearing

Given the eccentricity � of the journal bearing� nd the pressure distribution in the lubricant

separating the shaft from the bearing�

Formulation

The journal bearing problem ���� requires determining the pressure between two circular

cylinders of length L and radii R and R � c� The separation between the cylinders is �c�

where � is the eccentricity� The pressure v minimizes the quadratic q � K �� R�

q�v� �

Z
D



�

�
wq�x�krv�x�k�� wl�x�v�x�

�
dx�

over the convex set K� where D � ��� ���� ��� �b��

K � fv � H�
��D� � v � �g�

H�
� �D� is the space of functions with gradients in L��D� that vanish on the boundary of D�

and the functions wq � D �� R and wl � D �� R are dened by

wq���� ��� � �� � � cos ���
	� wl���� ��� � � sin ���

with � � ��� �� the eccentricity of the bearing�

A nite element approximation to the journal bearing problem is obtained by triangu


lating D and minimizing q over the space of piecewise linear functions with values vi�j at

the vertices of the triangulation� We follow ��� by using a triangulation with� respectively�

nx and ny internal grid points in the coordinate directions� Data for this problem appears

in Table �����

Table ����� Journal bearing problem data

Variables nxny
Constraints �
Bounds nxny

Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints �
Nonlinear inequality constraints �
Nonzeros in r�f�x� �nxny � ��nx � ny�
Nonzeros in c��x� �

Performance

We provide results with the AMPL formulation in Table ���� with b � �� and � � ���� For

these results we x nx � �� and vary ny � The starting guess is the function maxfsin�x�� �g
evaluated at the grid nodes� Figure ���� shows the pressure distribution for the journal

bearing problem�

��



Table ����� Performance on pressure in journal bearing problem

Solver ny � �� ny � �� ny � �� ny � 
��

LANCELOT 	��� s ��
� s 

��� s 
��� s
f �
����
�e��
 �
�����e��
 �
�����e��
 �
������e��


c violation �������e��� �������e��� �������e��� �������e���
iterations 
� 

 
� 
�
LOQO 	�	� s ���
 s ���� s 
	�		 s

f �
����
�e��
 �
�����e��
 �
�����e��
 �
������e��

c violation ���e�
� 	�
e�
� 	��e�
� ���e�
�
iterations �� 
� �� �

MINOS 
�	��� s ������ s �����
 s z

f �
����
�e��
 �
�����e��
 �
�����e��
 z

c violation ���e��� ���e��� ���e��� z

iterations 
	�� ��� �� z

SNOPT ����� s z z z

f �
����
�e��
 z z z

c violation ���e��� z z z

iterations 	��� z z z

y Errors or warnings� z Timed out�
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Figure ����� Journal bearing problem with � � ���
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�	 Minimal Surface with Obstacle

Find the surface with minimal area� given boundary conditions� and above an obstacle�

Formulation

Plateau�s problem is to determine the surface of minimal area with a given closed curve

in R	 as boundary� We assume that the surface can be represented in nonparametric form

v � R� �� R� and we add the requirement that v � vL for some obstacle vL� The solution of

this obstacle problem ���� minimizes the function f � K �� R�

f�v� �

Z
D

�
� � krv�x�k����� dx�

over the convex set K� where

K �
�
v � H��D� � v�x� � vD�x� for x � �D� v�x� � vL�x� for x � D� �

H��D� is the space of functions with gradients in L��D�� the function vD � �D �� R denes

the boundary data� and vL � D �� R is the obstacle� We assume that vL � vD on the

boundary �D�

A nite element approximation to the minimal surface problem is obtained by triangu


lating D and minimizing f over the space of piecewise linear functions with values vi�j at the

vertices of the triangulation� We set D � ��� ��� ��� �� and use a triangulation with� respec


tively� nx and ny internal grid points in the coordinate directions� Data for this problem

appears in Table �����

Table ����� Minimal surface problem data

Variables nxny

Constraints �
Bounds nxny

Linear equality constraints �
Linear inequality constraints �
Nonlinear equality constraints �
Nonlinear inequality constraints �
Nonzeros in r�f�x� �nxny � ��nx � ny�
Nonzeros in c��x� �

Performance

We provide results for the AMPL formulation in Table ����� For these results we x nx � ��

and vary ny � The starting guess is the function � � ��x� ��� evaluated at the grid nodes�

We used boundary data

vD�x� y� �



�� ��x� ���� y � �� �

�� otherwise�

��



and the obstacle

vL�x� y� �



� if jx� �

�
j � �

�
� jy � �

�
j � �

�

�� otherwise�

Figure ���� shows the minimal surface for this data�

Table ����� Performance on minimal surface area with obstacle problem

Solver ny � �� ny � �� ny � �� ny � 
��

LANCELOT ���� s ��� s 
��	� s 
��		 s
f ���
��e��� ���
�e��� ������e��� �������e���

c violation �������e��� �������e��� �������e��� �������e���
iterations  � 
� 
	
LOQO ��� s ���� s �	�	� s z

f ���
��e��� ���
�e��� ������e��� z

c violation ���e�
� 	�e�
� 	��e�
� z

iterations �� � �� z

MINOS 
�	��� s ���
 s z z

f ���
��e��� ���
�e��� z z

c violation ���e��� ���e��� z z

iterations ��
 
��� z z

SNOPT 
	�� s z z z

f ���
��e��� z z z

c violation ���e��� z z z

iterations 
��
 z z z

y Errors or warnings� z Timed out�
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