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Abstract � In this article� we are interested in the minimization of functionals in the set of
convex functions� We investigate the discretization of the convexity through various numerical
methods and �nd a geometrical obstruction con�rmed by numerical simulations� We prove
that there exist some convex functions that cannot be the limit of any conformal P� Finite
Element sequence for a wide variety of re�ned meshes�
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� Introduction

This paper is devoted to the numerical approximation of variational problems subject to a
convexity constraint� namely problems of the form�

inf J�u��
u � K�

where J is a functional and K is a subset of the cone of all convex functions on an open set �
in IRN � Such problems appear in various contexts� in particular in physics and economics�

One of the �rst problems in the calculus of variation� Newton�s problem of minimal resis�
tance� involves a concavity constraint �see the original paper �
� and the historical survey �����
In this context� the functional J and the set K are given by

J�u� �
Z
�

�

� � jruj�
dx� K � fu � W ���

loc � � � u �M�u concave g�

Newton found the minimum of J over the set of radial function

K � � fu � K�u is radial g�

when � is a ball in IR�� The existence of a solution for a general convex set � has been proved
recently �see ����� In ��� the authors prove that� when � is a ball�

� � min
K

J�u� � min
K�

J�u��

In other words� Newton�s solution does not minimize J over K� The minimizers of minJ over
K are not radial and not unique�

We now turn to a problem coming from an economic question� namely the design of a
nonlinear tari� by a regulated monopolist �see ������ In this context� the functional J is given
by

J�u� �
Z
�

�
�

�
ruT Cru� x�ru� ��� ��u

�
dx� ���
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where � � � � � and C is a positive de�nite ����� matrix� The set K is given by

K � fu � H����� u � �� ux � �� uy � �� u convex g� ���

By contrast with Newton�s problem� the functional J is convex and coercive on K� It is easy
to check that there exists one unique minimizer of J over K�

In ����� the authors focus on the case � � � �unregulated monopolist� and C � Id� They
give a su�cient condition on the domain � for the convexity constraint to be active� Typically�
when � is a square �a� b��� there is an area where the range of the hessian matrix of u is � �see
Figure ��� In this last area� the function depends only on x � y which varies from a � �� and
a � ��� The value of �� is given in section ����
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Figure �� Solution if � � �

Note that� when � � �� the problem degenerates� the solutions are given� up to an additive
constant by

ru�x� � C��x� u�x� � x�C��x�� � Cst� ��

In the problems described above� the convexity constraint is typically binding� It was even
proved in ��� that the minimum of the Newton problem is nowhere strictly convex� Therefore
any numerical method of approximation must explicitely take into account this constraint�

In this paper� we focus on conformal or internal approximations i�e� methods where the
approximating sequence uh belongs to the same set as u� The main result of the paper is a
negative one� conformal P� Finite Element �FE� methods cannot converge to the solution of
the problem although a FE discretization of any H� function u can be as close to u as wanted�
This is essentially due to geometrical obstructions that we explain in details below� We prove
also that natural extensions of the ��D case and P� FE do have similar problems�

Therefore we should now turn to non�conformal methods� A �rst attempt in this direction
can be found in �	�� that states a convergence result� The approximated problem� however�
involves a very high number of constraints �of order N�� where N is the number of vertices in
the mesh��

The paper is organized as follows� In section �� we study the conformal approximation
through non�local basis� We explain that we are not able to recover the cone structure due to
a geometric obstruction� In section � we study the conformal P� �nite�element approximation�
We show that P� and P� Lagrange interpolation does not preserve convexity and formulate this
result in a precise fashion� Section � presents some extensions �P�� Argyris� and concludes�

We used the software Matlab for the minimization because we aim at providing a �not too
complicate� solution to the economical problem� available for non�specialists�

� Approximation through conformal non�local basis

The very �rst idea when one wants to discretize convexity is to look for an approximate cone
Ch depending on h�h small�� such that Ch should be a subset of the cone C� Also� we would like
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that this Ch could be as close as we want of C� In order to have the structure of cone� Ch should
be the set of all linear combinations of a �nite number of convex functions� with nonnegative
coe�cients� As a consequence� the basis functions are non�local�

In this section� we will be interested in a speci�c conformal approximation for which the
basis functions satisfy convexity and not only the function�

So as to test this approximation� we try it in one�dimension�

��� One dimensional discretization

Let �xi�i����N be a general subdivision of ��� �� where x� � � and xN � �� The basis we propose
is composed of N � � functions that satisfy the constraint �here convexity� and so� they are
non�local� Their shape can be seen on Figure ��
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Figure �� Shape of the ��D basis

This basis associated to the grid on ��� �� enables to state the following theorem whose proof
is easy and only scheduled here so as to be referred to in the ��D case �

THEOREM � Let f � C����� ���� Then� for all �� and N large enough �

k f�x�� f�������x�� f �������x��
N��X
�

�f ��i�N�� f ���i� ���N�� �i�N�x� kH�� �

Idea of the proof of Theorem ��

So as to �nd the coe�cients� we write the system f ��xi� �
NX
j��

�j�
�

j�x
�
i �� where ��j�x

�
i � is the

right derivative of �j at xi� Thanks to the chosen functions� the matrix is triangular� Moreover�
it is invertible and leads to the formulas for the coe�cients� Simple estimates complete the
proof�

This theorem shows that it is possible to approximate a ��D convex function as closely as
wanted� by a linear combination with nonnegative coe�cients except two terms� The two �rst
terms may have arbitrary sign and we recover the cone structure�

The idea of this discretization is to lift the gradients as they grow� So convexity is used�
here� as a gradient increase� In ��D� the two properties are equivalent� but not in ��D�

Let us justify the present discretization� For that purpose� we denote C� � C � fu �
W ������� sup�juj�� ju�j�� � �g a section of the cone of convex functions� The set C� is convex
and compact in H�����

If � � �a� b�� the extremal points of C� are the functions 	y� a � y � b� where 	y�x� �
sup��� x � y�� By the Krein�Milman theorem� C� coincides with the adherence in H� of the





convex hull of the set f	y� a � y � bg� which gives another proof of Theorem � �the functions
�i�N of section ��� are clearly dense in this set��

The two�dimensional case is much more complicated since we do not know the set of the
extremal points of C��

��� ��D basis�conformal discretization

Our goal is to approximate any convex function as a combination of convex functions �basis�
conformal� with nonnegative coe�cients in a way similar to the one of the previous subsection�
We will restrict ourselves to rectangle domains ��a� b���� We choose a uniform discretization of
x � �xi � a� i�b� a��N�i�����N�� and of y � �yj � a � j�b� a��N�j�����N���

So as to generalize the ��D basis� we have to conceive a family of functions that should lift the
two components of the gradients and whose coe�cients would be the nonnegative coe�cients
of the convex hull of the extremal points of a section of the cone� We use the convex piecewise
linear functions �

fi�j���x� y� � sup��� cos�
��x� xi�� sin�
��y � yj��� ���

fi�j���x� y� � sup��� sin�
��x� xi�� cos�
��y � yj��� �	�

for 
 su�ciently small and �i� j� � ��� ���� N � ��� Small 
 �sin 
 � �x��b � a�� enable to
retrieve uniqueness of the components� and to have the most natural extension of the ��D case�
Indeed� 
 � � would make our family not to be free� The shape of these functions is depicted
in Figure  as the shape of their gradients�
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Figure � Shape of the ��D basis and their gradients

In a way similar to the ��D case� we expand �

fN �x� y� � A��a�b�� �
X

i�j������N��

�i�jfi�j�� � i�jfi�j��� ���
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where A��i�j� i�j are constants and ��a�b�� is the characteristic function of the set �a� b���
We denote � � ���i�j�i�����N���j������N�� to reorder the matrix into a vector and use the same
ordering for � In order to mimic the procedure in ��D� we de�ne the projection fN of f by its
components A��i�j� i�j �

��������
�������

f�a� a� � A�
�f

�x
�x�i�� yj�� �

X
i�j

�i�j

�fi�j��
�x

�x�i�� yj�� � i�j
�fi�j��
�x

�x�i�� yj���

�f

�y
�xi�� y

�
j�

� �
X
i�j

�i�j

�fi�j��
�y

�xi�� y
�
j�

� � i�j
�fi�j��
�y

�xi�� y
�
j�

��

���

where �f��x�x�i�� yj�� is the right derivative of f with respect to x at �xi�� yj��� A theorem
similar to Theorem � can be stated and extended to the following �

THEOREM � Let f � C���a� b���� 
 � o��x� and �x � �y� Then there exist unique
A��ij� ij given by ��� and they are such that 	

k f � fN k� � inH��

Moreover� for positive j �

�ij � �
��f

�x�y
�y � o��y��

As a consequence� no sign of �ij can be guaranteed even under the assumption that f is
convex�
Proof of Theorem ��

Let us consider the N 	N�N� 	N�� and N� 	N� matrices

KN �

�
BBBBB	

� � � � � � � �

�
� � �

���
���

� � � � � �
���

� � � � � �



CCCCCA �DN �

�
BBBBB	

KN LN � � � LN

���
� � � � � �

���
���

� � � LN

KN � � � � � � KN



CCCCCA � EN �

�
BB	
KN � �

���
� � � �

KN � � � KN



CCA �

where LN � KN � IN � With these notations� and if we order � � ���ij�i���N���j���N��� the
system ��� may be written in an almost block�diagonal way �for 
 small� �

�
cos 
DN sin 
EN

sin 
EN cos 
DN

��
�


�
�

�
BBBB	

�
�f

�x

�
ij�

�f

�y

�
ij



CCCCA � ���

Then� it is a simple exercise of linear algebra to �nd

D��N �

�
BBBBBBBB	

IN � � � � � �LNK
��
N

�IN
� � � � � � �

�
� � � � � � � � �

���
���

� � � � � � �
� � � � � � � �IN IN



CCCCCCCCA
�

and to get uniqueness of the components A��ij� ij thanks to the smallness of 
� Then� the
proof of convergence is very similar to the one of ��D� Last� a simple expansion gives that for
j � �  

	



�ij �

�
�f

�x

�
ij

�

�
�f

�x

�
i�j��

� O�
� �

�
��f

�x�y

�
ij

�y � o��x��y��

So we exhibit a sequence of functions that tends to u� but there is no way of guaranting
that the sequence should remain convex� even if u is strictly convex� As the most natural ��D
extension of the ��D solution does not suit our requests on the structure of cone� we have left
the basis�conformal approximation and tried more classical Finite Element for discretization�

� Conformal approximation through Finite Elements P�

We choose a triangular mesh and look for functions which are continuous and linear in each
triangle� Namely we consider Lagrange P� Finite Elements �FE�� More details can be found in
���� or �����

��� Generalities

A typical basis function �i�x� can be found in Figure �� Its values are � at the node i� zero at
the other nodes� it is linear in each triangle and continuous in ��

i

Figure �� Shape of the function �i�x� y�

The function f is discretized by

fh�x� �
X

i� node of the mesh
fi�i�x��

where fi is the component of fh and �i�x� is the FE basis� The overall method will be to look
for a function fh �indeed for a �nite number of values fi� that could minimize the functional
���� with � � �� and satisfy the convexity condition� In that sense� the approximation will
be conformal because the functions manipulated are supposed convex� although they are linear
combinations of non�convex functions� We have exact solutions to which the computed solution
is compared �

C �

�
� �
� �

�
� u�x� �

�

�� ��

�
x�

�
� �xy �

y�

�

�
� Cst� �
�

We still need to have a characterization of convexity for P� functions� It is given by the
following lemma� which proof is easy �

LEMMA � A function fh� P� in the rectangle �a� b��� is convex if and only if� for any pair of
adjacent triangles

�q� � q���n�� � �� ����

where q� �resp� q�� is the �constant� gradient of fh in triangle 
 �resp� �� and n�� is the unit
normal pointing from triangle 
 to ��

�



Proof of Lemma � Recall that a distribution v on � is a convex function if and only if� for
all nonnegative smooth function � with compact support in �� the bilinear symmetric map

�h� k� ��
��v

�h�k
� � �

is semi�de�nite positive �for details� see ������ Assume v � P� and notice that� by Green�s
Formula

�
��v

�h�k
� � � � �

X
T

�
�v

�h
�
��

�k
�

�
X
e

�q� � q���n����n���h��n���k�
Z
e
��s�ds�

where the last summation is taken over all interior edges of the mesh� The result follows from
the fact that the map

�h� k� � �n���h��n���k��

is semi�de�nite positive for all vector n���

Notice that although convexity is a non�local property� the discretization leads to local
characterization� Moreover� the function will be known at the nodes of the mesh� but the
constraint makes sense only on the interior edges� The software MAPLE was used so as to have
optimized symbolic formulae depending on the degrees of freedom of the unknown �eld�

��� Numerical results

In the present subsection� we use the various structured meshes depicted in Figure 	 and
compare the computed results with the exact solution �� �� � �� � ��� �� ����

mesh 1 mesh 2 mesh 3

Figure 	� Three structured meshes

����� Mesh �

It happens that if � is positive� the results are satisfactory� We report the L� norm as a function
of the number N of sub�intervals in each direction and �nd a good convergence on the square
��� 	�� �see Figure ��� Yet� for � � ���� �and more generally for all the non�positive ��� we �nd
no good convergence as can be seen on Figure �� Before concluding� we try the next mesh � in
the next subsubsection�

����� Mesh �

Here� we use mesh � �see Figure 	�� Usually� the convergence does not depend on the type of
the triangles but on their size� Surprisingly� here� the results are opposite to those of mesh � �
if � is negative� we reach a good convergence� while if � is positive� the convergence is very bad
as can be seen on Figure �� This unusual behavior highlights the crucial role of the type of the
mesh on convergence�
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����� Mesh �

As a conclusion of the two preceding tries� we use mesh  �see Figure 	� that seems to have
both advantages of mesh � and mesh � � the direction of the edges are in alternate direction
and so we hope to recover good convergence for all ��

Indeed� with that mesh� we have satisfactory results for both sign of � and even for � � �
as can be seen on Figure ��
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Moreover� we check the other properties based on the non�explicit solution �see ����� and
the agreement may look right �

�� The trace at y � a for � � � should give the value �� � a� �
q

�a� � ��b� a��� �see

Figure � and ������ Here� we found numerically �� � ����� ����� �see Figure 
� while the
exact value is ������

�� The shape of the gradient looks very much like the one expected �see Figure 
��

����� Unstructured meshes

Various unstructured meshes were used and odd behaviour may be reported� CPU time may
depend on


 reordering of the mesh � from � to � ! more time for the same mesh�


 parameter � for a given unstructured mesh �� � ���� ��� nodes and �
� triangles�� the
CPU time appears to be erratic without any explanation �

� ��
� ��
� ��
�
CPU time �s� 	 ��	 ��

Moreover� the CPU time seems not to depend on the angles of the triangles �as is usual
in most physical problem�� In that case� we moved a point along so as to have some angles
crossing 
�o and the CPU time remained similar�

Yet� at given number of triangles and nodes� whether the mesh is structured or not� the
CPU time may be ��� times greater for the unstructured mesh " The most striking example
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Figure 
� Graphe� gradient� contour and trace along y of the computed u

was a structured mesh to which we added only one point� The CPU time got 	� times more�
This last example indicates that the odd behaviour does not come from the computation code�
but from the topological properties of the mesh�

Last� the gradients are so bad that no information can be retrieved�
The study of unstructured meshes could be considered as meaningless as a structured mesh�

like mesh � or � �for which P� FE does not work�� is only a particular case of more general
meshes� But the di�culty is that for a minimization problem� a numerical code will most often
give a solution� Then� we have no other means than numerical analysis or good numerical
experiments to test the likelihood of the solution� Both approachs are helpful and we hope that
the insight given by the unstructured study might be of some help to indicate a more general
obstruction�

��� A geometrical obstruction

In this section� we show that the geometrical structure of the mesh imply many constraints
on P� convex functions� These constraints in turn prevent the conformal P� approximation to
converge when the solution to the variational problem does not satisfy them and this limitation
may be local�

THEOREM � Assume that there are two directions h and k in a subset �� � � such that

�n�h���n�k� � � ����

for every vector n unit normal to an edge of a triangle in the triangulation Th � ��� Then� for
every convex and P� function v� we have 	

��v

�h�k
� � ����

in the sense of the Radon measures on the edges of Th � ��

��



Proof of Theorem � Let � be some nonnegative smooth function with compact support in
�� Summing up Green�s Formula for a P� function in every triangle yields

�
��v

�h�k
� � � � �

X
T

�
�v

�h
�
��

�k
�

�
X
e

��q� � q���n����n���h��n���k�
Z
e
��s�ds

where the last summation is taken over all interior edges of the mesh� The conclusion follows
from the geometric property ���� of the mesh and the convexity of v� which writes� �q� �
q���n�� � � �see Lemma ��

For instance� in the structured mesh � the normal vector are n� � ��� ��� n� � ��� ���
n	 � ��� �� n
 � ������� Hence we can choose h � ��� �� and k � ������� Therefore� for all
convex and P� function on mesh � ���� is satis�ed on all edges and so �

vxx � vxy � �� ���

Yet� this does not hold for every convex function� If the solution u to the variational problem
does not satisfy this constraint� then if the mesh remains structured� u cannot be approximated
by a sequence of convex P� function �since a limit of functions satisfying ���� necessarily satis�es
������ Hence we have proved the Corollary at least for structured meshes �

COROLLARY � There exist convex functions that cannot be the limit of convex P� functions
in the sense of distributions on a given family of structured meshes�

Inded� the property ���� may occur also on a non structured mesh� and so Corollary 	 is
true on a wide range of couple �mesh� re�nement process��

Let �� be an open set in any given triangle T of Th� Assume the process of re�nement be
de�ned by dividing any triangle into four homothetic triangles �nodes are former nodes and
mid�points�� Then� the normals will not be enriched� whatever might be the level of re�nement�

Assume the three normals of the edges of T are �up to a change of sign and change of
coordinates� ��� ��� �cos 
�� sin 
��� �cos 
�� sin 
�� with � � 
� � ���� ��� � 
� � �� Then� for
h � �cos 
�� sin 
��� k � �sin 
��� cos 
��� the property ���� is satis�ed and the limit of uh will
satisfy an additional relation in T �

Last� let us stress that the property ���� is local and depends not so much on the mesh than
on the re�nement process�

��� Numerical tests

So as to test the numerical validity of the preceding theorem� we use a matrix C and an exact
solution more general �still with � � �� than �� �

C �

�
� �
� �

�
 u��� �

�

�� ��

�
�
x�

�
� �xy �

y�

�

�
� Cst� ����

where Cst is a constant such that u����a� a� � �� Moreover� the constraint that u��� should
be convex gives �� � ��� � �� The constraint that the gradient should be positive gives
� � y�x � ��� if � � � and no condition if � � ��

Theorem � �see ���� implies that when � moves in such a way that

��



��u���
�x�x

�
��u���
�x�y

�
�

�� ��
�� � ��� ��	�

crosses zero� then convergence should not be achieved� This could be found numerically
by taking � � ���� � � �� On Figure ��� we can see the jump in the slope of the L� error
compared to the exact solution precisely at the value predicted for N � ��� Moreover� this is
not a problem of accuracy because we have the same results for more accurate computations
with N � �� as can be seen on Figure ���
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Figure ��� Convergence results depending on � and N �� � �� � � ���� ��� 	���

It can be concluded from Figure �� that the convergence is not achieved for a class of convex
functions�

��� Convexity and Lagrange interpolation

Let us consider the following partition of the square � � ��� ��� �

� � T l � T u� with T l � f�x� y� � �� x� y � �g and T u � f�x� y� � �� x� y � �g�

We denote by P �
� �respectively P �

� � the Lagrange interpolation operators to P� �resp� P�� FE�
Let f be the convex function de�ned by � f�x� y� � max�x� y� on �� We set f�� � P �

� f and
f�� � P �

� f � Then it is a simple exercise to prove the following Lemma�

LEMMA � The functions f�� and f�� are given by

f�� �x� y� � min�x� y� �� �

�
x � y in T l

� in T u

and

f�� �

�
x � y � �xy in T l

��x � y�� �xy � � in T u�

Now we consider the regular mesh with N� vertices like mesh � �see Figure 	�� N � � and set
h � ��N � We consider the Lagrange interpolation operators P �

N and P �
N and the interpolated

functions f�N � P �
Nf and f�N � P �

Nf �

��



Consider the squares of the mesh whose south west corners are �xk� yk�� with xk � yk �
kh� k � �� ���N � �� Then we have on those squares

f�N � kh � hf�� �
x� xk
h

�
y � yk
h

� and f�N � kh � hf�� �
x� xk
h

�
y � yk
h

��

Outside those squares� it is clear that � f � f�N � f�N �
Now we can compute the second derivatives D�f�N and D�f�N in the sense of the Radon

measures� We denote by �D�f�N�� and �D�f�N�� the negative parts of these measures� Since
�D�f�N �� � � inside the triangles� its norm is given by

j�D�f�N ��jM �
X
e

Z
e
�� q� � q�� n�� ���ds�

where the sum is over the edges of the mesh�
The support of �D�f�N �� contains some portions of edges and a surfacic part� Its norm in

the sense of Radon measure is given by

j�D�f�N ��jM �
X
e

Z
e
�� q� � q�� n�� ��� ds �

X
T

���T �mes�T �

where T is any triangle of the mesh� mes�T � � h��� is its area� and ���T � is the negative
eigenvalue of the �constant� matrix D�f�N in the triangle T �

The following proposition easily follows

THEOREM 	 The norms of the negative parts of the second derivative of f�N and f�N are
bounded away from zero� More precisely� we have	

j�D�f�N ��jM � � and j�D�f�N ��jM � ��
�

N
�

for all N � ��

The proof is left to the reader� We just mention that the support of �D�f�N�� is the set
of edges that intersect the line x � y The support of the measure �D�f�N �� is much more
complicated� since it has a surfacic part ����T � � ��h in the triangles along the line x � y�
and a part supported by the edges�

We may conclude that the Lagrange interpolate of a convex function is not necessarily
convex and the distance may remain �nite even asymptotically �when the size of the mesh
tends to zero��

We have proved that C � P� is not dense in C �Corollary 	�� We conjecture that the same
result is true for C � P��

��� Comment on the bibliography

During the preparation of the present work� we were informed of the article of Kawohl and
Schwab ��� who apply the P� FE to the Newton problem� In this article� the authors claim
they have proved that �conforming approximations uN converge ���#��� to a minimizer�� Yet�
as says Corollary 	 and as we checked numerically� there is no sequence of convex P� functions
that can converge to some u�

The error is in the proof of Lemma ��� where is claimed that the piecewise interpolant of
a convex function u is convex� The best counter�example is the function �x� y� �� sup�x� y� on
a square ��� ��� divided in two triangles by the segment x � y � �� The P� interpolant of this
function is even concave�

�



This explains the error when the authors state that for every u convex and bounded� there
exist a sequence of convex and bounded P� functions that converges to u in W ��p

loc for � � p ��
Later this lemma is used in the step � of the proof of their main theorem�

Moreover� their numerical results give a symmetric solution� while the solution may not be
symmetric as there exist nonsymmetric functions that decrease the energy �see ����

Yet� the possibility to perform non�conformal approximation of convex functions remains a
good idea� It was investigated by Carlier� Lachand�Robert and Maury �	� who proved conver�
gence by the use of a lagrange multiplier and an Uzawa method� The problem lies in the size
of the discretized constraint�

The reason for non�convergence is that the surfacic second derivatives have prescribed signs
not balanced by the volumic derivative� We could hope that the P� FE could solve this problem
as there is volumic second derivative inside each triangle� even if there is still a surfacic second
derivative�

� Conclusion

In this article� we proved that basis�conformal approximation does work in ��D� but the most
natural extension to ��D does not� The overall idea behind this is the Krein�Milman theorem
that made us hope that we could� through a discrete family of extremal functions� approximate
any convex function with the convex hull of a �nite sub�family� We have proved that it was
not possible at least with the most natural extension of ��D case�

Then� we tried conformal Finite Element �FE� method P�� Although some improvements
in the mesh improve the apparent numerical convergence� we proved� both theoretically and
numerically� that this conformal method may not converge for some limit function� We even
proved that for a given convex function� the norm of the negative part of the second derivative
remains �nite� whatever the accuracy of discretization�

The last idea would be P� FE� but the same argument as in P� remains for P� � the
lineic derivative of the basis functions along the edges of the mesh forces the limit function to
satisfy a non�natural property� One might hope to counterbalance it with the non�zero second
derivative inside the triangles� On the other hand we have exhibited one convex function f
which P� interpolate f�N has a second derivative with a negative part which remains �nite�
whatever N �

Last� we point out an error in an article�
Although our results are negative� we believe they might be of some help� should they help

only to prevent researchers from using conformal P� FE in minimization of functionals under
the constraint that the function should be convex�
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