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Abstract

The National Football League (NFL) in the United States will expand to
32 teams in 2002 with the addition of a team in Houston. At that point, the
league will be realigned into eight divisions, each containing four teams. We
describe a branch-and-cut algorithm for minimizing the sum of intradivisional
travel distances. We consider first the case where any team can be assigned to
any division. We also consider imposing restrictions, such as aligning the AFC
and the NFC separately or maintaining traditional rivalries. We show that
the alignment chosen by the NFL does not minimize the sum of intradivisional
travel distances, but that it is close to optimal for an alignment that aligns the
NFC and AFC separately and imposes some additional restrictions.

Keywords: Realignment, graph equipartition, branch-and-cut.

1 Introduction

The National Football League (NFL) in the United States will expand to 32 teams

in 2002 with the addition of a team in Houston. At that point, the league will

be realigned into eight divisions, each containing four teams [30]. Each team plays

sixteen games during the regular season. Each team plays each other team in its

division twice, playing its remaining games against a subset of the teams outside

its division. A team’s opponents from outside its division depend on the team’s

results in the previous season and on a rotating choice of one other division. Many

arrangements of the divisions were under consideration. Since the choice of outside

teams varies from season to season, one possibility was to choose the divisions so as
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to minimize the total intradivisional travel distance. This objective has the benefit

of placing nearby cities in the same division, and such an arrangement will create

natural rivalries. If this objective had been used, we show that the NFL could have

reduced the sum of intradivisional travel distances by 45%. One advantage of our

solution is that no two teams separated by more than one time zone appear in the

same division.

Computational results are presented in §3. First, we consider the case where any

team can be assigned to any division, in §3.1. The realignment chosen by the NFL

was designed to maintain various historical rivalries (for example, between the Dallas

Cowboys and the Washington Redskins). The NFL is divided into two conferences.

Prior to the 2002 season, the AFC had 16 teams and the NFC had 15 teams. The

Houston Texans could have been placed in the NFC, so each conference had 16 teams,

and then each conference could be aligned separately. Instead, Houston was placed

in the AFC and the Seattle Seahawks were moved from the AFC to the NFC, again

with each conference being aligned separately. We consider aligning the NFL in the

presence of various combinations of restrictions in §3.2. We show that the realignment

chosen by the NFL is optimal if several historical rivalries are respected.

We model the realignment problem as a k-way equipartition problem, where the

nodes of a graph are divided into k equally sized sets in order to minimize an appro-

priate objective function (see §2 for details). Other application areas of the k-way

equipartition problem include telecommunications [26], 3-dimensional integrated cir-

cuit design [7], and microaggregation for statistical disclosure control [12].

The network design application considered in [26] is to cluster customers into

equally sized sets and then build a SONET ring for each cluster, in order to provide

redundancy for communication between two customers that exchange a large amount

of data.

Currently, printed circuit boards are almost exclusively fabricated on a single

board, with transistors placed on each side of the board. It is relatively expensive to

connect transistors on opposite sides of the board, so it is desirable to partition the set

of transistors into two sets of approximately equal size. There is interest in developing

three dimensional integrated circuits, consisting of many layers of transistors [7]. It

would then be desirable to partition the transistors into k sets of approximately equal

cardinality.

Many datasets contain confidential data, with the raw material consisting of infor-

mation from individual respondents. One way to protect confidentiality is to cluster

the data from respondents with similar characteristics. In order to protect the confi-
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dentiality of the data, it is desirable to impose a minimum size on any of the clusters.

In certain situations, the clusters have equal cardinality. This method of statistical

disclosure control is known as microaggregation [12]. A different problem in statisti-

cal disclosure control is described by Fischetti and Salazar [18], who use an integer

programming branch-and-cut approach.

Operations research has been used successfully in the past in several applications

drawn from sports — we describe just a few examples. Nemhauser and Trick [29]

developed a playing schedule for the ACC, a major college basketball conference.

Trick [32] has examined the scheduling of other sports tournaments, including minor

league baseball. Older work on sports scheduling includes that of Bean and Birge [4]

on the NBA. The problem of determining which teams can still qualify for the playoffs,

based on the remaining schedule, can be formulated as a linear programming problem.

For a recent description of this problem, see Adler et al. [1]. Duckworth and Lewis [14]

proposed a method for accommodating rain delays in determining the result of cricket

matches. This method has been adopted by the International Cricket Council and is

used throughout the world.

Saltzman and Bradford [31] modeled the NFL realignment problem as a modifi-

cation of the quadratic assignment problem. They also proposed minimizing the sum

of intradivisional travel distances. Their formulation leads to a quadratic program-

ming problem with a nonconvex objective function. They used MINOS to find a local

minimizer for this quadratic program. When the NFL expanded to 30 teams in 1996,

they showed that the alignment resulting from their algorithm would have reduced

the total intradivisional travel distance by 40%.

Before discussing our results, we describe the algorithm used in §2. It should

be emphasized that our approach results in an optimal solution in each situation

considered; that is, there is no possible arrangement of the cities that has a smaller

sum of intradivisional travel distances.

2 The k-way equipartition problem

The teams in the NFL can be regarded as the vertices of a graph. An edge between

two teams has weight equal to the distance between the two corresponding cities.

Any partition of the teams into eight divisions each containing four teams is a valid

alignment. The total intradivisional travel distance is the sum of the edge weights

of all edges that have both endpoints in the same division. The objective we choose

is to minimize this sum. This has the effect of placing teams that are close to one
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another in the same division.

The realignment problem is an example of the k-way equipartition problem. Given

a graph G = (V, E) with vertices V and edges E, where each edge e ∈ E has weight ce,

the aim of the k-way equipartition problem is to divide the graph into k sets of vertices,

each of the same size, so as to minimize the total weight of the edges which have both

endpoints in one of the sets. We will call these k sets divisions. We assume |V | is an

integer multiple of k. This can be regarded as a clustering of the vertices, with the

additional condition that each cluster must contain the same number |V |/k =: S of

elements. In what follows we assume G is the complete graph on |V | vertices, as is

the case for the NFL realignment problem.

We use a branch-and-cut algorithm to solve the problem. This constructs an

integer programming formulation of the problem. It then solves a linear programming

(LP) relaxation of the problem. The solution to the LP relaxation can be used to

generate feasible integer solutions. The LP relaxation is tightened by adding strong

cutting planes, that is, inequalities that are high-dimensional faces of the convex hull

of feasible solutions to the integer program, and are violated by the solution to the

LP relaxation. Once the LP relaxation has been tightened, it can be solved again and

the process repeated. If good cutting planes cannot be found and optimality has not

yet been proved, then branching can be used to finish off the solution. The algorithm

is described in more detail in §2.3. First, in §2.2, we discuss the polyhedral theory of

the k-way equipartition problem, and the inequalities that are used as cutting planes.

We define a binary variable xij, which takes the value 1 if i and j are in the same

division and 0 otherwise. Our formulation is:

min
∑

e∈E cexe

subject to
∑

e∈δ(v) xe = S − 1 ∀v ∈ V

x is the incidence vector of a clustering

where δ(v) denotes the set of edges incident to vertex v.

The set of incidence vectors of clusterings consists of all binary vectors satisfy-

ing certain triangle inequalities, given in (3)–(5) below. Finding the clustering to

minimize a linear objective function is itself an NP -hard problem. A complete de-

scription of the convex hull of incidence vectors of clusterings is not known and would

be exponential in size.

We define Q(kS) and Q̄(kS) as follows:

Q(kS) := {x ∈ {0, 1}n :
∑

e∈δ(v)

xe = S − 1 ∀ v ∈ KkS ,

x is the incidence vector of a clustering}
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Q̄(kS) := {x ∈ [0, 1]n :
∑

e∈δ(v)

xe = S − 1 ∀ v ∈ KkS},

where n = kS(kS − 1)/2 and Kq denotes the complete graph on q vertices. We

want to minimize the objective function over Q(kS). Our initial linear programming

relaxation will have feasible region Q̄(kS).

In addition to being a constrained version of the clustering problem, the k-way

equipartition problem is closely related to the classical graph partition problem, an-

other NP -hard problem. This requires partitioning the vertices into two equally sized

sets U1 and U2 so as to minimize the total weight of the edges that either have both

endpoints in U1 or both in U2.

Approaches to the k-way equipartition problem include the multilevel approach

of Karypis and Kumar [24] and the eigenvalue approach of Donath and Hoffman [13],

tested computationally by Areibi and Vannelli [2] and by Falkner et al. [15]. If k = 2

we have the equipartition problem, which has been studied extensively. Branch-and-

cut approaches to this problem include the work of Conforti et al [6, 10, 11] and

Chopra [8]. Ferreira et al. [16, 17] have developed a branch-and-cut algorithm for

the related node capacitated graph partitioning problem. Semidefinite programming

approaches for graph equipartition were investigated by Frieze and Jerrum [19] and

Ye et al. [5, 34]. Semidefinite programming approaches for the k-way equipartition

problem were developed by Karisch and Rendl [23] and Wolkowicz and Zhao [33].

Lisser and Rendl [26] have described a network design problem that can be modeled as

a k-way equipartition problem and they have investigated semidefinite and polyhedral

approaches to it.

If the sets are not all constrained to be of the same cardinality, we have a clus-

tering or partition problem. This problem has been investigated by Grötschel and

Wakabayashi [21, 22]. Chopra and Rao [9] have investigated a polyhedral approach

for the partition problem for graphs that are sparse; their approach defines variables

for both the edges and the vertices.

When S = 2, we have a matching problem, so the problem is polynomially solv-

able. For larger choices of S, the problem is NP-complete, as shown in Garey and

Johnson [20].

2.1 Notation

Given a subset U ⊆ V , we define E(U) to be the edges with both endpoints in U ,

and we define x(U) :=
∑

e∈E(U ) xe. Similarly, we define δ(U) to be the edges with

exactly one endpoint in U . Given two disjoint subsets U ⊆ V and W ⊆ V , we define

5



E(U, W ) to be the edges with exactly one endpoint in U and exactly one endpoint

in W ; further, we define x(U, W ) :=
∑

e∈E(U,W ) xe. All vectors will be column vectors.

The transpose of a matrix M will be written MT . If C denotes a cycle then E(C)

denotes the edges of the cycle and x(E(C)) :=
∑

e∈E(C) xe.

Our definition of x agrees with the work of Grötschel and Wakabayashi [21, 22]

on the clustering problem. Note that it is the opposite of that in literature on the

MAXCUT problem, where typically xe = 1 if edge e appears in the cut.

2.2 Polyhedral theory for the k-way equipartition problem

We discuss the dimension of the k-way equipartition problem polytope and give some

facet-defining and some valid inequalities for it, restricting our attention to inequali-

ties that are used in the branch-and-cut algorithm described later. For more details,

see Mitchell [28]. The polyhedral theory for this problem is related to that of the

equipartition problem and the clustering problem.

Brunetta et al. [6] have developed a branch-and-cut algorithm for the equicut

problem. Their work is based on that of Conforti et al. [10, 11], who developed a

great deal of polyhedral theory for the equipartition problem.

They proved the following result regarding the dimension of the equicut problem:

Lemma 1 ([10], Lemma 3.5.) The dimension of the equicut polytope on 2S vertices

is


 2S

2


 − 2S.

Mitchell [28] extended this result to the k-way equipartition problem , showing

that the dimension of Q(kS) is d(kS) provided S > 2, where we define

d(q) :=


 q

2


 − q. (1)

Among the families of cutting planes that Conforti et al. describe for the equipar-

tition problem on a graph with 2S vertices are the facet defining cycle inequalities:

Cycle inequalities ([11], Theorem 6.2): For every cycle C of length S + 1,

we have

x(E(C)) ≤ S − 1. (2)

The cycle inequalities are facet defining for the k-way equipartition problem [28].

In the NP -hard clustering problem, we are given a set of p observations, each

of which possesses k characteristics. The objective is to divide the observations into
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clusters where the observations within each cluster are similar to one another. For

example, the observations could consist of different types of computers, and the char-

acteristics could include the speed of the computer, the amount of RAM of the com-

puter and the size of the hard disk of the computer. There are no a priori constraints

on the number of clusters or on the number of elements in a cluster. The k-way

equipartition problem is a version of the clustering problem where all the clusters are

required to have the same prescribed size.

Grötschel and Wakabayashi [21, 22] described a cutting plane algorithm for the

clustering problem. The set of incidence vectors of feasible clusters with p observations

are given by the solutions to the following set of constraints:

−xij + xil + xjl ≤ 1 for 1 ≤ i < j < l ≤ p (3)

xij − xil + xjl ≤ 1 for 1 ≤ i < j < l ≤ p (4)

xij + xil − xjl ≤ 1 for 1 ≤ i < j < l ≤ p (5)

xij = 0 or 1, 1 ≤ i < j ≤ p

where we interpret xij = 1 to mean that i and j are in the same cluster, and xij = 0

to mean that they are in different clusters. The constraints (3), (4), and (5) are

called triangle inequalities. Constraint (3) corresponds to the logical condition that

if i and j are in different clusters then l can not be in the same cluster as both i and

j; constraints (4) and (5) have similar interpretations. All these inequalities define

facets of the convex hull of the set of feasible solutions to the clustering problem.

We used these inequalities as cutting planes in our algorithm for the k-way equipar-

tition problem. The triangle inequalities are also presented in [6] and they are well

known in the literature for the MAX-CUT problem; see, for example, Barahona and

Mahjoub [3].

Other classes of facets for this problem are known, but a complete description of

the convex hull is not currently known — see Grötschel and Wakabayashi [21, 22] for

more details. We have the following theorem.

Theorem 1 ([22], Theorem 4.1.) For every pair of nonempty disjoint subsets U, W ⊆
V , the 2-partition inequality

x(U, W ) − x(U) − x(W ) ≤ min{|U |, |W |} (6)

defines a facet of the clique partitioning polytope, provided |U | 6= |W |.
There are several families of inequalities that we have used in our cutting plane

approach, beyond those discussed in earlier work on the clustering problem or the
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equipartition problem. Some of these families are defined on the vertices of an equipar-

tition polytope, although they are not facet defining for the equipartition problem.

Other families use more than 2S vertices. The next four theorems are proved by the

author and presented in another paper [28].

The first inequality uses the fact that there is a limit on the number of edges that

can be used from any complete subgraph.

Theorem 2 Let U ⊆ V with |U | = pS + q, with 1 ≤ p < k and 1 ≤ q < S. The

following is a valid inequality:

x(U) ≤




p


 S

2


 +


 q

2


 if q ≥ 2

p


 S

2


 if q = 1.

(7)

For the equipartition problem, (7) with p = 1 is implied by the cycle constraints if

q = 1 and by the degree constraints if q > 1. Nonetheless, this inequality is violated

by some points in the LP relaxation of the k-way equipartition problem for k > 2.

For example, if k = 3 and S = 4, divide the twelve vertices into two equal sets.

Set xe = 0.6 for each edge with both endpoints within one set, and take xe = 0

otherwise. This point satisfies the degree constraints, the triangle constraints, and

the cycle constraints but it violates (7).

In the next theorem, we give a valid inequality for the equipartition problem that

extends to the k-way equipartition problem. It is not implied by the constraints

considered earlier.

Theorem 3 Let U and W be two disjoint subsets of V with |U | = |W | = S − 1. The

following is a valid inequality:

(S − 1) x(U) + (S − 1) x(W ) + (S − 2) x(U, W ) ≤ (S − 2)(S − 1)2. (8)

For example, take S = 4, so |U | = |W | = 3. Let

xe =




4
5

if e ∈ E(U) or e ∈ E(W )
11
45

if e ∈ E(U, W )

This point takes the value 184
5

for the left hand side of (8), while the right hand side

is equal to 18. The point satisfies all the other constraints. It satisfies (7) at equality

for the set of all the six vertices.

Another useful inequality for the k-way equipartition problem is given in the

next theorem. This inequality is implied by the triangle inequalities and the degree

constraints when k = 2.
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Theorem 4 Let U1 ⊆ V and U2 ⊆ V be two disjoint sets with |U1| = S − 3 and

|U2| = S +1. Let v be a vertex from V \ (U1∪U2). The following is a valid inequality:

(S − 2) x(v, U1 ∪ U2) + x(U2) ≤ 3S2 − 9S + 8

2
. (9)

For example, with S = 4, the set U1 is a singleton and U2 contains five vertices.

The right hand side of (9) is equal to 10. Let

xe =




0.5 if e ∈ E(v, U1 ∪ U2)

0.45 if e ∈ E(U2)

This point violates (9) by 0.5. Only 15 components of x have been specified. If k ≥ 4,

we can choose values for the remaining components so that x satisfies all the earlier

inequalities.

The following two theorems consider a subset U of the vertices of cardinality

2S +2. In each case, some of the edges in E(U) are not included in the left hand side

of the inequality.

Theorem 5 Let U ⊆ V with |U | = 2S + 2. Let Ē ⊆ E(U) and let Ḡ := (U, Ē) with

vertices U and edges Ē. If Ē is such that for any two vertex disjoint copies of KS

in Ḡ the remaining two vertices are not adjacent in Ḡ, then the following is a valid

inequality: ∑

e∈Ē

xe ≤ S(S − 1). (10)

For example, take |S| = 4 and consider the set U of ten vertices in Figure 1. The

total edge weight of all the edges in Ē is 12.6, while the right hand side of (10) is 12.

Provided k ≥ 4, this arrangement can be extended to a point x that satisfies all the

earlier constraints.

Theorem 6 Let U1 ⊆ V and U2 ⊆ V be two disjoint sets with |U1| = S and |U2| =

S + 1. Let v be a vertex from V \ (U1 ∪ U2). The following is a valid inequality:

S x(U1) + (S − 1) x(U2) + (S − 1) x(U1, U2) + (S − 1) x(v, U1)

≤ S(S − 1)(2S − 1)

2
. (11)

For example, take |S| = 4, so |U1| = 4 and |U2| = 5. Let

xe =




0.8 if e ∈ E(U1), so x(U1) = 4.8

0.6 if e ∈ E(U2), so x(U2) = 6

0.3 if e ∈ E(v, U1), so x(v, U1) = 1.2
3
50

if e ∈ E(U1, U2), so x(U1, U2) = 0.6
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Figure 1: Example for Theorem 5. Solid edges have xe = 0.8, dotted edges have

xe = 0.3. Edges shown are all in Ē. Violation is 0.6.

If k ≥ 4, this can be extended to a solution x that satisfies all the earlier constraints.

We get a violation of 0.6 in (11), with a left hand side of 42.6 and a right hand side

of 42.

2.3 Branch-and-cut

Our branch-and-cut algorithm for the k-way equipartition problem is described in [28].

It is as follows:

1. Initialize: The feasible region for the initial linear programming relaxation

is Q̄(kS). The initial incumbent integer feasible solution is a random assignment

of teams to divisions.

2. Solve the current LP relaxation.

3. If the gap between the value of the LP relaxation and the value of the incumbent

integer solution is sufficiently small, STOP with optimality.

4. Use a variant of the Kernighan-Lin heuristic [25] to round the fractional so-

lution to the LP relaxation into a good integer feasible solution. Replace the

current incumbent solution with this solution if it is an improvement.

5. Use the separation routine (defined below) to find violated cutting planes.
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6. If enough violated cutting planes with sufficiently large violation are found,

return to Step 2. Otherwise, call the branch-and-cut solver in the commer-

cial solver CPLEX to attempt to verify that the incumbent integer solution is

optimal and then STOP.

An interior point method was used in step 2 to approximately solve the LP relax-

ations, with the tolerance gradually tightened at each iteration. For more details on

interior point cutting plane algorithms of this type, see [27]. In all the experiments

considered later, the data was integer. Thus, the algorithm terminates in Step 3 if

the gap is smaller than one.

In step 6, we provide the set of constraints from the final LP relaxation, together

with the integrality restrictions, to the branch-and-cut solver. Since this set of con-

straints does not contain all of the triangle inequalities, the solution to this integer

program may not be feasible in the k-way equipartition problem. If the integer solu-

tion returned by the branch-and-cut solver has the same value as the solution found

in step 4 then we know that it is feasible, and this confirms that the incumbent integer

solution is optimal. This was the case in all the experiments described later.

The separation routine consists of the following parts:

5–i Search for triangle inequalities (3), (4), and (5), using complete enumer-

ation. Inequalities are bucket sorted by the size of the violation. Starting

with inequalities in the most violated bucket, a subset are added, ensuring

that no two of these added inequalities share an edge. There is an upper

bound on the number of constraints added; further, the violation of the

last constraint added is restricted to be no smaller than a certain multiple

of the violation of the first constraint added.

5–ii A routine similar to that described in Grötschel and Wakabayashi [21, 22]

is used to find violated 2-partition inequalities (6), with |U | = 1 or 2

and |W | ≥ 3.

5–iii In order to find violated cycle inequalities (2), the algorithm builds

up cliques of vertices using a breadth first search approach, based on

adding vertices v to the test set U if xuv is sufficiently large for one or

more vertices in U . Cliques of size S + 1 with weight x(U) > S(S−1)
2

must

contain violated cycle inequalities, so if we find a violated clique inequality

of this form, we check the corresponding cycle inequalities.
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5–iv Clique inequalities of the form (7) with p = 1 and q = 2 and of the

form (8) are checked using the same breadth first search routine as in

Step 5–iii.

5–v Cycle inequalities (2) are searched for directly, using a depth first search

approach.

5–vi The final part of the separation routine is to add nine specific inequali-

ties of the forms (7), (9), (10), and (11), chosen especially for realignment

problems with these cities, based on examination of the solutions to the

LP relaxations.

If one step does not produce enough violated cutting planes or if the cutting planes

are not sufficiently violated, the separation routine moves to the next step. Otherwise,

it returns to the main algorithm.

For the problems considered in §3, we moved to Step 5–ii if fewer than 20 triangle

inequalities had been added, and we moved to each of Steps 5–iii, 5–iv, and 5–v only

if fewer than five constraints had been added by the earlier steps. We only moved

to Step 5–vi if no constraints were added in Steps 5–i to 5–v. At the beginning,

over a hundred violated triangle inequalities may be found, some violated by almost

one. As the algorithm proceeds, the number violated shrinks and the maximum

violation shrinks. The number added depends on the maximum violation, as well as

on the number violated. This is controlled by limiting the number of buckets that

are examined using a formula similar to that discussed in [27]. Limiting the number

of constraints added speeds up the solution of the LP relaxations.

3 Computational results

The situation where any team can be placed in a division with any other team is

discussed in §3.1. The optimal solution has a sum of intradivisional travel distances

of 27957km.

Such an alignment would be unacceptable to the NFL at present, due to the desire

to maintain historical rivalries. Currently, the NFL is divided into two conferences.

Prior to the 2002 season, the AFC had 16 teams and the NFC had 15 teams. The



separately, so the problem becomes a lot easier to solve. We also looked at the

additional restrictions in the setting of an otherwise unrestricted problem, that is,

without dividing the teams into two conferences. Some of these problems are harder

to solve than the original unrestricted problem, because the restrictions force distant

cities to be in the same division, which affects the neighbours of these distant cities.

Problems that respect historical rivalries are the subject of §3.2.
The locations of the cities are taken from US Geographical Survey data. There are

two teams from New York City, playing at the same stadium, so the distance between

these two teams is zero. There are 32 teams, divided into eight divisions each of four

teams, so |V | = 32, k = 8, and S = 4. The city-to-city distance matrix used in this

paper, along with more information about its calculation, is available from

http://www.rpi.edu/˜mitchj/generators/realign/

This website also contains the solutions for various versions of the problem.

The cutting plane algorithm was written in Fortran 77 and implemented on a Sun

Enterprise workstation. CPLEX was run on a Sun 20/71 workstation. It took an mps

file as input, containing a description of the final LP relaxation as well as integrality

restrictions.

3.1 The unrestricted problem

In this section, we assume that any team can be assigned to any division. The mini-

mum sum of intradivisional travel distances is 27957km, achieved by the arrangement

illustrated in Figure 2 and listed in Table 1. The numbers in Figure 2 correspond to

those given in Table 1. The solution to the final relaxation before invoking branch

and bound is shown in Figure 3.

The cutting plane code required 57 seconds and CPLEX required a further 57

seconds to confirm that the solution was optimal.

Five of the optimal divisions appear reasonably clearly in the optimal solution to

the LP relaxation in Figure 3. Even within these divisions, many of the edge variables

take pronounced fractional values. The cutting plane code added 323 constraints

altogether in 36 stages. These constraints comprised 130 triangle constraints, 43

cycle inequalities, 23 inequalities of the form (8), 76 2-partition inequalities, 42 clique

inequalities, and the nine additional inequalities mentioned in Step 5–vi. The branch

and bound routine in CPLEX confirmed optimality in two nodes of the tree.
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Figure 2: Stylized map of the optimal solution for the unrestricted problem (27957km)
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Cutting plane solution:

Lower bound: 27938 km

Final gap: 0.07%
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Figure 3: Final LP cutting plane solution for unrestricted problem
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Division Teams

1 Atlanta(1) Carolina(5) Cincinnati(7) Tennessee(18)

2 Baltimore(2) Buffalo(4) Pittsburgh(25) Washington(31)

3 New England(3) New York Giants(20) New York Jets(21) Philadelphia(23)

4 Chicago(6) Cleveland(8) Detroit(11) Indianapolis(12)

5 Dallas(9) Denver(10) Arizona(24) Houston(32)

6 Jacksonville(13) Miami(15) New Orleans(19) Tampa Bay(30)

7 Kansas City(14) Green Bay(16) Minnesota(17) St Louis(26)

8 Oakland(22) San Diego(27) San Francisco(28) Seattle(29)

Table 1: Optimal alignment for the unrestricted problem

The number of possible alignments of the teams is

1

8!


 32

4





 28

4





 24

4





 20

4





 16

4





 12

4





 8

4


 ≈ 6 × 1024,

which is too large for enumeration to be an attractive option.

3.2 Traditional rivalries

There are several traditional rivalries in the NFL that have developed over many

years from teams being in the same division. For example, the Washington Redskins

and Dallas Cowboys, the Kansas City Chiefs and Oakland Raiders, and the Chicago

Bears, Detroit Lions, Green Bay Packers, and Minnesota Vikings are great rivals.

Some of these rivalries are not maintained by the optimal arrangement given in §3.1.
In this section, we examine realignments that maintain some of these rivalries, and

we also look at alignments that closely correspond to the current separation of teams

into the AFC and NFC. The solution chosen by the NFL is presented in this section,

and we show how it corresponds to an optimal solution to a constrained version of

our formulation of the problem.

Prior to the inclusion of the Houston Texans, the 31 teams in the NFL were split

into two conferences. The AFC contained 16 teams and there were 15 teams in the

NFC. The NFL placed Houston in the AFC and moved Seattle to the NFC. Their

chosen alignment is given in Table 2. This has a sum of intradivisional travel distances

of 50480km, which is 80% greater than the alignment given in §3.1.
The NFL choice is designed to keep Washington and Dallas in the same division,

to keep Minnesota, Detroit, Green Bay, and Chicago together, and to keep Buffalo,
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NFC

South Atlanta(1) Carolina(5) New Orleans(19) Tampa Bay(30)

North Chicago(6) Detroit(11) Green Bay(16) Minnesota(17)

West Arizona(24) St Louis(26) San Francisco(28) Seattle(29)

East Dallas(9) NY Giants(20) Philadelphia(23) Washington(31)

AFC

East New England(3) Buffalo(4) Miami(15) NY Jets(21)

North Baltimore(2) Cincinnati(7) Cleveland(8) Pittsburgh(25)

West Denver(10) Kansas City(14) Oakland(22) San Diego(27)

South Indianapolis(12) Jacksonville(13) Tennessee(18) Houston(32)

Table 2: Realignment chosen by the NFL

Miami, New England, and the New York Jets in a single division. Imposing these

conditions and optimizing is sufficient to generate the NFL choice. The number of

alignments of the AFC that preserve the AFC East is 5775. The number of NFC

alignments meeting the requirements is 1575.

Perhaps surprisingly, if the requirement that Minnesota be in the same division

as Green Bay, Detroit, and Chicago is not imposed then the optimal solution for the

NFC is to swap the positions of Minnesota and St. Louis. This reduces the total

intradivisional travel distance by 791km.

Given the selection of teams for the AFC and NFC, the optimal values without

the additional conditions can be calculated.

• If the AFC and NFC are optimized with no additional restrictions, the optimal

value is 41152km. In the optimal solution for the NFC, Detroit moves from

the North to the East, Dallas moves from the East to the West, and St. Louis

moves from the West to the North. In the optimal solution for the AFC, Miami

moves from the East to the South, Indianapolis moves from the South to the

North, and Baltimore moves from the North to the East.

• If the only restriction is that Dallas and Washington be in the same division,

the optimal value is 45359km. Thus, this restriction adds 4208km.

• If, in addition, the composition of the AFC East is specified, the optimal value

increases to 49689km, an increase of 4330km. This gives the NFL’s choice for

the AFC.
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• Finally, specifying the makeup of the NFC North gives the NFL choice as the

optimal solution, with value 50480km.

A team other than Seattle could have been moved from the AFC to the NFC.

Given the three additional conditions imposed by the NFL, the best choice is to move

the Kansas City Chiefs. The optimal solution exchanges these two teams in Table 2,

giving a value of 48296km. This is 4.3% less than the chosen solution.

If the Houston Texans had been placed in the NFC then the optimal value, with

the additional conditions, is 48499km. The NFC alignment is as in Table 2, with

Houston replacing Seattle, but the AFC alignment is quite different — see Table 3.

Division Teams

AFC 1 New England(3) Buffalo(4) Miami(15) NY Jets(21)

AFC 2 Baltimore(2) Cleveland(8) Jacksonville(13) Pittsburgh(25)

AFC 3 Denver(10) Oakland(22) San Diego(27) Seattle(29)

AFC 4 Cincinnati(7) Indianapolis(12) Kansas City(14) Tennessee(18)

Table 3: Optimal AFC alignment with additional restrictions, if Houston placed in

NFC

If all three restrictions are imposed without assigning each team to a particular

conference, the optimal solution has value 37126km, with the alignment given in

Table 4.

Division Teams

1 Atlanta(1) Carolina(5) Jacksonville(13) Tampa Bay(30)

2 Chicago(6) Detroit(11) Green Bay(16) Minnesota(17)

3 Denver(10) Kansas City(14) Arizona(24) St Louis(26)

4 Dallas(9) New Orleans(19) Washington(31) Houston(32)

5 New England(3) Buffalo(4) Miami(15) NY Jets(21)

6 Baltimore(2) NY Giants(20) Philadelphia(23) Pittsburgh(25)

7 Cincinnati(7) Cleveland(8) Indianapolis(12) Tennessee(18)

8 Oakland(22) San Diego(27) San Francisco(28) Seattle(29)

Table 4: Optimal alignment with three restrictions

None of the experiments in this section required more than 5 seconds, and they

were all solved in the cutting plane phase. Even the alignment given in Table 4 was
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found in 5 seconds, requiring 18 stages and the addition of 151 cutting planes to

prove optimality. There are restrictions that can be imposed that make the problem

harder to solve. One example is to impose the four requirements that Washington

and Dallas be in the same division, that Miami and the New York Jets be in the

same division (without further requirements on Buffalo and New England), that the

New York Giants and the New York Jets be in different divisions, and that Kansas

City and Oakland be in the same division, with no assignment to conferences. The

cutting plane code solved this problem to optimality in 84 seconds. If only the

Washington/Dallas restriction is imposed, the cutting plane code leaves a duality gap

of 169, in 17 seconds. This gap is closed by CPLEX in 2 nodes of the branch and

bound tree.

4 Conclusions

The minimum possible value for the total intradivisional travel distance is 27957km

(Table 1). Requiring that the alignment closely correspond to the current conferences

gives values at least 40% larger than this. The alignment chosen by the NFL has a

value of 50480km (Table 2), which is 80% larger. This choice maintains the current

separation of the teams into the AFC and NFC, apart from moving Seattle to the NFC

and placing Houston in the AFC. If the 32 teams are divided into two conferences in

this manner, the smallest possible value is 41152km, so the NFL choice is 23% larger.

The NFL choice is optimal subject to the chosen composition of the conferences and

the three additional constraints of Washington and Dallas being in the same division,

the AFC East being specified, and the NFC North being specified.

Advantages of the realignment proposed in Table 1 include the creation of new

rivalries based on geographic proximity, such as San Francisco and Oakland, Wash-

ington and Baltimore, Dallas and Houston, Kansas City and St. Louis, the two New

York City teams, and the three Florida teams together with New Orleans. At a slight

extra cost, these rivalries can be created together with maintaining the traditional

rivalry of Chicago, Detroit, Green Bay, and Minnesota. For an additional small cost,

the two New York City teams can be kept in separate divisions.

The alignment given in Table 1 ensures that no teams separated by more than

one time zone play in the same division. Any of the alignments that are based on the

current NFC and AFC result in San Francisco being in the same division as at least

one team that is two time zones away.

In baseball, the American League and National League play under different rules,
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making it politically difficult to perform such a dramatic realignment as proposed

here for the NFL. The NFL has no such restriction. The National Hockey League

and the National Basketball Association have both recently realigned along more

geographical lines.
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