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Abstract

In this paper, we present a nonlinear programming algorithm for solving semidefinite
programs (SDPs) in standard form. The algorithm’s distinguishing feature is a change
of variables that replaces the symmetric, positive semidefinite variable X of the SDP
with a rectangular variable R according to the factorization X = RRT . The rank of the
factorization, i.e., the number of columns of R, is chosen minimally so as to enhance
computational speed while maintaining equivalence with the SDP. Fundamental results
concerning the convergence of the algorithm are derived, and encouraging computational
results on some large-scale test problems are also presented.

Keywords: semidefinite programming, low-rank factorization, nonlinear program-
ming, augmented Lagrangian, limited memory BFGS.

1 Introduction

In the past few years, the topic of semidefinite programming, or SDP, has received con-
siderable attention in the optimization community, where interest in SDP has included the
investigation of theoretically efficient algorithms, the development of practical implemen-
tation codes, and the exploration of numerous applications. In terms of applications, some
of the most intriguing arise in combinatorial optimization where SDPs serve as tractable,
convex relaxations of NP-Hard problems. The progress in this area, however, has been
somewhat slow due to the fact that, in practice, the theoretically efficient algorithms de-
veloped for SDP are actually quite time- and memory-intensive, a fact that is especially
true for SDP relaxations of large-scale combinatorial optimization problems. Attempting to
address these issues, a recent trend in SDP has been the development of practically efficient
algorithms that are less likely to have strong theoretical guarantees. The present paper
follows this trend by introducing a new, experimental nonlinear programming algorithm for
SDP that exhibits strong practical performance.
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In straightforward terms, semidefinite programming is a generalization of linear pro-
gramming (LP) in which a linear function of a symmetric matrix variable X is minimized
over an affine subspace of real symmetric matrices subject to the constraint that X be
positive semidefinite. SDP shares many features of LP, including a large number of appli-
cations, a rich duality theory, and the ability to be solved (more precisely, approximated)
in polynomial time. For a nice survey of SDP, we refer the reader to [18].

The most successful polynomial-time algorithms for LP have been the class of interior-
point methods, which have been shown efficient in both theory and practice. With the ad-
vent of SDP, the interior-point algorithms for LP were extended to solve SDP in polynomial-
time, and on small- to medium-scale problems, these interior-point algorithms have proven
to be very robust, obtaining highly accurate optimal solutions in short amounts of time.
Their performance on sparse, large-scale problems, however, has not been as impressive, the
main reason being that it is difficult to preserve sparsity when computing the second-order
search directions common to these types of interior-point algorithms. For the algorithms and
issues surrounding the classical, second-order interior-point methods for SDP, see [18], and
for a selection of papers which deal with sparsity in these types of interior-point methods,
see [3, 10].

Recognizing the practical disadvantages of the classical interior-point methods, several
researchers have proposed alternative approaches for solving SDPs. Common to each of
these new approaches is an attempt to exploit sparsity more effectively in large-scale SDPs
by relying only on first-order, gradient-based information. In [12], Helmberg and Rendl
have introduced a first-order bundle method to solve a special class of SDP problems in
which the trace of the primal matrix X is fixed. For the special case of the graph-theoretic
maximum cut SDP relaxation, Homer and Peinado have shown in [13] how the change of
variables X = V V T , where V is a real square matrix having the same size as X, allows
one to recast the SDP as an unconstrained optimization problem for which any standard
nonlinear method—in particular, a first-order method—can be used. Burer and Monteiro
[4] improved upon the idea of Homer and Peinado by simply noting that, without loss
of generality, V can be required to be lower triangular in accordance with the Cholesky
factorization. Then, in a series of papers [6, 7, 5], Burer, Monteiro, and Zhang showed how
one could apply the idea of Cholesky factorization in the dual SDP space to transform any
SDP into a nonlinear optimization problem over a simple feasible set. They also provided a
globally convergent, first-order log barrier algorithm to solve SDPs via this method, one of
the key features being the preservation of sparsity. Most recently, Fukuda and Kojima [9]
have introduced an interior-point technique based on Lagrangian duality which solves the
class of SDPs studied in [12] and allows the use of first-order methods in the unrestricted
space of Lagrange multipliers.

The current paper follows the path laid by these alternative methods and is specifically
motivated by [13, 4], that is, we consider the use of first-order methods for solving the
nonlinear reformulation of an SDP obtained by replacing the positive semidefinite variable
with an appropriate factorization. We work with the standard-form primal SDP

min{C •X : Ai •X = bi, i = 1, . . . , m, X � 0}, (1)

where the data matrices C and {Ai}m
i=1 are n×n real symmetric matrices, the data vector b

is m-dimensional, the operator • denotes the inner product of matrices, and the n×n matrix
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variable X is required to be symmetric, positive semidefinite as indicated by the constraint
X � 0. Generally speaking, the constraint X � 0 is the most challenging aspect of solving
(1) since the objective function and constraints are only linear in X. Hoping simply to
circumvent this difficult constraint, we introduce the change of variables X = V V T where
V is a real, n×n matrix (that is not required to be symmetric). In terms of the new variable
V , the resulting nonlinear program

min{C • (V V T ) : Ai • (V V T ) = bi, i = 1, . . . , m} (2)

is easily seen to be equivalent to (1) since every X � 0 can be factored as V V T for some
V . Since the positive semidefiniteness constraint has been eliminated, (2) has a significant
advantage over (1), but this benefit has a corresponding cost: the objective function and
constraints are no longer linear—but instead quadratic and in general nonconvex.

Is it practical to optimize (2) in place of (1)? The answer is certainly not an immediate
“yes” as there are several important questions that should be addressed:

Q1 The number of variables in V is n2. Can this large number of variables be managed
efficiently?

Q2 What optimization method is best suited for (2)? In particular, can the optimization
method exploit sparsity in the problem data?

Q2 Since (2) is a nonconvex programming problem, can we even expect to find a global
solution in practice?

To answer Q1, we appeal to a theorem that posits the existence of an optimal solution X∗

of (1) having rank r satisfying the inequality r(r +1)/2 ≤ m. In terms of the reformulation
(2), the existence of X∗ implies the existence of some V ∗ satisfying X∗ = V ∗(V ∗)T and
having its last n − r columns equal to zero. The idea to manage the n2 variables of V is
then simply to set the last n− r̄ columns of V to zero, where r̄ is taken large enough so as
to not eliminate all optimal solutions. In other words, we ignore the last n− r̄ columns in
the optimization. As a consequence, the resulting optimization is equivalent to the original
SDP while having far fewer variables. In answering Q2, we develop an effective limited
memory BFGS augmented Lagrangian algorithm for solving (2) whose major computations
require computer time and space that are directly proportional to the number of nonzeros
in the data matrices C and {Ai}m

i=1. For Q3, we present computational results which show
that the method finds optimal solutions to (2) quite reliably, and although we are able to
derive some amount of theoretical justification for this, our belief that the method is not
strongly affected by the inherent nonconvexity of (2) is largely experimental. Finally, after
positively addressing these three questions, the primary conclusion of this paper is that
optimizing (2) in place of (1) is indeed practical, especially for large, sparse SDPs.

The paper is organized as follows. In Section 2, we discuss in detail the standard form
SDP (1) as well as its nonlinear reformulation (2). In particular, we analyze optimality con-
ditions and the consequences of the low-rank factorization theorem mentioned above. Then
in Section 3, we describe our optimization technique for (2), focusing in particular on how
to exploit sparsity in the data. In Section 4, we discuss and demonstrate an implementation
of the proposed algorithm on two classes of large-scale SDPs. We compare our method with
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one of the classical interior-point methods as well as with the algorithm of Helmberg and
Rendl [12] and conclude that our method outperforms both of the other methods in terms
of time and solution quality. Lastly, in Section 5, we conclude the paper with a few final
remarks and ideas for future research.

1.1 Notation and terminology

We use <, <p, and <p×q to denote the space of real numbers, real p-dimensional column
vectors, and real p × q matrices, respectively. We use ‖ · ‖ to denote the Euclidean norm
for vectors. By Sp we denote the space of real p × p symmetric matrices, and we define
Sp

+ and Sp
++ to be the subsets of Sp consisting of the positive semidefinite and positive

definite matrices, respectively. For a matrix A ∈ Sp, we write A � 0 and A � 0 to
indicate that A ∈ Sp

+ and A ∈ Sp
++, respectively. We let trace(A) denote the trace of a

matrix A ∈ <n×n, i.e. the sum of the diagonal elements of A. For A,B ∈ <p×q, we define
A•B ≡ trace(AT B). Let Diag : <p → <p×p be the operator defined by Diag(u) = U , where
U is the diagonal matrix having Uii = ui for all i = 1, . . . , p, and let diag : <p×p → <p be
defined as diag(U) = u, where ui = Uii for all i = 1, . . . , p. For a matrix A, we let Ai· and
Aij denote the i-th row and the (i, j)-th entry of A, respectively.

2 The Nonlinear Formulation

In this section, we explore the standard-form primal SDP (1) and its nonlinear formulation
(2) in more detail . We first highlight some of the most important features of semidefinite
programming and state our assumptions on (1). We then consider the consequences of
the “low-rank” theorem mentioned in the introduction and finally derive various optimality
conditions for (2).

2.1 The SDP problem and its low-rank reformulation

As stated in the introduction, the standard form primal SDP (1) is specified by data C ∈ Sn,
{Ai}m

i=1 ⊂ Sn, and b ∈ <m. Its variable X is an n×n symmetric matrix that is required to
be positive semidefinite, that is, X ∈ Sn

+ or X � 0. We assume that the constraint matrices
{Ai}m

i=1 are linearly independent, and since Sn has dimension n(n + 1)/2, this means in
particular that m ≤ n(n + 1)/2.

Associated with the primal SDP is the following dual SDP, with variables (S, y) ∈
Sn

+ ×<m:

max

{

bT y : S = C −
m

∑

i=1

yiAi, S � 0

}

. (3)

We assume that (1) and (3) have nonempty optimal solution sets with zero duality gap, that
is, we assume the existence of feasible solutions X∗ and (S∗, y∗) such that C •X∗ = bT y∗.
The following fundamental proposition (whose proof can be found for example in Corollary
2.1 of [16]) will be useful to us in our analysis of the nonlinear reformulation of the primal
SDP.
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Proposition 2.1 Feasible solutions X and (S, y) are simultaneously optimal if and only if
X • S = 0, or equivalently, XS = SX = 0.

Since every X ∈ Sn
+ can be factored as X = V V T for some V ∈ <n×n, the primal SDP

(1) can be reformulated as the nonlinear program (2) in terms of the unrestricted variable
V . Note that variations of (2) can be obtained by requiring structure on the factorization
X = V V T . For example, we could impose the requirement that V be lower triangular with
nonnegative diagonal elements, in which case the factorization would represent the Cholesky
factorization. Another possibility is to require that V be symmetric positive semidefinite
making V the matrix square root of X. In fact, any type of factorization that is valid for
all feasible X can be used in place of the generic factorization to reformulate the SDP.

A slightly different perspective on reformulating the SDP through factorization is the
following: instead of using a factorization that is valid for all feasible solutions, use one
that is valid for some or all optimal solutions. Such a reformulation will clearly have an
optimal solution set which is—via the factorization—a subset of the SDP optimal solution
set. Pursuing this idea, consider the following theorem, which was proven concurrently in
Barvinok [2] and Pataki [17]:

Theorem 2.2 There exists an optimal solution X∗ of (1) with rank r satisfying the in-
equality r(r + 1)/2 ≤ m.

Since a matrix X ∈ Sn
+ with rank r can be factored as X = V V T for some V ∈ <n×n

having its last n − r columns equal to zero, we can use the above theorem to impose a
structure on the factorization X = V V T that is valid for some of the SDP optimal solutions
(but not valid for all feasible solutions). In particular, if we define

r∗ = min{rank(X∗) : X∗ is optimal for (1) }, (4)

r̄ = max{r ≥ 0 : r(r + 1)/2 ≤ m}, (5)

then r∗ ≤ r̄ ≤ n, and so the nonlinear program

min{C • (V V T ) : Ai • (V V T ) = bi, i = 1, . . . ,m, V·j = 0, j = r̄ + 1, . . . , n} (6)

is equivalent to the SDP (1) in the sense of the previous paragraph. The advantage of (6)
over (2) is clear: the number nr̄ of variables in (6) can be (and is typically) much smaller
than the number n2 in (2).

We will find it useful to discuss the above ideas in a slightly more general context and
using slightly different notation. For this, we introduce the following nonlinear program,
dependent upon a positive integer r ≤ n:

(Nr) min{C • (RRT ) : Ai • (RRT ) = bi, i = 1, . . . ,m, R ∈ <n×r}.

Note that the distinguishing feature of (Nr) is the rectangular shape of the matrix R,
which has n rows but only r columns. Note also that (Nn) is equivalent to (2) and (Nr̄) is
equivalent to (6).
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2.2 Optimality conditions

We wish to analyze the optimality conditions of the nonlinear program (Nr) for a fixed r,
and so we define the usual Lagrangian function

L(R, y) = C • (RRT )−
m

∑

i=1

yi(Ai • (RRT )− bi), (7)

where y ∈ <m is the vector of unrestricted Lagrange multipliers for the equality constraints
of (Nr). Introducing the auxiliary variable S ∈ Sn defined by

S = C −
m

∑

i=1

yiAi, (8)

the Lagrangian can be rewritten more simply as

L(R, y) = S • (RRT ) + bT y.

It is important to the note the relationship of the dual SDP with the Lagrange multipliers
y and the auxiliary variable S. Comparing (8) and (3), we see that, in both cases, the
relationship between y and S is the same. Moreover, in the case of the Lagrangian, if S
happens to be positive semidefinite, then (S, y) constitutes a feasible solution of the dual
SDP.

Consider the following easily derived formulas:

∇R
(

Ai • (RRT )− bi
)

= 2 AiR,

∇RL(R, y) = 2 SR, (9)

L′′RR(R, y)[D, D] = 2 S • (DDT ) for D ∈ <n×r.

Combining these formulas with standard results from nonlinear programming, we have the
following proposition concerning the local minimizers of (Nr).

Proposition 2.3 Let R∗ be a local minimum of (Nr), and suppose that R∗ is a regular
point, i.e., the gradients {AiR}m

i=1 of the constraints at R∗ are linearly independent. Then
there exists a unique Lagrange multiplier vector y∗ ∈ <m and corresponding S∗ such that

S∗R∗ = 0. (10)

Moreover, the inequality
S∗ • (DDT ) ≥ 0 (11)

holds for all matrices D ∈ <n×r satisfying

AiR∗ •D = 0 ∀ i = 1, . . . , m. (12)

Proposition 2.3 states the first- and second-order necessary conditions for a feasible point
R to be a local minimizer of (Nr). It is also possible to formulate the standard sufficient
conditions for R being a strict local minimum. It is easy to see, however, that (Nr) has
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no strict local minima. To see this, let R be any feasible point, and let Q ∈ <r×r be an
arbitrary orthogonal matrix. Then the point RQ is also feasible, and its objective value
equals that of R, as the following equations demonstrate:

Ai • ((RQ)(RQ)T ) = Ai • (RQQT RT ) = Ai • (RRT ) = bi,

C • ((RQ)(RQ)T ) = C • (RQQT RT ) = C • (RRT ).

Since Q can be chosen so that RQ is arbitrarily close to R, it follows that R cannot be a
strict local minimum.

Even though the standard sufficiency conditions are not relevant in the current context,
there are some interesting sufficient conditions for a feasible point R of (Nr) to yield an
optimal SDP solution X = RRT . Said differently, there are conditions—irrespective of
the integer r—which guarantee that a feasible point R is an optimal solution of (Nn), or
equivalently of (2), when R is included in the feasible set of (Nn) in the obvious way. These
conditions are stated in the following two propositions.

Proposition 2.4 Let R∗ be a stationary point of (Nr), i.e., there exists y∗ ∈ <m such
that ∇RL(R∗, y∗) = 0. If the associated matrix S∗ ∈ Sn is positive semidefinite, then
X∗ = R∗(R∗)T and (S∗, y∗) are optimal for (1) and (3), respectively.

Proof. First note that X∗ is feasible for (1) since R∗ is feasible for (Nr) and that S∗ is
feasible for (3) since it is related to y∗ by (8) and is also positive semidefinite. Second, the
condition ∇RL(R∗, y∗) = 0 can be rewritten as the equation S∗R∗ = 0 according to (9).
From this we easily that S∗R∗(R∗)T = S∗X∗ = 0. The claim of the proposition now follows
by combining the facts just derived with Proposition 2.1.

Proposition 2.5 Let r < n, and suppose that R∗ ∈ <n×r satisfies the hypotheses of Propo-
sition 2.3 for (Nr) with associated (S∗, y∗). Let R̂ be the injection of R∗ into <n×(r+1). If
R̂ is a local minimum of (Nr+1), then X∗ = R∗(R∗)T and (S∗, y∗) are optimal for (1) and
(3), respectively.

Proof. The linear independence of {AiR∗}m
i=1 implies the linear independence of {AiR̂}m

i=1
since AiR̂ is simply the injection of AiR∗ into <n×(r+1). Then, since R̂ is a local minimum
of (Nr+1), R̂ satisfies the hypotheses of Proposition 2.3 for (Nr+1), and so there exists a
unique ŷ ∈ <m and an associated Ŝ that fulfill the conclusions of Proposition 2.3. Using the
same proposition as it applies to R∗ and (Nr), we see that S∗R∗ = 0. Since R̂ is simply R∗

with an additional zero column appended, we see that S∗R̂ = 0. Thus, using the uniqueness
of ŷ, we conclude that ŷ = y∗ and Ŝ = S∗.

Since the (r+1)-st column of R̂ is zero, we have that the (r+1)-st column of AiR̂ is zero
for all i = 1, . . . , m. It follows that any matrix D ∈ <n×(r+1) having its first r columns equal
to zero satisfies AiR̂•D = 0 for all i, and from Proposition 2.3, we have that Ŝ •(DDT ) ≥ 0
for all such D. In particular, let d ∈ <n be an arbitrary vector, and consider the matrix
D ∈ <n×(r+1) formed by replacing the (r +1)-st column of the zero matrix with d. We then
have

Ŝ • (DDT ) = Ŝ • (ddT ) = dT Ŝd ≥ 0.

Since d is arbitrary, the above inequality proves that Ŝ is positive semidefinite.
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So S∗ = Ŝ is positive semidefinite. Thus, the conclusion of the proposition follows from
Proposition 2.4.

Proposition 2.4 has a special significance when we consider how to solve the primal SDP
practically using the reformulations (Nr). For example, suppose we attempt to solve the
formulation (Nr) using an algorithm that computes a local minimum by explicitly computing
the Lagrange multipliers y. Once a local minimum is obtained, if the current S is positive
semidefinite, we can conclude by Proposition 2.4 that the current X = RRT and (S, y) are
optimal primal-dual SDP solutions. It is important to note, however, that the choice of r
must be large enough so that at least one SDP optimal solution X has rank r, that is, r
must be at least as big as r∗ defined in (4). Otherwise, (Nr) would not be equivalent to the
SDP (1), implying that S could never be positive semidefinite at a stationary point.

Proposition 2.5 also presents an intriguing algorithmic possibility. Suppose that, before
solving (1), we know the exact value of r∗. Then it is best to solve (Nr) for r = r∗. More
specifically, if we choose r < r∗, then (Nr) is not equivalent to (1), and if we choose r > r∗,
then we are solving a larger program than necessary. Of course, since we do not know the
value of r∗ ahead of time, Theorem 2.2 guarantees that by solving (Nr) for r = r̄ ≥ r∗,
we will solve the SDP. Nonetheless, if r̄ happens to be much bigger than r∗, we would be
solving a much larger program than necessary. Proposition 2.5, however, suggests a scheme
to solve the SDP which avoids solving (Nr) for r > r∗:

0. Choose r small and compute a local minimum R of (Nr).

1. Use an optimization technique either (a) to determine that the injection R̂ of R into
<n×(r+1) is a local minimum of (Nr+1) or (b) to compute a better local minimum R̃
of (Nr+1).

2. If (a) holds, then X = RRT is SDP optimal by Proposition 2.5; otherwise, repeat step
1 with R = R̃ and r = r + 1.

We remark that in step 1, if R̂ is not a local minimum, then it is a saddle point and hence can
be escaped from. The goal of this scheme is to solve the SDP when (Nr) first is equivalent
to (1), i.e., when r first equals r∗. There are, of course, some theoretical and computational
considerations with such a scheme (for example, the linear independence assumptions of
Proposition 2.5 and the optimization technique of step 1), but in Section 4, we show that
an adaptation of this scheme allows us to solve the SDP much faster than just solving (Nr̄)
directly.

3 The Optimization Method

In this section, we describe a practical algorithm for obtaining a local minimizer of the
nonlinear program (Nr). The key features of the algorithm are its ability to handle the
nonconvex equality constraints of (Nr) and its exploitation of sparsity in the problem data
via first-order search directions.

8



3.1 The augmented Lagrangian algorithm

As mentioned in the introduction, the price we pay for the elimination of the difficult
constraint X � 0 in (1) via the factorization X = RRT (or X = V V T ) is the introduction
of the difficult constraints Ai • (RRT ) = bi. Since we assume no structure on Ai ∈ Sn,
these constraints are in general nonconvex. Hence, any optimization method we choose for
solving (Nr) must address these difficult constraints.

The nonlinear programming method that we believe is a good candidate for solving (Nr)
is the augmented Lagrangian method (also called the method of multipliers). The basic idea
behind the method is the idea of penalization, i.e., the method ignores the constraints all
together and instead optimizes an objective which includes additional terms that penalize
infeasible points. Penalization alone, however, can lead to ill-conditioning in the optimiza-
tion, and so a feature of the augmented Lagrangian method is to introduce explicit Lagrange
multipliers yi, one for each constraint, that help to balance the ill-conditioning induced by
the penalization. In addition to mitigating the penalization, the multipliers also can serve
as a test for optimality (as discussed at the end of Section 2) and as a direct connection to
the dual problem (3).

In the following description of the augmented Lagrangian algorithm for solving (Nr),
we assume that r has been chosen so that (Nr) is feasible.

A key component of the augmented Lagrangian algorithm is the following function,
called the augmented Lagrangian function:

L(R, y, σ) = C • (RRT )−
m

∑

i=1

yi(Ai • (RRT )− bi) +
σ
2

m
∑

i=1

(Ai • (RRT )− bi)2, (13)

where the variables R ∈ <n×r and y ∈ <m are unrestricted and the parameter σ ∈ <
is positive. Comparing (13) with (7), we see that the augmented Lagrangian function L
differs from the usual Lagrangian L only in the addition of the term involving σ. This term
measures the Euclidean norm of the infeasibility of R with respect to (Nr) and is scaled by
the real number σ. As such, σ is called the penalty parameter. The motivation for using
the augmented Lagrangian algorithm is that, for an appropriate, fixed choice (y∗, σ∗), an
optimal solution R∗ of (Nr) can be found by simply optimizing the function L(·, y∗, σ∗) with
respect to R (see for example [8] for more details).

Of course, the trick is to determine (y∗, σ∗), and the augmented Lagrangian algorithm
attempts to do so by forming a sequence {(yk, σk)}k≥0 that converges to (y∗, σ∗). This is
done by minimizing L(·, yk, σk) with respect to R in order to find its optimal solution Rk

and then using (Rk, yk, σk) to determine a new pair (yk+1, σk+1), from which the process is
continued. The exact method by which (yk, σk) is updated to (yk+1, σk+1) is an important
theoretical and practical detail of the algorithm. In implementations, the update rule is
typically given as follows: parameters γ > 1 and η < 1 are given and an auxiliary scalar vk
is introduced; then

(i) compute v =
∑m

i=1(Ai • (Rk(Rk)T )− bi)2;
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(ii) if v < η vk, then set

yk+1
i = yk

i − σk(Ai • (Rk(Rk)T )− bi) for all i,

σk+1 = σk,

vk+1 = v;

(iii) otherwise, set

yk+1
i = yk

i for all i,

σk+1 = γ σk,

vk+1 = vk.

In words, the quantity v represents the infeasibility of Rk, and the quantity vk is the best
infeasibility obtained by some point R during prior iterations of the algorithm. The hope is
that v is smaller than η vk, meaning that Rk has obtained a new best infeasibility. If v is in
fact smaller than η vk, then item (ii) details how to update the Lagrange multipliers and the
penalty parameter (which stays the same), and then vk+1 carries the new best infeasibility
v. If, on the other hand, v ≥ η vk, then item (iii) increases the penalty parameter by a factor
of γ and keeps the other parameters fixed, all with the goal of reducing the infeasibility to
the target level η vk. We remark that typical choices for γ and η are 10 and 1/4, respectively.
In addition, some methods choose to update the parameters γ and η dynamically during
the course of the algorithm. This is actually the approach that we take in our numerical
experiments (see Section 4 for more details).

Under reasonable assumptions, the sequence {(yk, σk)}k≥0 converges to {(y∗, σ∗)}, and
the sequence {Rk}k≥0 also converges to R∗. However, since obtaining the exact optimal
solution Rk of L(·, yk, σk) is unlikely in a practical implementation, if the sequence {Rk}k≥0
is instead replaced with a sequence of stationary points {R̄k}k≥0 (or even approximate
stationary points), then it can be proven that {R̄k}k≥0 will converge to a stationary point
R̄∗ instead (see for example [8]). In practice, we could probably expect R̄∗ to be not just
a stationary point, but rather a local minimum of (Nr). In fact, the computational results
that we present in the next section demonstrate that R̄∗ is likely to be a global solution of
(Nr).

The method used to perform the unconstrained minimization of L(·, yk, σk) with respect
to R naturally plays a critical role in the overall efficiency of the augmented Lagrangian
algorithm. For this, we have chosen a first-order, limited memory BFGS approach that
employs a strong Wolfe-Powell line search (see for example [8]), and the number of limited
memory BFGS updates that we store is three. We prefer a gradient-based algorithm because
the function and gradient evaluations of L(·, yk, σk) can be performed very quickly, especially
when r is small and the data matrices are very sparse (as detailed in the next subsection).
In addition, it is not difficult to see that computing and factoring the Hessian of L(·, yk, σk)
(as in the application of Newton’s method) would consume large amounts of space and time.

3.2 The function and gradient evaluations

Since one of the stated goals of our optimization of (Nr) is the ability to exploit sparsity and
problem structure, we now wish to discuss briefly how the augmented Lagrangian algorithm
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can do exactly this. The main computational work of the algorithm lies in the solution of
the subproblems min{L(R, yk, σk) : R ∈ <n×r}, and the limited memory BFGS algorithm
that we have chosen to perform this unconstrained minimization uses function and gradient
evaluations as its main computational engine. Hence, we focus our attention on the work
involved in computing the function value and gradient (with respect to R) of the augmented
Lagrangian function L(·, y, σ), where y ∈ <m and σ > 0 are fixed.

From (13), it is not difficult to see that the main work involved in evaluating L(R, y, σ)
is in the computation of the quantities C • (RRT ) and Ai • (RRT ) for i = 1, . . . ,m. In par-
ticular, once these m+1 quantities are computed, the function value can easily be obtained
in roughly O(m) additional flops. So how can these dot products be performed efficiently?
We will consider two cases that arise in the example SDPs of the section concerning com-
putational results.

First, suppose all of the data matrices are sparse but have arbitrary structure. Letting
W represent any one of the data matrices, we have

W • (RRT ) =
n

∑

i=1

n
∑

j=1

Wij [RRT ]ij =
∑

Wij 6=0

Wij

r
∑

k=1

RikRjk. (14)

The final summation clearly shows that the work needed to compute W • (RRT ) is propor-
tional to the number of nonzeros of W times the work involved in computing the dot product
of the i-th and j-th rows of R, i.e., the work involved is O(|W |r). Hence, the augmented
Lagrangian function value can be computed in O((|C| + |A1| + · · · + |Am|)r) flops. This
quantity, however, represents some redundant computations. In particular, if two or more
of the data matrices share a nonzero position (i, j), then the dot product between the i-th
and j-th rows of R will have been computed more than once. To fix this, we first compute
and store [RRT ]ij for any (i, j)-th entry that is nonzero for some data matrix. Then, for
each data matrix W , W • (RRT ) can be computed in O(|W |) additional flops. Since, the
nonzero pattern of the matrix S defined by (8) is precisely the combined nonzero patterns
of the data matrices, we have the following proposition.

Proposition 3.1 When the data matrices are arbitrary, the time required to evaluate the
augmented Lagrangian function L(R, y, σ) is O(|S|r + |C|+ |A1|+ · · ·+ |Am|).

Second, suppose each of the data matrices is a rank-one matrix, i.e., each data matrix
W equals wwT for some w ∈ <n. In this case, W may not be sparse but is nonetheless very
structured. Again, the main work in evaluating the function is in computing W • (RRT ),
which can arranged as

W • (RRT ) = (wwT ) • (RRT ) = ‖RT w‖2.

Since ‖RT w‖2 can be calculated in O(nr) flops, we have the following proposition.

Proposition 3.2 When the data matrices have rank equal to one, the time required to
evaluate the augmented Lagrangian function L(R, y, σ) is O(mnr).

A couple of remarks concerning the two above propositions are in order. First, the two
propositions can be joined in a straightforward way to handle the case when some of the
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data matrices are sparse and arbitrary while others are rank-one. Second, it can be easily
seen that the space requirements of the function evaluation beyond that needed for the data
matrices and the point R are on the order of O(|S|) for arbitrary data matrices and O(mr)
for rank-one matrices (if the r-vectors RT w are stored as will be convenient for the gradient
computation).

Now turning to the gradient evaluation, we first point out that the formula for the
gradient of L(R, y, σ) with respect to R is

∇RL(R, y, σ) = 2 CR− 2
m

∑

i=1

yiAiR + 2 σ
m

∑

i=1

(Ai • (RRT )− bi)AiR = 2 S̃R, (15)

where, if we let ỹi = yi − σ(Ai • (RRT )− bi),

S̃ = C −
m

∑

i=1

yiAi + σ
m

∑

i=1

(Ai • (RRT )− bi)Ai

= C −
m

∑

i=1

[

yi − σ(Ai • (RRT )− bi)
]

Ai

= C −
m

∑

i=1

ỹiAi.

Notice that ỹi can be computed directly if we make the reasonable assumption that the
function value at R has already been computed.

In the case that the data matrices have arbitrary structure, a reasonable approach to
compute the gradient is simply to form S̃ and compute the gradient according to (15),
making sure to take advantage of the sparsity that S̃ inherits from the data matrices. This
procedure of forming S̃ and then computing the matrix product can easily be seen to cost
O(|S|r + |C|+ |A1|+ · · ·+ |Am|) flops. In the case that the data matrices each have rank
one, for each data matrix W , WR can be computed in O(n2) flops according to the formula
WR = w(wT R), assuming that RT w has been stored from the function evaluation. Because
of this, the most practical way to form the gradient is to first compute WR for each data
matrix W , and then to combine the resulting matrices according to the linear combination
of matrices defining S̃. Such a procedure gives an overall flop count of O(mn2 + mnr).
Putting both cases together, we have the following proposition.

Proposition 3.3 When the data matrices are arbitrary, the time required to evaluate the
gradient of the augmented Lagrangian function L(R, y, σ) with respect to R is O(|S|r+ |C|+
|A1|+· · ·+|Am|). When the data matrices have rank equal to one, the time is O(mnr+mn2).

Once again, we remark that the space requirements are not excessive and, in particular,
can be managed to be O(|S|+ nr) in the case of arbitrary matrices and O(nr) in the case
of rank-one matrices.

3.2.1 How the gradient can preserve zeros in the iterates

We now wish to draw attention to a characteristic of the gradient which can potentially have
undesirable effects for the augmented Lagrangian algorithm but can be handled so as to

12



cause little trouble. The problem arises from the following observation: the pattern of zeros
in R and S̃ can propagate a pattern of zeros in the gradient L(R, y, σ) = 2 S̃R, which can
in turn propagate a pattern of zeros in points R̃ obtained by performing a gradient-based
line search from R.

For example, suppose the augmented Lagrangian algorithm for (Nr) is initialized with
a point R ∈ <n×r having its final column equal to zero. Then the gradient 2 S̃R will also
have its final column equal to zero. Hence, any point R̃ obtained from R by performing a
line search along the gradient will also have a zero final column. Continuing the algorithm
in this way, it is not difficult to see that the limited memory BFGS algorithm, which uses
combinations of gradients to compute its search directions, will also ensure that the final
column of each ensuing iterate is zero. Thus, though the algorithm was meant to solve
(Nr), it is in fact solving (Nr−1).

The net effect of this zero-preserving characteristic of the gradient is that we may be
imposing an unintended structure on the iterates, which can in turn mean that we are
solving a restriction of (Nr). A practical way to alleviate this problem is simply to initialize
the algorithm with an R which has no zeros at all.

4 Computational Results

In this section, we describe our computational experiences with the low-rank augmented
Lagrangian approach. For comparison, we also present computational results from the
spectral bundle method of Helmberg and Rendl [12] as well as the dual-scaling interior-point
method of Benson, Ye, and Zhang [3]. The implementation of our method was written in
ANSI C, and all experiments for each code were performed on an SGI Origin2000 with 16
300MHz R12000 processors and 10 Gigabytes of RAM. We stress, however, that none of
the three codes is parallel, that is, each code uses only one processor.

4.1 The Lovász theta SDP

The first set of computational results that we present are for the Lovász theta SDP, which
was introduced by L. Lovász in the seminal paper [15]. Given a simple, undirected graph
G = (V, E), the Lovász theta number ϑ of G is defined as the negative of the optimal value
of the Lovász theta SDP

min
{

−(eeT ) •X : trace(X) = 1, Xij = 0 ∀ (i, j) ∈ E, X � 0
}

, (16)

where e ∈ <|V | is the vector of all ones and X has dimension |V | × |V |. (Note that the
Lovász theta SDP is usually stated as a maximization, implying that ϑ is simply the optimal
value, but we have chosen to state the SDP as a minimization in standard form.) One of
the most interesting properties of ϑ is that it satisfies the inequality α = ω(Ḡ) ≤ ϑ ≤ χ(Ḡ),
where α, ω(Ḡ), and χ(Ḡ) are the stability number of G, the maximum clique number of
the complement graph Ḡ, and the chromatic number of Ḡ, respectively. In this regard, ϑ is
a polynomial-time computable number which lies between two numbers that are NP-Hard
to compute.

In terms of the semidefinite program (1), n = |V |, m = |E| + 1, C = −eeT , the set
{Ai}m

i=1 consists of the identity matrix I as well as |E| matrices of the form eieT
j + ejeT

i
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(where ek ∈ <n has a 1 in position k and 0 elsewhere), and the vector b ∈ <m has one entry
equal to 1 and all other |E| entries 0. In the computations, we will treat C as a rank-one
matrix while all other data matrices we will be handled as arbitrary, sparse matrices. Hence,
we can tailor Propositions 3.1–3.3 to the case at hand, obtaining the following proposition.

Proposition 4.1 For the Lovász theta SDP, the function and gradient evaluations of the
augmented Lagrangian L(R, y, σ) of (Nr) can be performed in O(|E|r + nr) and O(|E|r +
nr + n2) flops, respectively.

To optimize the Lovász SDP, we apply the augmented Lagrangian algorithm as stated in
Section 3 to the problem (Nr̄), where r̄ is defined by (5). (In this case, the approximate value
of r̄ is

√

2(|E|+ 1).) In particular, we do not employ the idea of dynamically increasing the
rank as described at the end of Section 2. There are two reasons for this. Firstly, we cannot
guarantee that the regularity assumption of Proposition 2.5 holds at an arbitrary stationary
point R of (Nr) obtained by the algorithm, and as such, the theoretical base for dynamically
changing the rank is not strong. Secondly, our computational experience shows that the
problem (Nr) corresponding to the Lovász SDP is difficult to solve for small values of r.
In particular, the convergence of our method on problems with r � r̄ is not very strong,
while the convergence for r = r̄ is quite good. As a result, we find computationally that
the potential benefits of using (Nr) for small r are not realized due to slow convergence.

In addition, we have chosen not to test optimality by checking the positive semidefi-
niteness of S during the algorithm. The reason for this is two-fold: firstly, we desired to
test our own stopping criterion (described below); and secondly, an efficient routine for
testing positive semidefiniteness was not readily available. In particular, we remark that
the Cholesky factorization, a typical way to test S � 0, can still require a large amount of
computational work if the nonzero fill-in of the Cholesky factor is large.

In our numerical tests for the Lovász theta SDP, we found it very important to monitor
the increase of the penalty parameter σ. In early testing, we found that σ had a tendency
to increase to a high level which resulted in ill-conditioning of the augmented Lagrangian
function and consequently poor overall performance of the algorithm. A related observation
was that the progress of the Lagrange multipliers y towards the optimal y∗ was extremely
important for the accuracy of the method. In fact, we found it necessary to allow the
updating of y as often as possible. So, in order to deemphasize the penalty parameter while
emphasizing the multipliers, we chose the penalty update factor γ to be

√
10 (as opposed

to the usual value of 10), and we dynamically updated the infeasibility reduction parameter
η so as to allow the updating of y while still requiring a moderate amount of reduction in
the infeasibility.

A fundamental property of (16) is that its optimal value lies between −n and −1. With
this in mind, we would like to initialize the augmented Lagrangian algorithm with a specific
(R, y) so that X = RRT is primal-feasible with objective value −1 and so that (S, y) is
dual-feasible with objective value −n. For the primal, the matrix R ∈ <n×r̄ having 1/

√
r̄

in each diagonal position and zeros elsewhere would certainly suffice, but this matrix is not
an appropriate choice since it has a large pattern of zeros that can cause problems for the
algorithm according to Section 3.2.1. So we alter the suggested matrix by perturbing it by
a dense matrix of small norm. In particular, the initial R0 ∈ <n×r̄ that we choose is defined
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by

R0
ij =

{

(1/r̄)1/2 + (1/nm)1/2 if i = j,
(1/nm)1/2 otherwise.

For the initial choice of (S, y), we first note that the dual SDP of (16) can be written as
follows:

max







y0 : S = −eeT − y0I −
∑

(i,j)∈E

yij(eieT
j + ejeT

i ), S � 0







.

Here, we have departed from our usual notation of denoting the Lagrange multipliers by
a vector y ∈ <m. Instead, we let y0 denote the multiplier for the trace constraint and yij
denote the multiplier for the constraint on edge (i, j). We choose the components y0

0 = −n
and y0

ij = −1 to comprise our initial Lagrange multiplier y0, and S0 is then given by (8).
From this it can be seen that the objective value at (S0, y0) is −n, and moreover, if we
make the assumption that G has no isolated nodes (a reasonable assumption in the context
of computing the Lovász theta number of graph), then it is easy to see that S0 is diagonally
dominant with each diagonal entry equal to n−1 and each off-diagonal entry equal to either
−1 or 0. Hence S0 is positive definite, and so (S0, y0) constitutes a feasible solution of the
dual SDP having objective value −n, as desired.

As stated in Section 3, the augmented Lagrangian algorithm does not have a stopping
criterion. In the computational results below, the stopping criterion we have chosen is as
follows: the algorithm is terminated once points R∗ and (y∗, σ∗) are obtained such that

|L(R∗, y∗, σ∗)− C • (R∗(R∗)T )|
max(|L(R∗, y∗)|, 1)

< 10−5.

In other words, the algorithm stops when the relative difference between the augmented
Lagrangian function and the regular objective function is sufficiently small.

In the following discussion, the low-rank augmented Lagrangian algorithm will be re-
ferred to as LR, and we will compare this method with two other methods—the spectral
bundle method (SBmethod version 1.1.1) of Helmberg, Rendl and Kiwiel and the dual-
scaling interior-point method (DSDP version 3.2) of Benson, Ye, and Zhang. The spectral
bundle method, or simply “SB,” is a dual ascent method, that is, it maximizes the dual
of (16) by computing a sequence of feasible points whose objective values monotonically
approach the optimal value. The dual-scaling algorithm, or simply “DSDP,” on the other
hand, maintains both primal and dual feasibility and obtains optimality by forcing the pri-
mal and dual objective values to converge to one another. Both SB and DSDP are run with
their default parameters.

Firstly, we compare the four methods on a set of six graphs which were used in the
Seventh DIMACS Implementation Challenge on Semidefinite and Related Optimization
Problems [1]; their characteristics are listed in Table 1. In the table, we give the graph
name, the number of vertices, the number of edges, and the edge density of the graph,
which is also the nonzero density of the dual matrix S. In addition, the last column of
Table 1 gives the value of r̄ for each graph.

In Table 2, we list the objective values obtained by each method on each of the six prob-
lems. Note that there are two columns for DSDP: DSDP-p gives DSDP’s primal objective
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Table 1: The Hamming Theta Graphs

graph |V | |E| dens % rank r̄
hamming-9-8 120 1680 23.53 58
hamming-10-2 70 560 23.19 34
hamming-11-2 171 5100 35.09 102
hamming-7-5-6 300 33917 75.62 261
hamming-8-3-4 200 5970 30.00 110
hamming-9-5-6 200 6032 30.31 110

Table 2: Objective Values for the Hamming Theta Graphs

graph LR SB DSDP-p DSDP-d
hamming-9-8 −224.000 −224.000 −223.795 −224.005
hamming-10-2 −102.400 −102.400 n/a n/a
hamming-11-2 −170.665 −170.667 n/a n/a
hamming-7-5-6 −42.667 −42.667 −42.642 −42.669
hamming-8-3-4 −25.600 −25.600 n/a n/a
hamming-9-5-6 −85.333 −85.333 n/a n/a

value, and DSDP-d gives its dual objective value. Note also that DSDP was unable to run
efficiently on four of the six graphs, and so those results are not available as indicated by
the symbol “n/a.” Table 3 helps to interpret the objective values by providing estimates
of the accuracy of each method. The first column gives the Euclidean norm of the final
infeasibility obtained by the augmented Lagrangian algorithm and in particular shows that
LR was able to obtain points that were very nearly feasible. The second column compares
the objective values found by LR and SB in a relative sense, i.e., the absolute value of
the difference of the two numbers is divided by the larger (in absolute value) of the two
numbers. Since LR is a primal method while SB is a dual method, the numbers indicate
that each of the two methods computed a highly accurate optimal value. Finally, the last
column compares DSDP-p with DSDP-d in a similar way, and the numbers in this column
indicate that DSDP also obtained an accurate optimal value.

Finally, in Table 4, we give the times (in seconds) taken by each method on each problem,
and in the final row, we give the total time for each method. The table shows that SB
outperformed both LR and DSDP on this class of graphs. It should be noted, however,
that these “hamming” graphs have a particular structure that allows SB to solve each of
them in one iteration. This type of performance is actually quite atypical as demonstrated
by Tables 5 through 7 (see next paragraph).

In Tables 5 through 7, we give computational results for LR and SB on an additional set
of 25 graphs that come from two sources: the so-called Gset collection of graphs introduced
by Helmberg and Rendl in [12] and the Second DIMACS Implementation Challenge on the
maximum clique (or maximum stable set) problem [14]. The data in the tables is organized
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Table 3: Accuracies for the Hamming Theta Graphs

graph LR feas LR-SB DSDP
hamming-9-8 4.8e-05 4.0e-07 9.4e-04
hamming-10-2 4.3e-05 2.7e-06 n/a
hamming-11-2 1.7e-04 1.1e-05 n/a
hamming-7-5-6 2.1e-05 2.3e-08 6.3e-04
hamming-8-3-4 4.9e-05 3.1e-07 n/a
hamming-9-5-6 4.1e-05 4.7e-07 n/a

Table 4: Times in Seconds for the Hamming Theta Graphs

Note: for each graph, SB took an atypical one iteration.

graph LR SB DSDP
hamming-9-8 17.0 0.8 250.5
hamming-10-2 978.4 50.7 n/a
hamming-11-2 3420.2 159.2 n/a
hamming-7-5-6 3.5 0.3 59.3
hamming-8-3-4 223.2 9.9 n/a
hamming-9-5-6 454.6 4.9 n/a
totals 5096.9 225.8 n/a
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Table 5: The Gset and Second DIMACS Theta Graphs

graph |V | |E| dens % rank r̄
G43 1000 9990 2.00 142
G44 1000 9990 2.00 142
G45 1000 9990 2.00 142
G46 1000 9990 2.00 142
G47 1000 9990 2.00 142
G48 3000 6000 0.13 110
G49 3000 6000 0.13 110
G50 3000 6000 0.13 110
G51 1000 5909 1.18 109
G52 1000 5916 1.18 109
G53 1000 5914 1.18 109
G54 1000 5916 1.18 109
MANN-a27.co 378 702 0.99 38
brock200-1.co 200 5066 25.46 101
brock200-4.co 200 6811 34.23 117
brock400-1.co 400 20077 25.16 201
c-fat200-1.co 200 18366 92.29 192
hamming6-4.co 64 1312 65.08 52
hamming8-4.co 256 11776 36.08 154
johnson16-2-4.co 1024 23040 4.40 215
johnson8-4-4.co 2048 56320 2.69 336
keller4.co 128 1792 22.05 60
p-hat300-1.co 256 16128 49.41 180
san200-0.7-1.co 512 53760 41.10 328
sanr200-0.7.co 512 2304 1.76 68

in a similar way as for Tables 1–4. Regarding Table 7, note that each method was given
an upper limit of ten hours (or 36,000 seconds) for computation time on a single instance.
The tables support the following conclusion: each method is accurate but LR outperforms
SB by a large margin in terms of time.

4.2 The maximum cut SDP relaxation

The maximum cut problem on a simple, undirected, edge-weighted graph G = (V, E,W )
is the problem of partitioning the vertices into two sets V1 and V2 so that the total weight
of all edges crossing between V1 and V2 is maximized. The maximum cut problem is often
referred to simply as “maxcut.” We assume that V = {1, . . . , n} and that W is an n × n
symmetric matrix such that entry wij is the weight on edge (i, j), where wij = 0 if (i, j) 6∈ E.
The following SDP relaxation of the maxcut problem was introduced by Goemans and
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Table 6: Objective Values and Accuracies for the Gset and Second DIMACS Theta Graphs

graph LR SB LR feas LR-SB
G43 −280.576 −280.629 3.1e-05 1.9e-04
G44 −280.485 −280.588 6.5e-06 3.7e-04
G45 −280.142 −280.190 1.7e-06 1.7e-04
G46 −279.782 −279.843 1.2e-04 2.2e-04
G47 −281.858 −281.899 8.5e-07 1.5e-04
G48 −1499.973 −1500.000 4.1e-05 1.8e-05
G49 −1499.982 −1500.000 9.3e-06 1.2e-05
G50 −1494.050 −1497.037 2.5e-05 2.0e-03
G51 −349.000 −349.023 7.2e-06 6.7e-05
G52 −348.387 −348.515 1.8e-06 3.7e-04
G53 −348.348 −348.386 2.1e-06 1.1e-04
G54 −341.000 −341.014 6.0e-06 4.0e-05
MANN-a27.co −132.753 −132.764 2.9e-05 8.8e-05
brock200-1.co −27.454 −27.459 8.0e-05 1.6e-04
brock200-4.co −21.290 −21.296 1.5e-04 2.5e-04
brock400-1.co −39.652 −39.710 1.4e-04 1.5e-03
c-fat200-1.co −12.000 −12.003 1.4e-05 2.8e-04
hamming6-4.co −5.333 −5.333 4.0e-05 2.7e-05
hamming8-4.co −16.000 −16.001 2.6e-04 8.5e-05
johnson16-2-4.co −8.000 −8.000 8.7e-05 3.3e-06
johnson8-4-4.co −14.000 −14.000 3.6e-05 7.1e-08
keller4.co −14.005 −14.013 2.3e-05 6.3e-04
p-hat300-1.co −10.068 −10.109 1.3e-05 4.1e-03
san200-0.7-1.co −30.000 −30.000 1.3e-05 4.4e-06
sanr200-0.7.co −23.810 −23.838 5.4e-05 1.2e-03
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Table 7: Times in Seconds for the Gset and Second DIMACS Theta Graphs

graph LR SB
G43 980.1 36000.0
G44 961.3 36000.1
G45 899.8 36000.6
G46 917.6 36000.3
G47 884.1 36000.1
G48 338.9 1.6
G49 405.7 1.6
G50 4255.4 3.2
G51 3125.1 5682.6
G52 7023.2 3399.7
G53 7530.6 27718.2
G54 2402.0 1313.4
MANN-a27.co 30.7 1689.4
brock200-1.co 259.1 36000.2
brock200-4.co 791.6 36000.2
brock400-1.co 2027.6 36000.2
c-fat200-1.co 741.7 36000.2
hamming6-4.co 1.2 7589.6
hamming8-4.co 73.2 36000.0
johnson16-2-4.co 3.6 3.0
johnson8-4-4.co 1.7 0.2
keller4.co 153.2 36000.0
p-hat300-1.co 8052.4 36000.4
san200-0.7-1.co 17.4 34.6
sanr200-0.7.co 396.1 36000.2
totals 42273.3 515439.6
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Williamson in [11]:

min
{

1
4

[W −Diag(We)] •X : diag(X) = e, X � 0
}

. (17)

Here, e ∈ <n is the vector of all ones. (Note also that we state the maxcut SDP relaxation as
a minimization in accordance with (1) as opposed to a maximization as in [11].) In terms of
the SDP (1), n = |V |, m = n, C = 1

4 [W −Diag(We)], and Ai = eieT
i for i = 1, . . . , n, where

ei ∈ <n is the vector with a 1 in position i and 0 elsewhere. Notice that the sparsity pattern
of C is exactly that of the graph G. For the full details on the maxcut SDP relaxation, we
refer the reader to [11].

In terms of the nonlinear reformulation (Nr) of the maxcut SDP relaxation (17), the
constraint diag(X) = e becomes the following: ‖Ri·‖2 = 1 for all i = 1, . . . , m. In words
this means that a point R is feasible for (Nr) if and only if each row of R has norm equal
to one. Since these “norm-one” constraints are separable, it is easy to see that (Nr) can be
reformulated as an unconstrained problem having objective function

f(R) =
n

∑

i=1

n
∑

j=1

cij
〈Ri·, Rj·〉
‖Ri·‖ ‖Rj·‖

=
∑

(i,j)∈E

cij
〈Ri·, Rj·〉
‖Ri·‖ ‖Rj·‖

(18)

Because of the simplicity of handling the constraints, we choose to optimize (Nr) using
this unconstrained formulation rather than using the augmented Lagrangian algorithm of
Section 3. The advantage is that, by applying the limited memory BFGS algorithm to
this unconstrained problem, we obtain a feasible descent method that can still exploit the
sparsity of C (as is evident by the final expression in (18)).

In our implementation of the maxcut SDP relaxation, we are able to test the idea of
dynamically increasing the rank r as discussed at the end of Section 2. In the specific case
of the maxcut SDP relaxation, it is easy to see that the constraint gradients {2 eieT

i R}m
i=1

are linearly independent for all R ∈ <n×r, and so the linear independence assumption
of Proposition 2.5 will always be satisfied. Moreover, if we obtain a local minimum of the
unconstrained problem (18), this will clearly give us a corresponding local minimum of (Nr)
which then satisfies the hypotheses of Proposition 2.5. Hence, the maxcut SDP relaxation
is an ideal case for testing the idea of dynamically increasing the rank.

Our procedure for testing the dynamic update of r is a slight modification of the ideas
presented in Proposition 2.5. Recall that r̄, which is given by (5), is the smallest rank
r that theoretically guarantees the equivalence of (Nr) with the SDP. (In this case, r̄ is
approximately equal to

√

2|V |.) Our procedure then is to define rj = d(j/5)r̄e for j =
1, . . . , 5 and to solve (Nr1) through (Nr5) successively, terminating the process either when
the difference of two successive optimal values is sufficiently small or when (Nr5) itself has
been solved. (We note that r5 = r̄.) The problem (Nr1) is initialized with R0 ∈ <n×r1 that
is defined by normalizing the rows of the matrix

R̃0
ij =







1 + (1/nm)1/2 if i = j,
1 + (1/nm)1/2 if i > j and j = r1,

(1/nm)1/2 otherwise.

As with the Lovász theta SDP, the motivation behind this choice in starting point is to
obtain a reasonable initial objective value while avoiding a structured pattern of zeros in
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Table 8: The Torus Maxcut Graphs

graph |V | |E| dens % rank r̄
toruspm3-8-50 512 1536 1.17 33
toruspm3-15-50 3375 10125 0.18 83
torusg3-8 512 1536 1.17 33
torusg3-15 3375 10125 0.18 83

the initial point. In a similar manner, once (Nr1) has been solved and a local minimum R1

obtained, the initial point for (Nr2) is computed by appending r1−r2 columns of small norm
to R1 and then normalizing. Initial points for (Nr3), (Nr4), and (Nr5) can be calculated
similarly (if necessary).

In our tests, a problem (Nrj ) is considered solved once a point R∗ satisfying

‖∇fj(R∗)‖
max(|fj(R∗)|, 1)

< 10−5,

is obtained, where fj is the objective function (18) in the space <n×rj . In addition, we
consider the difference between two successive optimal values f∗j and f∗j+1 to be “sufficiently
small” if

f∗j − f∗j+1

max(|f∗j+1|, 1)
< 10−5.

For comparison with the idea of dynamic rank, we also test solving (Nr̄) directly. The
initial point chosen for this computation is chosen similarly as for (Nr1) above, and the
overall stopping criterion is also as above, namely that the algorithm is terminated once a
point R∗ is obtained whose relative gradient norm is less than 10−5.

In the following discussion, the two methods described above will be referred to as LR5
and LR1, respectively. We will compare these two methods with the same two methods
used for comparison in the previous subsection—the spectral bundle method SB and the
dual-scaling interior-point method DSDP. As stated previously, SB a dual ascent method,
while DSDP maintains both primal and dual feasibility.

We first compare the four methods on a set of four graphs which were used in the Seventh
DIMACS Implementation Challenge on Semidefinite and Related Optimization Problems
[1]. They are the so called “torus” problems and their characteristics are listed in Table 8.
(The format of Table 8 follows that of Table 1.)

Tables 9 and 10 provide objective values and accuracies for the four methods. The last
three columns of Table 10 are similar to the last two columns of Table 3—each compares
a primal method with a dual method. The first column, on the other hand, compares the
two primal versions LR5 and LR1 (using the scaled difference between the two numbers).
As a result, the first column indicates that the values found by LR5 and LR1 do not
differ significantly, which indicates that both LR5 and LR1 converged to the same value as
predicted by theory. Overall, the conclusion of Tables 9 and 10 is that each method was
able to compute accurate solutions.
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Table 9: Objective Values for the Torus Maxcut Graphs

graph LR5 LR1 SB DSDP-p DSDP-d
toruspm3-8-50 −527.807 −527.805 −527.813 −527.509 −527.813
toruspm3-15-50 −3475.072 −3475.064 −3475.159 −3474.523 −3475.136
torusg3-8 −457.358 −457.357 −457.361 −456.932 −457.369
torusg3-15 −3134.517 −3134.443 −3134.592 −3132.688 −3134.572

Table 10: Accuracies for the Torus Maxcut Graphs

graph LR5-LR1 LR5-SB LR1-SB DSDP
toruspm3-8-50 3.5e-06 1.1e-05 1.4e-05 5.8e-04
toruspm3-15-50 2.3e-06 2.5e-05 2.7e-05 1.8e-04
torusg3-8 2.3e-06 7.4e-06 9.7e-06 9.6e-04
torusg3-15 2.4e-05 2.4e-05 4.8e-05 6.0e-04

Finally, in Table 11, we give the times taken by each method. The table shows that LR5
outperforms all other methods. In particular, we can conclude that the idea of dynamically
increasing the rank works well since LR5 outperforms LR1. In addition, we see that both of
the low-rank methods outperform SB and DSDP and that DSDP is an order of magnitude
slower than SB.

In Tables 12 through 14, we give computational results for LR5, LR1, and SB on an
additional set of 25 graphs that come from the Gset collection of graphs mentioned in the
previous subsection. The data in the tables is organized in a similar way as for Tables 8–11,
and the tables support the same conclusions as above, namely that each method is accurate
but that LR5 outperforms LR1 which outperforms SB. In particular, one can see that LR5
and LR1 have much stronger performance on the largest graphs. For example, in the case
of G81, a graph having 20,000 vertices and 40,000 edges, LR5 is almost 500 times faster
than SB.

Table 11: Times in Seconds for the Torus Maxcut Graphs

graph LR5 LR1 SB DSDP
toruspm3-8-50 2.7 5.7 9.9 13.1
toruspm3-15-50 25.7 154.4 288.2 2311.8
torusg3-8 3.3 3.9 9.2 10.9
torusg3-15 54.8 119.2 391.7 3284.3
totals 86.5 283.2 699.1 5620.1
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Table 12: The Gset Maxcut Graphs

graph |V | |E| dens % rank r̄
G01 800 19176 6.00 41
G11 800 1600 0.50 41
G14 800 4694 1.47 41
G22 2000 19990 1.00 64
G32 2000 4000 0.20 64
G35 2000 11778 0.59 64
G36 2000 11766 0.59 64
G43 1000 9990 2.00 45
G48 3000 6000 0.13 78
G51 1000 5909 1.18 45
G52 1000 5916 1.18 45
G55 5000 12498 0.10 101
G57 5000 10000 0.08 101
G58 5000 29570 0.24 101
G60 7000 17148 0.07 119
G62 7000 14000 0.06 119
G63 7000 41459 0.17 119
G64 7000 41459 0.17 119
G65 8000 16000 0.05 127
G66 9000 18000 0.04 135
G67 10000 20000 0.04 142
G70 10000 9999 0.02 142
G72 10000 20000 0.04 142
G77 14000 28000 0.03 168
G81 20000 40000 0.02 201
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Table 13: Objective Values and Accuracies for the Gset Maxcut Graphs

graph LR5 LR1 SB LR5-LR1 LR5-SB LR1-SB
G01 −12082.937 −12083.134 −12083.273 1.6e-05 2.8e-05 1.2e-05
G11 −629.157 −629.160 −629.173 4.5e-06 2.5e-05 2.0e-05
G14 −3191.559 −3191.545 −3191.589 4.2e-06 9.6e-06 1.4e-05
G22 −14135.718 −14135.750 −14136.039 2.3e-06 2.3e-05 2.0e-05
G32 −1567.617 −1567.621 −1567.655 2.4e-06 2.4e-05 2.1e-05
G35 −8014.556 −8014.616 −8014.796 7.4e-06 3.0e-05 2.2e-05
G36 −8005.919 −8005.931 −8006.020 1.5e-06 1.3e-05 1.1e-05
G43 −7032.190 −7032.091 −7032.254 1.4e-05 9.1e-06 2.3e-05
G48 −5999.965 −5999.893 −6000.000 1.2e-05 5.9e-06 1.8e-05
G51 −4006.251 −4006.191 −4006.286 1.5e-05 8.8e-06 2.4e-05
G52 −4009.604 −4009.510 −4009.669 2.3e-05 1.6e-05 4.0e-05
G55 −11039.200 −11038.721 −11039.851 4.3e-05 5.9e-05 1.0e-04
G57 −3885.370 −3885.368 −3885.520 6.4e-07 3.9e-05 3.9e-05
G58 −20135.842 −20134.731 −20136.327 5.5e-05 2.4e-05 7.9e-05
G60 −15221.909 −15220.476 −15222.803 9.4e-05 5.9e-05 1.5e-04
G62 −5430.739 −5430.721 −5430.950 3.3e-06 3.9e-05 4.2e-05
G63 −28243.390 −28240.765 −28244.623 9.3e-05 4.4e-05 1.4e-04
G64 −10465.820 −10465.145 −10465.972 6.4e-05 1.5e-05 7.9e-05
G65 −6205.282 −6205.286 −6205.591 7.4e-07 5.0e-05 4.9e-05
G66 −7076.909 −7076.917 −7077.266 1.1e-06 5.1e-05 4.9e-05
G67 −7744.070 −7744.071 −7744.497 7.7e-08 5.5e-05 5.5e-05
G70 −9861.247 −9860.081 −9861.723 1.2e-04 4.8e-05 1.7e-04
G72 −7808.196 −7808.160 −7808.600 4.6e-06 5.2e-05 5.6e-05
G77 −11045.093 −11045.058 −11045.771 3.2e-06 6.1e-05 6.5e-05
G81 −15655.148 −15655.162 −15656.282 8.9e-07 7.2e-05 7.2e-05
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Table 14: Times in Seconds for the Gset Maxcut Graphs

graph LR5 LR1 SB
G01 11.9 15.2 21.0
G11 3.0 7.1 67.9
G14 11.1 10.5 31.5
G22 22.8 32.1 89.3
G32 9.7 31.8 286.0
G35 40.1 51.1 211.0
G36 61.7 65.8 250.4
G43 10.1 14.3 21.9
G48 17.1 49.0 0.3
G51 19.1 12.1 48.1
G52 13.8 11.6 50.6
G55 50.4 189.1 25356.4
G57 54.4 185.1 2438.1
G58 316.8 239.8 3023.1
G60 67.8 267.4 57132.8
G62 94.7 463.1 3582.1
G63 296.7 660.9 7561.3
G64 485.0 1140.7 5960.4
G65 114.4 577.2 9014.0
G66 152.7 795.4 9465.6
G67 194.1 653.4 16044.8
G70 304.8 439.1 88540.0
G72 195.1 645.2 10505.9
G77 287.4 1003.1 39523.6
G81 500.8 1644.2 245992.8
totals 3335.5 9204.3 525218.9
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Table 15: The Minimum Bisection Graphs

graph |V | |E| dens % rank r̄
bm1 882 4711 1.21 43
biomedP 6514 629839 2.97 115
industry2 12637 798219 1.00 159

Table 16: Objective Values for the Minimum Bisection Graphs

graph LR5 LR1 SB DSDP-p DSDP-d
bm1 23.440 23.440 23.439 23.423 23.415
biomedP 33.600 33.602 33.599 n/a n/a
industry2 65.631 65.646 64.398 n/a n/a

4.3 The minimum bisection SDP relaxation

The minimum bisection problem on a simple, undirected, edge-weighted graph G = (V,E, W )
is similar to the maxcut problem except that the partition of vertices into V1 and V2 is re-
quired to satisfy |V1| = |V2|. In particular, the number of vertices n = |V | must be even.
The minimum bisection problem can be relaxed as

min
{

1
4

[Diag(We)−W ] •X : diag(X) = e, eT Xe = 0, X � 0
}

, (19)

where all scalars, vectors, and matrices are as in (17. In fact, the only difference between
(19) and (17) is the negated objective function and the additional constraint eT Xe = 0.

To solve (19), we handle the constraint diag(X) = e as we handled it for (17), that is, we
alter the objective function and thereby eliminate the constraint. We handle the additional
constraint eT Xe = 0 using the augmented Lagrangian techniques of Section 3. In addition,
we test the idea of dynamically changing the rank as with the maxcut SDP relaxation. (It
can be easily checked that the regularity assumptions hold for the reformulation (Nr) of
the minimum bisection SDP.) Choices of various parameters and stopping criteria are made
similarly as was done for the Lovász theta SDP and the maxcut SDP relaxation.

Tables 15 through 18 are organized similarly as in previous subsection, and they show
the performance of the four algorithms on a collection of three minimum bisection SDPs
obtained from the Seventh DIMACS Implementation Challenge. As with the maxcut SDP,
the results demonstrates that LR5 outperforms each of the other methods.

A few remarks concerning the tables are in order. First, DSDP was unable to perform
satisfactorily on two of the three problems; this is indicated by the symbol “n/a.” Second,
LR5, LR1, and SB were each given an upper bound of ten hours running time on each
instance. Third, it is important to note that this time limit affects the accuracies in Table
17 as it seems SB was not able to converge in the given time.
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Table 17: Accuracies for the Minimum Bisection Graphs

graph LR5 feas LR1 feas LR5-LR1 LR5-SB LR1-SB DSDP
bm1 3.7e-04 2.1e-04 0.0e+00 4.3e-05 4.3e-05 3.4e-04
biomedP 3.3e-04 3.3e-04 6.0e-05 3.0e-05 8.9e-05 n/a
industry2 6.4e-04 6.5e-04 2.3e-04 1.9e-02 1.9e-02 n/a

Table 18: Times in Seconds for the Minimum Bisection Graphs

graph LR5 LR1 SB DSDP
bm1 22.1 45.2 69.1 520.1
biomedP 3291.4 8548.5 18586.6 n/a
industry2 8291.9 25253.3 36046.6 n/a
totals 11605.4 33847.0 54702.3 n/a

5 Final Remarks

In this paper, we have introduced a new nonlinear algorithm for solving semidefinite pro-
grams in standard form. The algorithm combines several ideas, namely (i) the factorization
of positive semidefinite matrices, (ii) the rank of optimal SDP solutions, and (iii) first-order
nonlinear optimization algorithms. Each of these three ideas contributes to the success of
the algorithm. In particular, item (i) allows us to eliminate the difficult constraint X � 0;
item (ii) allows us to greatly reduce the number of variables; and item (iii) allows us to take
advantage of sparsity in the problem data.

Regarding optimality conditions for the low-rank nonlinear formulation (Nr), we have
developed some interesting sufficient conditions and have shown how they can be incorpo-
rated into a practical algorithm for solving SDPs. In addition, the practical behavior of the
augmented Lagrangian algorithm and its variants indicate the likelihood of convergence to
a global optimal solution even though the underlying nonlinear program is nonconvex.

The algorithm proposed in this paper also compares very favorably with other efficient
algorithms for solving SDPs. In particular, the low-rank approach outperformed both the
spectral bundle method and the dual-scaling interior-point method, two of the most success-
ful codes for solving large-scale SDPs. For the maxcut SDP, we feel that the performance
of our algorithm LR5 is very strong, and we believe that LR5 will make the solution of
maxcut SDPs for sparse graphs with tens of thousands of vertices a routine activity. The
performance of our algorithm on the Lovász theta SDP is also very strong; to the best of
our knowledge, the computational results in this paper represent the best progress made on
solving the Lovász SDP to date.

There are many ways that we can try to improve our method. One of the most important
areas for improvement is the solution of the augmented Lagrangian subproblems (as for the
Lovász theta SDP and the minimum bisection SDP). Currently, the subproblems are being
solved slowly due mainly to poor convergence. If this convergence could be improved, then

28



the overall method would benefit greatly. Another area for improvement is the theoretical
convergence of the augmented Lagrangian algorithm to an optimal SDP solution. Although
we have some theoretical justification that explains the observed practical convergence, we
do not currently have a formal convergence proof. One idea would be to combine our
method with a dual approach that guarantees the dual feasibility of the pair (S, y) used in
the algorithm. Finally, another way to improve our algorithm is to extend it to solve other
classes of SDPs, for example those having inequality constraints.
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