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Abstract

Recently, general definitions of pattern search methods for both unconstrained and
linearly constrained optimization were presented. It was shown under mild conditions,
that there exists a subsequence of iterates converging to a stationary point. In the
unconstrained case, stronger results are derived under additional assumptions. In this
paper, we present three small dimensioned examples showing that these results cannot
be strengthened without additional assumptions. First, we show that second order
optimality conditions cannot be guaranteed. Second, we show that there can be an
accumulation point of the sequence of iterates whose gradient norm is strictly positive.
These two examples are also valid for the bound constrained case. Finally, we show that
even under the stronger assumptions of the unconstrained case, there can be infinitely
many accumulation points.
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1 Introduction

We consider the unconstrained optimization problem of minimizing a continuously differ-
entiable function f : R® — R, without any knowledge of its derivatives, and without any
means of approximating them.

Torczon [4] observes that several existing search methods for this problem share a com-
mon structure, and they can be subsumed into a more general one. The Pattern Search
Method defined there encompasses a wide class of algorithms, but it still guarantees strong
convergence results under precise conditions. This work is generalized in Lewis and Torc-
zon [2] to bound constrained minimization and in [3] to linearly constrained minimization.

Pattern search methods produce a sequence of iterates xy,z1,... in R" as follows. For
k > 0, iteration k is initiated with an iterate xy € R™, a pattern P, consisting of a finite set
of vectors in R”, and a step size A; > 0. The objective of iteration k is to find a direction
pt in the pattern Py such that f(zy + Agpl) < f(zx). The initial iterate zo and step size Ay
are given.

If such a point is found, then the iteration is declared successful, and the next iterate is
Tpi1 = T —|—Akp§;. The step size parameter Ay, is set to AAg, where A > 1 is chosen among
a fixed finite set of values. It is assumed that the level set L(zp) = {z € R": f(x) < f(z0)}
is compact, and therefore all iterates are bounded in norm since they all belong to the level
set.

If no such point is found, then the iteration is declared unsuccessful, and the next iteration
is initiated at the same point z;.1 = . The step size parameter Ay, is reduced to Ay,
where 0 < 6 < 1 is constant over all iterations.

Observe that not all points of the pattern Pj, need to be considered. An iteration can end
as soon as a solution that yields decrease in the objective function is found. However, prior
to declaring an iteration unsuccessful, it is imperative that at least n linearly independent
vectors of P, as well as their opposite direction be considered. Therefore, if the gradient
V f(xy) is non-zero, and if the step size Ay is sufficiently small, then the iteration will be
successful. Moreover, these linearly independent directions must be chosen among a fixed
finite set over all iterations. Lewis and Torczon [2] lift this restriction using positive basis
theory. The number of required directions drops from 2n to n + 1.

The contribution of this paper is to show through three small examples that Torczon’s [4]
convergence results cannot be strengthened without introducing additional assumptions. The
main convergence result is that

liminf [V f(zi)l| = 0. (1)

The first example illustrates that no second order optimality conditions can be guaran-
teed. In the example, the sequence of iterates converges (in fact it remains) to a point whose



gradient norm is zero, but which is a maximizer of the function.

The second example shows that the sequence of iterates may have infinitely many accu-
mulation points, and that the gradient norm at one of them may be non-zero. Therefore,
the main result cannot be strengthened to

lim [VF ()] = 0. )

Both first and second examples are also valid in the constrained cases studied in [1]
and [3]. All iterates and trial points satisfy bound constraints, and the search directions pj
and p? of the matrix P are orthogonal to the bound constraints. In fact, using the notation
in [1], the submatrix BMj, of Py is the identity matrix.

Under stronger assumptions, Torczon [4] shows that in the unconstrained case, equa-
tion (1) may be improved to (2). Our last example illustrates that even under these addi-
tional restrictions, there still might be an infinite number of accumulation points.

The reader is referred to Torczon [4] for a complete description of the method and its pa-
rameters. To ease the notation, we only introduce what is necessary to present the examples,
the method is more general than what appears here.

2 Inexistence of second order optimality conditions

In this first example, we show that the convergence result cannot be extended to guarantee
second order optimality conditions.

Consider the following pattern search strategy. At each iteration, all variables are in-
creased and decreased one at a time by the same step size. If decrease in the objective
function is observed, the next iteration is initiated at the improved point with the same step
size (thus A = 1), otherwise the next iteration is initiated at the same point with half the
step size (thus 6 = 1).

Consider the two dimensional example with the continuously differentiable objective func-
tion ) , ,
_ —xy ifzt4+9y* <1
flzy) = { —?P 4 (2’ - 1) i’ P> L
Let (zo,yo) = (0,0) be the starting point, and let Ag = 1 be the initial step size parameter.
The objective function is never evaluated by the algorithm outside of the ball centered at
the origin or radius one. It is defined in a piecewise way only to ensure that the level set
L(0,0) is compact. For any k, the same pattern matrix is used

1 0 -1 00
P’“_[Ol 0 -1 0



Throughout all iterations, the iterates remain at the origin since the objective values of the
trial points (45, 0), (0, 5¢), (5¢,0) and (0, 5¢) are all equal to f(0,0) = 0 for any k > 0.
The algorithm never succeed in moving away from the origin, and therefore the sequence of
iterates (zj) remains and thus converges to (0,0), a maximizer of the function.

In practice, such behavior is improbable since the search phase of the algorithm usually
evaluates the function in several other directions (using the matrix Lj in Torczon [4]).

3 Accumulation point with non-zero gradient

In this section, we present a two-dimensional example on which a pattern search algorithm
generates an infinite number of accumulation points. The gradient norm at one of these
points is non-zero.

Consider the function g defined on the domain {(z,y): —3 <y < 3},
filz,y) = —2623 — 3222y + T|y|? ifz <0

9(z,y) =< folz,y) = (7T — 8z?)|y|? if0 <z <
fa(z,y) = folz,y) + 8(x — %)2(?;3 +y+az-—1) if% <.

The function g is extended to f as follows

g(z,y)+ (y+3)°% ify<3
flz,y) =4 9(z,v) if —3<y<3
g(z,y) + (y—3)% ify> 3.

It can be shown that both functions are continuously differentiable everywhere on R%. More-
over, the function ¢ is extended to f on R2 to ensure that its level sets are compact. All
iterates and trial points generated by the algorithm belong to the domain of g. For any
y € [—3, 3], the values and gradients at the transition points of f are

F0,y) = f1(0,y) = T|yP, fEy) =fEy) =5y?
VIO = |y | VG =VAG),

In order to lighten the notation, we denote the kR iterate (g, yr) by xx. The same
pattern matrix Py as in the first example is used but with the additional column [4 — 2]’
The search strategy is guided by the following rules:

o If z;, < 0 and y; = 44y, then the search starts with x;, + Ag(4, —2).

o If z;, € [0, 1], then the search starts with x; + Ag(1,0).

o If 1, > %, then the search phase starts with x; + Ag(—1,0).

e Otherwise, the search phase explores directly and sequentially the first four columns.
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(a) Initial iterates

(b) f(z,y) for fixed y

Figure 1: Initial iterates and objective function

In all cases, an iteration ends as soon as a solution that yields a lower objective function
value than the current iterate’s is found.

The step size control parameters are § =

N[

and A = 2. Therefore, at unsuccessful
iterations Agq = %, and at successful ones Ay 1 = 2A.

The initial data is (o, o) = (—1,1), f(2zo) = 1 and A¢ = 5. Figure 1(a) displays part
of the domain of function f and plots the first few iterates. Figure 1(b) shows the shape of
the function f when x varies from —y to 1 — y, and y is fixed to a value between 0 and %
Table 1 details the search strategy of the first eight iterations. The successful trial points
appear in boldface letters.

The key structure of this example is that for any fixed value of y, the function value
monotonically decreases from 7y® to 5y* when z varies from 0 to %, as illustrated in Fig-
ure 1(b). The iterates go from (0, y) eventually to (% —vy,y) and the objective function value
decreases from 7y3 to a value greater than 5y3. From this last point a mesh size parameter of
1 yields decrease at trial point (1 — y,y) at which the function value is (1 + 8y)y® €]y®, 5y°].

From there, a step length of 1 leads to (—y,y) with function value y3.

We define the (" cycle (for an ¢ > 0) as the iterations beginning at k¥ = ¢% + 6/ and
ending and including £ = (+1)>+6(£+1) — 1. As shown below, a cycle starts at the iterate
Xk = (37, 37) = (Tk, yx) with Ay = 545 and function value 3. The cycle goes through ¢+ 3

successful iterations,

AN I ye Uk 5 Yk Yk 1 ~Ye Y\ 1
f(o’f)—@’-“’fG—?E)>—8e+v (1-35) >3 %) -7

whose last point has step size parameter equal to 2. Then, the cycle goes through ¢ + 4



k Xk Ay Search

0(-1,1)| % |fi(0,3)=1

b || 6Gh=2

2| G3) | 1053 =3

3 (—71,%) 2 fs(%a%):% fl(_?sa%):%m fl(_?la%):%l fl(—%,—?z):%
4 x| LG =3 AEFD=%F AFD=% hHEF)=%

5 X3 5 | f100,3) =% A(-L3) =% AFD=% fH(5,0=%F

6| x| AGD = MEH-EE AED - G- R
7| x3 s (0,1 =%

Table 1: Initial eight iterations of pattern search method

unsuccessful iterations (the function is evaluated at all four trial points corresponding to the
first four columns of Py) leading to the start of cycle £+ 1.

For example, cycle 0 starts with (z9, 3) = (—1,1) and Ag = 7. Three successful iterations

go through the points (0, 3), (3, 3) and finally (5F, 5), where A; = 2. Then five unsuccessful

iterations reduce the mesh size parameter to A; = %. This initiates cycle 1.

We show that the sequence of iterates possesses an infinite number of accumulation
1
20>

all these points is zero, except for the point (1,0).

points, namely all points of the set {(57,0) : £ =0,1,...}. Moreover, the gradient norm of

Proposition 3.1 For any integer £ > 0, the iterates and step size parameters of cycle { are

(5_1.172%)7 2ll+2 ka :£2+6£
(woy), Ak = (Gt ), wdm FR=C+60+),  je{l2...,2+
(575, 501) s 52 k=0C+T0+245 je{l,2,...,4+ 1}

Proof: The proof is done by induction on ¢. We already verified in Table 1 that the result
holds for the cycle £ = 0, that is, from iterations 0 to 6.

Suppose that cycle ¢ is initiated at iterate x;, = (57, 5) where k = ¢2 + 6/, and that
Ay = 2[% The objective function value is f(xx) = f1 (;—}, 217) = 8—1[. Table 2 details all

iterations of cycle £. The successful trial points appear in boldface letters.



k Xp Ay Search
2 1 60 (35, 4) | ats [fGac+ (4,-2)A0) = £, (0, 321) = g

+
A 2
2460+ e 7-8( 251
1 <] < 1 +€ (%7 ﬁ) ﬁ f( (1 O)Ak) = f2 <2£+172l::-1) = gl2+1 )

_ 1+
G+ 7041 (3—1%) 3| f0a+ (1,0)Ax) = f5 (1 — 5+, 57) = 5P
C+T+2 (1 -gmgm)| 1 [fGct (=1,0)A0) = f (55, 5) = g
CTl+2+] Fla+ (LAY = f (75 + 57 777)
(i) | g | 200~ O =Dl e )
L<jease | T [ et QDAY = i (7 e+ )
N f(Xk_(O,]_))Ak) fl (2;—&172[+1 21 )

Table 2: Objective function values of cycle ¢

Let a = 2[% In Table 2, all trial points of iterations £2 + 7¢+2+j for 1 < j < 4+ ( are
of the form f(z,a) or f(—a,y), where

1
xE{—a—Q,—a—l,—a—i,... ,—a—a,—a—g}u{g—a,a—a,2a—a,... ,1—a,2—a}
and
1 a a
ye{a—2,a—1,a—§,... ,a—a,a—E}U{a—l—5,a+a,a+2a,...a+1,a+2}.

The current iterate of the unsuccessful iterations is (—a, a). Table 3 shows that the objective

function value of the search points are greater than fi(—a,a) = a3.

Table 3 shows that the last iteration appearing in Table 2 is unsuccessful. The following
iteration number is k = (¢ +70) +2+ (4 +{)+1 = ({+1)>+ 6(¢ + 1). Therefore, cycle
¢+ 1 is initiated at x;, = (2Z—+11, ﬁ) with step length parameter A, = 2Z—+13 This completes
the proof.



y fixed x fixed
for:vg’Tg'“: for y < 0:
fi(z,a) = —262% — 32z%a + 7a3 fi(—a,y) = 26a® — 32a%y — Ty®
> 23520 — 32z%a + Ta® = T(a%a + a®) > 26a3
hi(Fa) = Rd® — o’ +7d° fi (—a,%) = 26a — 160° + La?
= %aB — %GB
for z € [0, 3: fi (—a, ) = 26a° — 484% + D21 g3
fo(x,a) € [5a®, 7a®] — see Figure 1(b) — = g}
f3(1—a,a) = (1+8a)a® €]a®, 5a? f1(—a,2a) = 26a® — 64a® + 564>

= 18a3
f3(2—a,a) = 2(a*(2a—1)*+3(1 —a)(3 —a)) +a®| fory> 3a:

> a® fi(—a,y) = 26a® — 32ay + Ty?
26a® — 32a%y + 63ay
26a® + 31a’y

v

Table 3: Objective function values of unsuccessful search points: f(x;+ Agpt) > a® = f(xz)

The previous proposition details all iterates generated by the algorithm. We now discuss
some properties of the accumulation points of the sequence of iterates. Consider the sequence
of iterations k = ¢ 4+ 9¢ + 3 for ¢ > 0: all corresponding iterates x; = (1, ﬂ%) are success-
ful and converge to the point (1,0) at which the gradient is V f(1,0) = V f3(1,0) = (1,0).
All other accumulation points are of the form (217, O) for £ > 0, and they have zero gradi-
ent. Moreover, only the sequence of iterates that converges to (0,0) contains unsuccessful

iterations.

In summary, there is a subsequence of successful iterates that converges to a solution
whose gradient norm is non-zero. Furthermore, any subsequence of unsuccessful iterates
(whose step size parameters go to zero) converges to a zero gradient accumulation point.

4 Infinite number of accumulation points when under
strong assumptions

In this last example, we show that even under the stronger assumptions presented in Torc-
zon [4], there still can be infinitely many accumulation points. These additional requirements
are
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Figure 2: Initial iterates of coordinate search

-i- The columns of the patterns P, are bounded in norm.

-ii- limy_ o0 A = 0.

-iii- Prior to declaring an iteration successful, at least n linearly independent vectors of P
as well as their opposite directions must be considered, and the objective function value of
the next iterate must be less than or equal to all objective function values of the required
points.

Consider the continuously differentiable function in R?:

_ [ @+ if y >0
@) = { (1—z)>+1)y* ify<o.

For any y > 0 the function monotonically decreases when z varies from 1 to 0, and for any
y < 0 the function monotonically decreases when z varies from 0 to 1.

The same pattern matrix as in the first example is used. The search strategy consists
in evaluating the objective function value at all four trial points, and to set the next iterate
to be the one having the least value. Conditions -i- and -iii- are satisfied. The step control

parameters are A = 1 and # = %, thus condition -ii- is satisfied.

2

Again, the kth iterate (2, yr) is denoted by x;. The starting point is xo = (0, %), the step
size parameter is Ag = 1 and f(x9) = 5. Figure 2 displays the first few iterates generated by
the algorithm. Table 4 details the search strategy of the first eight iterations. The successful

trial points appear in boldface letters.



We define an even cycle to be the successful iterations starting at (0,y) where y > 0,
then going to (0, —y) and ending at the unsuccessful one at (1, 5%). The following odd cycle
is composed of the successful iterations starting at (1, 5¥), then going to (1,%) and ending

at the unsuccessful one at (0, ).

Eloxi |[Ap| flor+Arye) f@rue+Ar)  floe—Ar,uw) f(@r Y — Ag)
0D 1] J0h-g J0.5-2 J(1h-% 1032
L(0,5)] 1| f,3) =5 f0.3=% f-L,3)=% [f0,75)=32
21(L,5) | 1| f&3) =% [fLD=5 [fO0,3)=5% [fQ,5)=3
3| w3 fED-d D=3 fG=d -
lap b= uh- wy-¥ -2
510G [ 2| fLe=s [fGo=& 0= [G3)=a
s| 00| 1] sah=F  j0h=2 sGH-F n03)=4
s |3 Gh=% s0p-# sED-3 o=k

Table 4: Initial eight iterations of coordinate search

We now explicitly write the values of all iterates.

Proposition 4.1 For any integer { > 0, the iterates and of cycle £ are

Totyop 1 = (0, ZAT’”) , when k = 2¢ 4+ 20— 1,

Totyorsj = (jAk, 7?’“) , 7 €40,1,...,2¢  and( is even
Tot o 1 = (1, _23,Ak) , when k = 2¢ 4+ 20— 1,

Totyoptj = (1 — jA, _3Ak) , j€{0,1,... ,2‘5} and ¢ is odd

1
5 -

and the step size parameters are all equal to Ay, =
Proof: The proof is done by induction on ¢. We already verified in Table 4 that the result
holds for the even cycle ¢ = 0, (iterations 0 to 2) and for the odd cycle £ = 1 (iterations 3 to
6).

Suppose that the even cycle ¢ is initiated with A, = 2—1[ and x;, = (O,%) for k =

2¢ + 2¢ — 1. The current objective function value is f(x;) = %. Table 5 details the
objective function values of all trial points associated to the first four columns of P, for each
iterations of the even cycle ¢. The successful trial points appear in bold face letters. All

iterations but the last are successful, therefore the step size parameter remains constant.



10

1 % flzr + Ay, yr) f(@r, yr + Ag)
flzr — A, yr) (e, yr — A)

A2 +1 447 25A7

204+20—1 | (0,2%5%) (Bt )432 Az
(AR +1)=5" N

2 2

. A (1 - Ak +1)5 e

25+ 2¢ (07 3k) A2 32A2
(1+Ap)?+1)3 5

2 42+ (2, 55) (1—G+1)Ap?+1) &k (j2A2 + 1)%5%
. k> 2 2
1<j<? -G A ) T (- gAT 1) S
A2 4 1)2%k 8AY

20+ 20+2¢ | (1,75%) (25 + )A% 16A2
(A7 +1)= 1%

Table 5: Objective function values of the trial points of the even cycle /.

The odd cycle ¢ = £+ 1 starts at iteration &' = 2D £ 2(£ +1) — 1 = (26 + 20+ 2%) + 1.

The last iteration appearing in Table 5 is unsuccessful, and therefore Ay = % = 1 and

2t!
—2A
T — (1, 3 k’).

We have shown that the result is true for even values of /. The proof for odd cycles is
similar, and is omitted. .

For this example, there are infinitely many accumulation points of the sequence of iter-
ates. Every point of the set {(2]7, 0) 73,1 eN; 5 < 24} is an accumulation point.
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