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Abstract. This paper presents a novel integration of interior point cutting plane methods
within branch-and-price algorithms. Unlike the classical method, columns are generated at a
“central” dual solution by applying the analytic centre cutting plane method (ACCPM) on the
dual of the full master problem. First, we introduce improvements to ACCPM. We propose a
new procedure to recover primal feasibility after adding cuts and use, for the first-time, a dual
Newton method to calculate the new analytic centre after branching. Second, we discuss the
integration of ACCPM within the branch-and-price algorithm. We detail the use of ACCPM as
the search goes deep in the branch and bound tree, making full utilization of past information
as a warm start. We exploit dual information from ACCPM to generate incumbent feasible
solutions and to guide branching. Finally, the overall approach is implemented and tested for
the bin-packing problem and the capacitated facility location problem with single sourcing.

Keywords: Branch-and-price, column generation, Lagrangean relaxation, interior-point
methods, ACCPM.

1. Introduction

The technique of using column generation within a branch-and-bound frame-
work is commonly called branch-and-price[1] or IP column generation[35]. The
approach was initiated by the pioneering work of Gilmore and Gomory on the
cutting stock problem [10],[11] and prospered in the context of routing and
scheduling by Desrochers et al.[2],[3],[4]. Recently, there has been considerable
interest in this solution technique. Barnhart et. al.[1] give an overview of the
approach describing the different models and branching rules. Vanderbeck and
Wolsey [35] develop a new branching rule that generalizes existing ones and that
is easily handled in the branch-and-price framework.

By duality, branch-and-price is analogous to a Lagrangean-based branch-
and-bound where the Lagrangean dual problem is solved using a cutting plane
method. Formulating the Lagrangean dual problem as a linear program yields
the dual of the full master problem that is solved at each node of the branch-
and-price algorithm. Column generation solves the primal full master problem,
starting with a restricted version and adding columns as needed; while cutting




plane methods solve the dual full master problem, starting with a relaxed ver-
sion and appending constraints as necessary. In the sequel we will not make a
distinction between the primal and the dual full master problems, but we will
refer to the restricted master problem in the context of column generation and
relaxed master problem in the context of cutting plane methods. In this paper,
we expose the material from a Lagrangean relaxation perspective.

In a Lagrangean based branch-and-bound, the predominant task is the so-
lution of the Lagrangean dual problem, which is nondifferentiable. Most of the
literature uses subgradient optimization. Although simple to implement, sub-
gradient methods are slow to converge and have no clear stopping criteria [1].
Alternatively, the Lagrangean dual can be formulated as a linear program with
a large number of constraints and solved using a cutting plane method. The ap-
proach starts with a subset of the constraints and appends new ones as needed.
The added constraints are chosen based on a query point from the relaxed master
problem. The choice of the query point distinguishes different variants of cutting
plane methods, equivalently, different variants of column generation schemes.
Classical branch-and-price methods use a dual extreme point of the restricted
master problem as a query point. By duality, this corresponds to Kelley’s cutting
plane method[19] where cuts are generated at an extreme point of the relaxed
master problem. It is known that Kelley’s method suffers from tailing effects
and that generating cuts at a centre of the relaxed master problem’s feasible
region is superior [27]. The main difficulty with central point strategies resides
in the calculation of centres of convex sets. Calculating the centre of gravity,
for example, is more difficult than optimizing the original problem. The Ana-
lytic Centre Cutting Plane Method (ACCPM)[8] is designed to overcome this
difficulty. Cuts are generated based on the “analytic centre” concept from the
interior-point literature. The calculation of the analytic centre is comparable to
solving a linear program using an interior point method.

ACCPM has shown promising results in practice on a variety of problems.
See [9] for a survey and [12] and [28] for the convergence analysis.

In this paper, we discuss the use of ACCPM within a branch-and-price frame-
work and describe in detail the different parts of this novel integration.

1.1. Contributions

Recent papers discussing branch-and-price methodologies have focused on the
design of a branching rule that is compatible with the branch-and-bound scheme
[1],[34],[35],[37]. This paper explores an other venue in the efficient design of a
branch-and-price algorithm: the generation of columns. In classical branch-and-
price methods, columns are generated using a dual extreme point of the restricted
master problem. We propose to generate columns based on a dual central point.
More precisely, the dual full master problem is solved using ACCPM where the
subproblems are called at the analytic centre of a bounded subset of the dual
feasible region.
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From an other perspective, the paper is a serious step in the efficient use
of interior point methods within branch-and-bound approaches for integer pro-
gramming. Previous attempts, mainly those by Mitchell[22][23], have focused on
the solution of the linear programs using an interior-point method. Qur approach
is fundamentally different in two ways. On the one hand, we use a Lagrangean
bound rather than the linear-programming (LP) bound. On the other hand, the
interior point method is used in a cutting plane context rather than as a direct
solution method.

It is stated in [23] that the success of the simplex method in branch-and-
bound settings was mainly due to the warm start strategy in solving the linear
programs. At a child node, the dual simplex method is started using the final
tableau at the parent node. Exploiting this same warm start strategy when using
an interior-point method is not possible. A recent paper by Gondzio[15] focuses
on the use of a warm start strategy when using an infeasible primal-dual method
to solve the relaxed master problems. Before reaching optimality of one problem,
he saves a point that will be used as a warm start for a subsequent problem.
In this paper, we show how information generated at parent nodes is used as
a warm start in child nodes both within the branch-and-price framework and
within ACCPM. The computational experience clearly indicate the effectiveness
of this warm start strategy.

The contributions of this paper concern both ACCPM and the interior point
branch-and-price algorithm. First, we improve on ACCPM in three ways. We
use a weighted log barrier potential function instead of the Karmarkar potential
function[24] in the calculation of the analytic centre. In addition, we provide a
new procedure for recovering primal feasibility after adding cuts. When cuts are
added, we extend the central-cut procedure of [13] to the deep-cut case in order
to generate a primal feasible point.

Second, we detail the different components of the interior point branch-and-
price method. We show how to use ACCPM as the search goes deep in the
branch-and-bound tree making use of past information as a warm start. We use,
for the first time, a dual Newton method within ACCPM to calculate the first
analytic centre after branching and exploit dual information from ACCPM to
generate incumbent solutions and to guide branching.

1.2. Outline

The remainder of the paper is organized as follows. In section 2, we use the
capacitated facility location problem with single sourcing(CFLSS) and the bin
packing problem(BP) to detail the branch-and-price algorithm. In Section 3, we
discuss the solution of the Lagrangean dual problems using ACCPM. In particu-
lar, the calculation of analytic centres and the recovery of primal feasibility after
adding cuts. In section 4, we describe the branching rule and the calculation of
the analytic centre after branching. Issues related to fathoming and generating
incumbent feasible solution are addressed in section 5. In section 6, we present



the computational results. Finally, we conclude and provide venues for future
research in section 7.

2. Branch-and-Price Algorithm.

In this section we describe the branch-and-price algorithm. We use two related
problems for demonstration: the capacitated facility location problem with sin-
gle sourcing and the bin-packing problem. The problems lead to two different
formulations of the Lagrangean dual problem, with non-identical and identical
subproblems respectively. We begin by discussing each problem, applying La-
grangean relaxation and formulating the Lagrangean dual problems as linear
programs with large number of constraints.

2.1. CFLSS: Non-identical Subproblems

The capacitated facility location problem with single-sourcing is a special case
of the capacitated facility location problem where each customer is serviced
by a single facility. The problem has applications in telecommunication and
distribution networks design. It was treated in [25],[26],[29] and recently in [17].
The formulation is given by

K L K
[CFLSS] min 7 > cuym + 32 frzk (1)
k=11=1 k=1
K
s.t. Z Ykl = 1 Vi = ]., ..,L (2)
k=1
L
> Dy < Vizpe Vk=1,..,K (3)
=1
Ykly Rk :0,1 Vk = ].,...,K; Vil = ].,...,L (4)

where the set of potential facilities and the set of customers are indexed by k& and
[ respectively. The facilities have capacity V} and fixed cost fi. There is a variable
cost ¢y for assigning customer demand D; to facility k. The binary variable z,
take value 1 when facility & is opened, while yj; takes value 1 when customer [ is
assigned to facility k. Constraints (2) are the single-sourcing constraints, while
constraints (3) are capacity constraints that force facilities to be opened before
servicing any customer.

There are a number of papers that discuss the exact solution of [CFLSS].
An LP-based branch-and-bound is used in [26]. Lagrangean-based heuristics
and branch-and-bound methods are proposed in [29] and [17]. Most of the
Lagrangean methods relax the single-sourcing constraints, which provides the
sharpest Lagrangean bound. The exact methods considered in [29] and [17] do
not qualify as branch-and-price methods since the master problems are not solved
using a column generation approach. In [29], subgradient optimization is used
once at the root node and the multipliers determined there are used without
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reoptimization throughout the branch-and-bound tree. In [17], subgradient op-
timization is applied at every node, with the best dual multipliers at the parent
node being used to initialize the method at child nodes.

Relaxing constraints (3) in a Lagrangean fashion leads to a trivial problem
that has the integrality property. Thus it leads to the same bound as the LP-
bound[7]. We choose to relax constraint (2) using dual multipliers \;, =1, ..., L.
This leads to the subproblem

K L K
[KP\] min >3 > (cr — N)ym + D2 frek (5)
Y,z k=11=1 k=1
L
> Diyw < Vizg Vk=1,.,K (6)
=1
Ykl 2k :0,]. Vk = ].,...,K; Vil = ].,...,L (7)

Subproblem [K P)] decomposes into K independent problems that are easily
solvable as 0-1 knapsack problems. In the sequel, we use v(e) to denote the

L
optimal objective of problem (e). Therefore, > A\ + v(KPy) < v(CFLSS) for

=1
all X\. The best lower bound is given by the solution of the Lagrangean dual
problem

L
max {Z A +v(KPy) } (8)
=1

Problem (8) is a nondifferentiable optimization problem that can be re-formulated
as a linear program with a large number of constraints

L
max 6+ > N\
K 'L K (9)
st Y (e — )\l)y,’;l + 3 szllg >60; h=1,..,H.
k=11=1 k=1

where H is the index set of the integer solutions to the bounded set

L

{ (k> 2k) = > Dy < Vi, Ve =1,..,K; yu =0,1, }

=1
VhE=1,.,K; Vi=1,.,L; =01, Vk=1,.,K.

Problem (9) is commonly called the full master problem. This formulation refers
to the aggregated case where the possibility of decomposing [K Py] into K sub-
problems is not exploited. In this paper, we use the disaggregated formulation
where [K Py] is split into a set of K independent subproblems. Disaggregation
is preferred to aggregation since it allows the faster accumulation of cuts and



accelerates the solution of the master problem. The disaggregated full master
problem is

K L
[FMPCFLSS] max Z Hk + Y,
k[:,1 =1
st > (ew — /\l)yzl + szlfcl >60y; h=1,.,Hy, k=1,..,.K
=1

(10)
where Hj, is the index set of the integer solution to the K bounded regions.

L
{(yklazk) > Dy < Veze, yw =0,1; Vi=1,..,L; 2 = 0,1-}
=1

Taking the dual of [FM Porrss], we get the LP-relaxation of the Dantzig-
Wolfe master problem

. K Hyp L A A
min Z Z (E CrlYy + szk) Okh

k=1 h=1 \i=1
ke
st > S =1 Vk=1,...K
PR (11)
K Hy
Z Z y,’;lékh =1 Vil = ].,..,L
k=1 h=1
Opn, >0 Vh=1,...,Hy, Vk=1,.., K

This establishes the primal-dual relationship between the Lagrangean dual and
the Dantzig-Wolfe reformulation, subsequently, between branch-and-price and
Lagrangean-based branch-and-bound where the master problems are solved us-
ing a cutting plane method. In the following section, we apply the same analysis
to the bin-packing problem.

2.2. BP: Identical Subproblems

In the bin-packing problem (BP) we seek to find the minimum number of bins
of size V' that can handle a set of L items, each of size D;. Problem BP is a
special case of CFLSS where ¢y = 0for k =1,.., K and [ =1,....,L; fr=1
and Vi =V for all k£ = 1,...K. The complete formulation is

K
[BP] min Y z (12)
k=1
K
s.t. Z Ykl = 1 Vil = ]., ..,L (13)
k=1
L
Z Dy < Vzp Vk=1,..,.K (14)
=1

Ykly Rk :0,1 Vk‘:].,...,K; Vl:].,...,L (15)
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where the set of bins and the set of items are indexed by k£ and [ respectively.
The binary variable z; takes value 1 when bin & is used while y;; takes value 1
when item [ is assigned to bin k. Constraints (13) assign each item to exactly
one bin. Constraints (14) are capacity constraints that force bins to be used
before containing any item. The objective (12) minimizes the total number of
bins used.

The bin-packing problem is a classical NP-hard problem for which different
exact solution methods were proposed. Martello and Toth [21] summarize previ-
ous work and provide a branch-and-bound algorithm based on a combinatorial
lower bound. Scholl et. al.[31] use a hybrid method that combines tabu search
and branch-and-bound. Vance et al. [34] use a branch-and-price algorithm based
on the Ryan-and-Foster branching rule[30]. Valerio de Carvalho [33] applies a
branch-and-price algorithm on an arc-flow formulation of the bin-packing prob-
lem. Finally Vanderbeck [36] proposes a branch-and-price algorithm based on the
branching scheme in [35] and enhances the algorithm using valid cuts, variable
fixing and a rounding heuristic.

Since [BP] is a special case of [C FLSS], its Lagrangean relaxation leads to
aggregated and disaggregated full master problems as in (9) and (10), respec-
tively. Exploiting the fact that the subproblems are identical, the full disaggre-
gated master problem becomes

L
[FMPBP] ma,xK9+E)\l
=1

L
st. S (=\)yp+2" >0, h=1,.,H
I=1

where H is the index set of the integer solutions to the K identical feasible
regions.

L
{(yl,z):ZDzyzsw; y,z2=0,1; v l=1,..,L}
=1

The K subproblems are identical 0-1 knapsack problems of the form

L
min > (—=N)y + 2
¥z =1

M=

Dy, <Vz

~

1
y,2=0,1 vi=1,...,L



The dual of [FM Ppp] is the Dantzig-Wolfe master problem
H
min Y. (2") &
h=1
H
s.t. Z 6h =K
h=1

H

Sytdh=1 Vi=1,..L
h=1

0p >0 Vh=1,..., H.

Note that in (11) there are K convexity constraints whereas in (16) there
is a single convexity constraint. In addition, K subproblems are solved and K
cuts are added for CFLSS, while a single subproblem is solved and a single cut
is added for BP.

3. Solving the Lagrangean Dual Problem: ACCPM

For ease of exposition, let us write the full master problem, whether [FM Porrss] or
[FMPgp], as

[FMP]: max{bTu: ATu < c}

Cutting plane methods use a subset of constraints to form a relaxed master
problem

[RMP] : max{b"u: A]u < ¢;}

where A, is the matrix containing a subset of the rows of A and ¢, is the vector
containing the corresponding elements of c. The index ¢ stands for a particular
iteration of the cutting plane method.

At each iteration, the solution of the relaxed master problem [RM P] is
checked for optimality for the full master problem [F'M P]. If it is not optimal,
an additional set of constraints is appended and a new relaxed master problem
is formed. The relaxation becomes tighter as more constraints are added. The
generation of constraints is done by calling the oracle, i.e., solving the subprob-
lems [K Py] at a query point @?. In addition, the oracle provides a lower bound
Zlower, that is updated as

L
Zlower = MaXx {zloweM Z )‘l + U(KP/\)}

=1
Based on that, we form the localization set
fg)(zlower) = {u :bTu 2 Zlower; Agu < cq}

which is a bounded subset of the feasible region that contains any optimal so-
lution to [FM P]. To ensure its boundedness, the box constraints £ < u < u are
added.
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Initialization Let F = {u : bTu > zipuwer : £ < u < p} = {u: bTu > zj0per + ATu < co}
where Ag = [I,—1I] and ¢o = (_"l). 22 o, and zgpper are initial lower and upper bounds.
The stopping parameter is e

Iteration while |Zupper — Zlower| < €

1. Compute the analytic center ug of f%(zlower).

2. The oracle returns the cuts B:{u < rq and a lower bound 2

3. Update the coefficient matrix Ag41 = [Aqg, By, cg+1 = [°7]
q

4. Update the lower bound zjoyer = max(z], ., Ziower)

5. Update the localization set

1
fg"_ (Zlower) = {8Tu < zjower » A5+1u < cq+1} and find an upper bound 2Zpper.
6. Update the upper bound zupper = min(zupper, Zapper)
End while

Fig. 1. The main steps of ACCPM

A cutting plane algorithm constructs a sequence of query points {u?} that
are used to generate cuts Byu > r, and to update the constraint matrix as
follows

Agy1 = [Aqa Bq] yo Ceg+1 = |:Cq:|
Tq

At each iteration, any dual feasible point of the relaxed master problem
max{bTu : ATu < ¢,}, say 27, is dual feasible to the full master problem [F M P],
and so it provides an upper bound zypper = c;rgq to v(FMP).

In Kelley’s cutting plane method [19], cuts are generated at the optimal
solution of [RM P]. In ACCPM cuts are generated at the analytic centre of
F}(Ziower)- The analytic centre is the point that maximizes the distance from
the boundaries of the localization set. Equivalently, it is the point that maximizes
the dual potential function

oh(u) = log(bTu — ziower) + Z log(cg - aéTu)
J

where ¢J is the j*"component of ¢, and a? is the j** column of A,.

Notice that replicating a constraint leads to a different analytic centre. In
particular if the objective constraint 87w > 2jwer is replicated m times, we get
the weighted dual potential function

90%) (u) = mlOg(bTu — Zlower) + Z IOg(Cg - agTU)' (17)
J

In this paper, we set m to the total number of cuts in the restricted master
problem. The analytic centre u? is used by the subproblems to generate new
cuts and update the lower bound z;yyer-. The computation of analytic centers
and the generation of cuts continues until zypper — Ziower falls below a desired
tolerance level €. The main steps of ACCPM are described in figure 1.

The main step in ACCPM is the computation of the analytic centre, which
is discussed in the following section
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3.1. Calculating the Analytic Centre

The analytic centre concept was introduced by Sonnevend[32] and is well stud-
ied in the interior-point literature. Three different approaches are proposed to
calculate it: the primal, the dual and the primal-dual. For the clarity of the
exposition, let us drop the iteration index q.

The weighted analytic center of Fp(2jower) is the unique point maximizing
the weighted dual potential function (17). More specifically, it is the point @ that
solves

max pp(s) =mlogse + > logs;
i=1

s.t. ATut+s=c (18)
bTu — 80 = Rlower
50,5 >0

The necessary and sufficient first order optimality conditions of (18) are

Sr=ce

SoXpg =M

zob — Az =0, z,zo >0 (19)
ATy +s=c, s>0

bTu — Ziower = 50, so > 0.

which are also the first order optimality conditions when maximizing the weighted
primal log potential function

m
max pp(z) = —cT' T + 2jpwer®o + mlogzo + > logz;
=1 (20)

s.t. Ar =xz9b, z,29>0
and the primal-dual potential function

max ¢pp(z,s) = ¢p(z) +¢p(s)

s.t. Ax = xob, x, 29 >0
ATu+s=c, 5>0
bTu — 80 = Rlower) s0>0

Defining N as the diagonal matrix of (m, 1,...,1), Z = [zzo],é = [_z"c’“’e"],§ =

[*] and A = [~b, A], the conditions in (19) are written as

Si=Ne=v (21
Az =0, Z>0 (22)
ATu+s=¢ 35>0 (23)

where e is the vector with appropriate dimension whose components are all ones.



an interior-point branch-and-price algorithm 11

In practice, an approximate analytic center is used. The quadratic centering
condition in (21) are replaced by the relaxed condition

‘ﬁi—N%§§,§<l (24)

Any point (Z, 5) satisfying conditions (24),(22),(23) is called a £-analytic center.

If only a primal feasible solution & > 0 is available, then a primal Newton
method can be used to compute a £-center. If only a dual feasible solution § > 0
is available, then a dual Newton method can be used to compute a &-center.
If both a primal and a dual feasible point (Z > 0,5 > 0) are available then a
primal-dual Newton method can be used.

3.2. Computing the next analytic center after adding cuts

In ACCPM, the primal Newton method is favored over the dual or the primal-
dual ones. The reason is that the addition of cuts is likely to eliminate a big
portion of the dual feasible region leading to the infeasibility of the current ana-
lytic centre. Although, it is difficult to recover dual feasibility, primal feasibility
can be recovered easily. This is discussed next.

3.2.1. Recovering a primal feasible point

At iteration ¢ of ACCPM, the relaxed master problem is max{b%u : bTu >
Elowe,,,A;ru < ¢4}, for which the corresponding analytic centre is w9, its dual
slack is (8§,3%) and the corresponding primal analytic centre is (Z¢,Z?). Adding
the cuts Bg"u < r, and updating the lower bound to zjoyer, the new relaxed
master problem becomes max{b”w : bTu > Ziower, A u < cq, Bl u < rg}. Not
only a new set of constraints Bl u < r, are added but also the objective cut
bTu > Zjower is shifted whenever the lower bound zjoyer is updated. Note that
the old analytic centre u? and its corresponding slack s¢ are not necessarily
feasible to the new cuts B;‘ru < rq. For the clarity of exposition, let us drop
the iteration index ¢ and use a compact notation where A + [—b, A], ¢ +
(= Ziower, €), € < (—Ziower; €), T < (To,T), S + (50,3) as in (21-23).

Based on the first order optimality conditions at the old analytic centre w

X5=1, (25)
ATa+s5=7¢ 5>0
Az =0, >0,

one must efficiently compute the new analytic centre u, that satisfies

Xs v
(a0) = 1) @
ATu+s=c¢, s>0,

BTu+o=r, o>0,
Az +Ba=0, >0, a>0,
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where o and o are the new primal variables and dual slacks respectively, 2 =
diag(a), and 7 and v are the old and new weights of the old cuts. As the objective
cut bTu > zjower is the first constraint in ATu < ¢, v and 7 differ only in their
first entry, where v — 7 equals the number of rows of B.

Adding a cut to the localization set eliminates a portion of the dual space,
which leads in most cases to the infeasibility of the current analytic centre w. This
corresponds to introducing a new variable in the primal space. Dual feasibility
is difficult to restore, especially when the new cut is deep. Primal feasibility can
always be recovered. The idea is to find a search direction d.°“°* and a step
length ¢ that gets Z + £d,°°°Y into the interior of the dual feasible region of the
new master problem, i.e.,

, Az 4+ Ba=0, >0, a>0.

- recov
r=7T+ed,

We can generalize the direction proposed by Mitchell[20] to get

o’ = —-N"1X2AT(AN X" AT) ' Be.
a =¢c.e

So that Adre*? = —AN X AT(AN VX AT) 'Be = —Be and Az + Ba =
Az = 0. To satisfy the requirement that = > 0, i.e., T; + edz5*" > 0 for all 7,
the maximum value that € can take is given by the ratio test

T
d;t;_cov

Emax = mln{ -

J tdyj <0} (27)

We choose the step size €* € (0, £pax) as the minimizer of the potential function
¢p(z, @) in the [dree°?, e] direction.

A recent paper by Goffin and Vial [13] proposes a more rigorous way to
recover primal feasibility. In their paper they consider the non-weighted case
with central cuts, in here we extend their analysis to the weighted case with all
types of cuts, especially deep cuts.

Let us define V = AXS™'AT as Dikin’s matrix at the point (Z,5) and
H = BTV !B as the variance-covariance matrix of the new cuts in the metric
defined by Dikin’s matrix, where X = diag(Z) and S = diag(5). Taking the new
iterates as u = U + d}°°°",x = T + d°°°” and s = 5+ d°°°” (26) reduce to

gdrecov + Ydrecov —y—P=
f7 s -
Aszecov + d:ecov —c—
Adree®” + Ba =0,
BTd;*" + o =r — B,
20 =e

o) <

c=

Solving the previous system leads to

et = VN Ba+ A5 (0 +Xe);  direr = —ATdro 1+

dreeov = —§=1Xqreer 15 p; o=l 25)
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Initialization a® > 0. ¢ accuracy.
Iteration while ||da|| > ¢
1. do = (@ 2+ H) Ya ! - Ha+yg)
2. If ||da|| > 1 then
— B =max{F(a+ fda) : o+ Bda > 0}

3. else
-B=1
4. a+ a+ Bds
End while

Fig. 2. Maximizing F(«) using Newton method

And « is the solution to
—Ha+a'+g=0, a>0 (29)

where H and V are as defined previously, o * = 2 'e and g = BTj —r —
BTV AS—1[i + X4,
Equation (29) is the first order optimality condition when maximizing

1
F(a) = Zln aj — §aTHoz + g7 (30)
J

F(a) is a concave, self-concordant barrier function corresponding to the
quadratic function[16]

L 7 T
ax——a H
way—ge Ha gl
Furthermore, F(c) is bounded from above by the concave function e’ a—fa” Ha+
gTa, so it admits a finite solution. It can be maximized using Newton method
where the search direction d,, is given by

do = ~[F"(@)]F (@) = (@ 2 + H) " (a™! — Ha + g)

The complete procedure is summarized in figure 2.
The new variables are then updated using the search direction (28), resulting
in

ﬂ _+_ d;eCOU; s = g + d;‘eCOU.

U )
T =T+ deeov; oc=a L

In our implementation, an initial a® is calculated by approximating H by
diag(Hj;). Therefore, (29) reduce to a series of simple quadratic equations

Hjj(a))? —gja) —1=0, Vj (31)
whose positive solution is given by

0 gj+,/g]2~+4Hjj

o ,
J 2H,;

Vi
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The Newton procedure then proceeds as described in figure 2. This procedure
does not guarantee that z > 0 and s > 0. A primal point can be constructed by
taking an appropriate step € so that z + ed,°®®” > 0 as done in (27). Unfortu-
nately, there is no guarantee to recover a dual feasible solution. This fact favors
the primal Newton method to calculate the next analytic centre when adding
cuts.

3.2.2. The Primal Newton Method
Previously, the primal Newton method in ACCPM was based on the maximiza-
tion of Karmarkar’s potential function[24]

{ max op(z) = (2m)log(cT e — zipwerto) — Zlog z;: Az = xob}
i=1

z,zx9>0

In this paper we use the weighted primal log potential function ¢,(x) defined in
(20). The primal Newton method starts from a strictly primal feasible point x
and calculates the primal direction d, as

dy = N"2X [v? — N™2 Xs(z)

s(z) = c — ATu(z)
u(z) = (AN X2AT)TAN 1 X2

The method proceeds iteratively, by updating the primal iterates as
2t =z + opd,

The step size a,, is chosen so that z* > 0. In practice, a line search along d, is
performed on ¢, (z +a,d;). Let us define ¢(z) as vz — N=3 X s(z). The quantity
np(z) = |lg(z)||* measures the proximity of a point z to the analytic centre.
When far from the analytic centre (n,(z) > 1), the primal Newton procedure
decreases the primal potential with a constant amount. In the vicinity of the
analytic centre (n,(z) < 1), a full Newton step (a, = 1) guarantees strict primal
feasibility and quadratic convergence[38]. The full procedure is summarized in
figure 3.

4. Branching

At each node of the branch-and-price algorithm, the Lagrangean dual problem
is solved using ACCPM. A node is fathomed if the solution of the Lagrangean
problem provides a feasible solution to the original problem, the node is infea-
sible or the lower bound is greater than the incumbent. The solution of the
Lagrangean dual problem is feasible to the original problem if it satisfies the
relaxed constraints (2). The branching rule is discussed next.
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Initialization z° > 0, Az® = 0. The centering parameter is 0 < £ < 1.
Iteration while [|g(z)|| > ¢

1. u(z) = (AN I1X2AT)"1AN"1X2¢c

2. s(z) =c— ATu(z)

1 _1
g(z) =v2 — N 2Xs(z)
de = N™3 Xq(z)
If ||g(z)|| > 1 then
— op = max{pp(z + adz) : ¢+ ad; > 0}

6. else

<

o w

—ap=1
7. T4+ T+ oapdy
End while

Fig. 3. The Primal Newton method to calculate the analytic centre

4.1. Branching Rule

The branching rule should be designed to integrate easily into the column gener-
ation scheme. The branching constraints are more efficient if they are appended
to the subproblems so that infeasible columns are not generated in subsequent
nodes. This implies that the subproblem changes from one node to an other.
The challenge is to design a branching rule where the branching constraints
are appended to the subproblems without distorting its structure. Barnhart et
al. [1] give a branching rule for set-partitioning-type of problems. The rule was
originally proposed by Ryan-and-Foster[30] and is based on the idea of putting
variables into a single subset versus putting them in different subsets. The rule is
generalized in Vanderbeck[37], discussed in Barnhart et al.[1] and is successfully
used in Vance et al.[34], du Merle et al.[5] and Vanderbeck[36].

In this paper, we also use a Ryan-and-Foster branching rule. Investigating
the coefficient matrix in (11) or (16), we identify two rows p; and p2 and two
columns k; and ko having this pattern

,{/1 ... Iiz
p1 |1 1
p2 |1 0

For the bin-packing problem, there are always two rows p; and ps that corre-
spond to two items /; and [5. The branching constraints are

Yk, = Ykla» Vk=1,..,. K (32)

Yriy + Yri, <1, Vek=1,..,. K (33)

In the implementation, the columns are ordered according to the value of the
dual multipliers and those with the highest multipliers are checked first. This is
motivated by the fact that these columns are likely to be in an optimal solution.
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For the CFLSS, we look for two customer indices [; and [ that correspond to
rows p; and ps and use the branching rule in (32-33). As there are K convexity
constraints in (11), the first row p; may correspond to a convexity constraint
k, while py corresponds to a customer index [. In this case, we use the classical
branching rule

¥ei=0  ypi=1 (34)

See [1] for more details. In the algorithm presented in this paper, priority is given
to the Ryan-and-Foster branching rule (32-33). In case that is not possible, the
classical rule (34) is used.

For BP (correspondingly CFLSS), the left branching constraint (32) forces i;
and l» to be assigned to the same bin (served from the same facility), while the
right branching constraint (33) forces /1 and l» to be assigned to different bins
(served from different facilities). Appending (32) is easily done by aggregating
I, and I, into a single item(customer zone) [ with demand D; = D;, + D;, and
Cryty D1y +Ckqis Dy

Dy, + Dy,
Adding it to the subproblems will distort its structure. According to Vance et
al. [34], this difficulty at the subproblems pays back at the master problem, as
set-partitioning problems with disjoint constraints are more likely to be integral.
Furthermore, according to their computational experience, exploring the right
branches was hardly done. In du Merle et al., there was no difficulty incorporating
(33) into their quadratic 0-1 subproblem, as (33) is equivalent to y,i, -Yk,1, = 0,
which is reinforced by setting the corresponding cost coefficient to a sufficiently
large number. When using the classical branching rule, constraints (34) are easily
handled when solving the knapsack problems. Item [ is deleted from the list of
items when y; ; = 0 while it is deleted and the capacity of facility k is changed
to VE_DEi when yEi: 1.

cost . Branching constraint (33) is more difficult to deal with.

4.2. Calculating the New Analytic Centre After Branching

After branching, the constraint matrix is partitioned according to the branching
constraints and the analytic centre is recalculated for each child node. In the
general ACCPM context, this corresponds to the case of calculating the analytic
centre after dropping cuts. To calculate the next analytic centre, we propose to
use a dual Newton method.

Suppose that the master problem at a parent node is

max {bTu 07w > zigwers ATu < ¢, BTu < r}

where BTu < r do not satisfy the branching constraints while AT”u < ¢ do.
In other words, the matrix [A; B] corresponds to the coefficient matrix of the
parent node, which is partitioned to lead to the coefficient matrix A at one of
the child nodes. Therefore, the initial relaxed master problem at the child node
is max {b7u : bTu > 2ziower, ATu < c} . Note that the lower bound ziouer at the
parent node is used as an initial lower bound at the child node. Let us again
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use the compact notation as in paragraph 3.2.1. Therefore, we have the analytic
centre (7, §,u) of the following system

Xs %

(20) = 2] 55
ATa+s5=¢ 5>0,
BTa+a=r, &>0,

AZ+Ba=0, >0, a>0.

and we want to calculate the new analytic centre (z,s,u) to

Xs=v, (36)
ATu+s=r¢, s>0,
Az =0, z>0,

As the current analytic centre (%@, 5) is readily dual feasible, we use a dual
Newton method to compute the next analytic centre.
Starting from (u, 5), the Newton method calculates search directions

d, = —(ANS 2AT) LANS e
dy = —ATd, = AT(ANS *AT) 1ANS e

and selects a step size ag so that the new iterates (@ + aqd,,$ + aqds) remain
strictly feasible, i.e. ATd, +ds = 0 and 3 + aqds > 0. In practice, ayq is found
by a line search along ¢p (5 + aqds).

Let us define z(s) as NS (e — S ds) and g(s) as v5 — N—3Sz(s). The
progress of the method is measured by ||¢(s)|| which will approach 0 as the
iterates approach the analytic centre. When ||g(s)|| < 1, z(s) is primal feasible
and the Newton procedure will generate a sequence of iterates hat converges
quadratically to the analytic centre. When very far from the analytic centre, the
step size ayg is chosen so that the weighted dual potential function is increased by
a guaranteed constant amount. The complete dual Newton algorithm is detailed
in figure 4.

5. Generating feasible solutions

ACCPM has the advantage of providing a dual feasible solution at every iteration
of the cutting plane method. These dual solutions are feasible to the Dantzig-
Wolfe formulation in (11) (respectively (16)). By rounding them to 0 or to 1, a
feasible solution can be constructed. The dual multipliers § that are nearer to
1 are rounded up, those that are nearer to 0 are rounded down and the ones
in between are rounded up or down in a greedy manner so as to satisfy the
constraints of (11) (respectively (16)).

For the CFLSS, we additionally use a rounding heuristic on the original
variables yi; = Y. y¥apn. Generally, the resulting y does not satisfy both the

h
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Initialization s > 0, ATu + s = c. The centering parameter is 0 < & < 1.
Iteration while ||g(s)|| > ¢

1. q(s) = N2S—1AT(ANS—2AT)"1ANS—le

2. x(s) = N2S~'(v — q(s))
3. du = —(ANS2AT)"1ANS le = —(ANS~2AT)"1Aq(s)
4. ds = N_%Sq(s)
5. If ||g(s)|| > 1 then
— a=max{yp(s+ads): s + ads > 0}
6. else
—a=1
7. s=s+ads
8. u=u+ady
End while

Fig. 4. The dual Newton method to calculate the analytic centre

single sourcing constraints (2) and the capacity constraints (3). If the rounding
threshold is significantly high, say 0.9, it is likely that the capacity constraints
are satisfied while the single sourcing constraints are satisfied as inequalities.
The heuristic tries to satisfy the demand for the unassigned customers (y; =
0) without exceeding the warehouse capacities. First the opened facilities are
investigated and if need arises those with the lowest fixed cost are opened first.

For the BP, we look at the generated columns and try to select a subset of
them that satisfies (13). We put the columns in a sorted list and select them one
by one until (13) is satisfied or the heuristic fails. We use two sorting strategies:
increasing order of the dual multipliers and decreasing order of the bin waste,
i.e. the slack in (14).

6. Implementation and Testing

The interior point branch-and-price algorithm is coded under the MATLAB 5.3
environment. The subproblems are solved using CPLEX 6.0. Matlab is chosen for
its sparsity handling capability and easy programming environment that enables
the testing of new ideas fairly quickly. The testing is done on a Sun Ultra-10/440
workstation.

6.1. Implementation Issues

For the interior point branch-and-price algorithm, we use a depth first search
strategy until a first feasible solution is identified. The algorithm exploits readily
generated information both at the search tree and ACCPM.

At the parent node, the columns that satisfy the branching rule and the best
lower bound zjpyer are used to initialize the problem at the child node. It usually
takes few calls to the subproblems to get to the new lower bound at the child
node. At the level of ACCPM, it takes few iterations to find the next analytic



an interior-point branch-and-price algorithm 19

centre both when cuts are added and when cuts are deleted. In addition, the
incumbent is used to stop the iterations at the level of ACCPM without the
need to solve the full master problem to optimality. As soon as the lower bound
exceeds the incumbent, ACCPM is stopped and the node is fathomed.

The predominant computational effort at every Newton iteration, is the so-
lution of the least squares problems. They are solved using Matlab’s standard
least-squares solver which is based on a Cholesky factorization.

To ensure the boundedness of the localization set, initial lower and upper
bounds (£ < u < p) are added. The choice of these box constraints is crucial
since larger bounds are expected to slow down the method. The choice of these
bounds should be based on the problem parameters. For instance, consider the
relaxed Lagrangean problem [K Py]

L
min ) (cxr — N)yrt + frze
=

L
sit. > Diyr < Viz

=1

Ykt 2k = 0,1 vi=1,..,L.

This problem has a feasible solution of (yz; =0, Vi=1,...,L; 2z, =0), which
implies that the optimal objective value is nonpositive. Therefore )\; should be
large enough so that the resulting solution has a nonpositive objective. Let us
suppose that the solution is given by y; # 0 and obviously Z; = 1. Then, the
following inequalities hold

L
0> (e — M)k + frZr
=1

L
> min(cy — A1) > o+ f
=1

> L [mlin(ckl) — max )\l] + fr
Which implies that
min(cg;) + & < max \;
l L — 1

Hence, we set the upper bound on \; to max {minl(ckl) + ff"} The lower

bound is set to ming(cy;), since for all \; < ming(cg;), the cost coefficients
(ckr — A1) are positive and so the optimal objective is zero.
At the level of ACCPM, we use a stopping criterion of

Zupper — Rlower < 1074
Zlower -

The criteria for the recovery of primal feasibility is 10~7, and for the approximate
analytic centre is 0.1 both for the primal and dual Newton methods.
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6.2. The test problems

To test the interior point branch-and-price approach, we use randomly generated
instances of the capacitated facility location problem with single sourcing and
the bin-packing problem. The CFLSS instances are generated following the pro-
cedure in [17]. The coordinates of the facilities and customer zones are generated
from Uniform(10, 200). The costs are determined as cy; = peg;; where ey, is the
Euclidean distance between facility £ and customer [ and p is a positive scalar.
The demand, capacities and fixed costs are generated from Uniform(10,50), Uni-
form(100,500) and Uniform(300,700) respectively. The instances range from 5
potential facility locations and 15 customers to 10 potential facility locations
and 60 customers. They are denoted by CflssK_L where K is the number of
potential facilities and L is the number of customer zones. The bin-packing test
problems are similar to the triplet instances in [6] where exactly 3 items are
assigned to each bin. These instances are denoted by BinT_L where L is the
number of items. We also generate random instances of the bin-packing problem
as done in [36] . The bin capacity is 100 and the item demands are generated
from Uniform(1,100). These instances are denoted by BinR_L where L is the
number of items.

6.3. The performance of ACCPM

In this section we evaluate the efficiency and stability of ACCPM. We assess
the empirical rate of convergence of the method and its speed in generating the
analytic centres.

Figure 5 depicts the progress of the lower and upper bounds as iterations
proceed for an instance of CFLSS with 10 potential facility locations and 60
customers. As the figure reveals, the method does not suffer from tailing effects
and the lower bound converges rapidly when enough cuts are available . Two
phases are identified. During the first phase, the bound does not improve sig-
nificantly as the method is still gathering information about the problem by
generating the necessary cutting planes. Then, the bound improves sharply and
approaches the optimum value. This aspect is very important in a cutting plane
scheme as once the bound improves the algorithm could be stopped without
sacrificing the quality of the lower bound.

During the first phase, it takes from 1 to 6 iterations to find the new ana-
lytic centre, while during the second phase, it takes an average of 3 iterations.
Similarly the figure shows that during the first phase the recentering procedure
takes a maximum of 2 iterations as compared to the second phase where it takes
between 2 and 9 iterations.

Table 1 shows the average number of iterations to calculate the analytic
centre at the root node (ACy) and at the rest of the nodes (AC,¢st), the average
number of iterations to recover primal feasibility at the root node (Recy) and at
the rest of the nodes (Recres:) and the number of dual iterations to recalculate
the analytic centre after branching (Dual Iters).
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Fig. 5. The progress of the lower and upper bounds in ACCPM

The number of Newton iterations to find the analytic centre ranges from 3
to 4 for CFLSS and 1 to 2 for BP. Note that for CFLSS, the number of added
cuts at every call to the oracle corresponds to the number of potential facility
locations, while for BP, it is a single cut. Even though the number of added cuts
for CFLSS ranges from 5 to 10, the number of iterations needed to calculate the
analytic centre is fairly constant (between 3 and 4) for all nodes.

The number of steps to recover primal feasibility is around 3 for the CFLSS.
For BP it is 0 because the approximate solution of (31) for the single cut case
gives the optimal value.

The dual Newton method that is used to find the first analytic centre after
branching requires a number of iterations which is around 10 for the CFLSS and
around 6 for the BP. This relatively high number may be due to the fact that a
large number of cuts from the parent node is eliminated by the branching rule
when initializing the child node.

6.4. The performance of the branch-and-price algorithm

In this section we discuss the effectiveness of the interior point branch-and-
price algorithm as a solution approach. In particular, we assess the quality of
the Lagrangean based lower bound, the efficiency of the branching rule and the
effectiveness of exploiting information already generated at higher level nodes as
a warm start at lower-level nodes.
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Table 2 provides the number of nodes of the search tree (Nodes), the quality
of the Lagrangean bound as compared to the optimal solution (LagBnd), the
quality of the LP bound (LPbnd), the quality of the first generated feasible
solution(FirstFeas) and the CPU time (CPU). As expected, the Lagrangean
bound is superior to the LP bound on all instances. Specifically, the Lagrangean
bound is at least 89% for all instances, while the LP bound can be as worse as
62%. The fifth column of table 2 gives the quality of the first generated feasible
solution. Note, that we use a depth-first branch and bound tree, that ends up
with generating the first feasible solution. If the quality of that feasible solution
is good, we would expect to search less nodes in the branch-and-bound tree. As
the branching rule chooses which items to be grouped together and guides the
search deep in the tree, the quality of the first feasible solution is an indicator
of the efficiency of the branching rule. As displayed in table 2, the quality of the
first feasible solution is quite high for most instances and it is at least within 10%
from the optimal solution for all instances. This also indicates the effectiveness
of the branching rule if used in a truncated branching heuristic. In other words,
a branch-and-price heuristic that stops whenever the first feasible solution is
found.

Table 3 displays the number of calls to the oracle at the root node (SFp), the
average number of calls to the oracle at the rest of the nodes (SP,.st) and also
as a percentage of SPy (%), the CPU time at the root node (CPUy) and the
average CPU at the rest of the nodes (CPU,¢s;) in seconds and as a percentage
of CPy (%).

The calls to the oracle at nodes other than the root node are at most 18% of
those at the root node while the CPU time at the rest of the nodes is at most
17.36% of that at the root node. This clearly indicates the effectiveness of the
warm start strategy in exploiting information of the root node at the rest of the
nodes. It additionally indicates that ACCPM takes minimal computational time
at nodes other than the root node.

7. Conclusion

In this paper we have presented an interior point branch-and-price algorithm.
This study was motivated by a set of encouraging factors. First, the Lagrangean
bound is always as good as the LP bound and tends to be sharper if a suitable
relaxation is used. Second, ACCPM is able to provide proven optimal solution
to the Lagrangean dual problem in a reasonable convergence pattern. It does not
search blindly as in subgradient optimization and does not show tailing effects
as in Kelley’s cutting plane method. Third information in the form of generated
cuts, incumbent and lower bound is efficiently exploited in subsequent nodes both
by the search scheme and by ACCPM. Recentering when adding or deleting cuts
is done fairly quickly using a primal and dual interior point methods, respectively.
In addition, the initialization of the primal Newton method is done rigorously
using a primal-dual approach. Finally, ACCPM provides dual information during
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the course of the iterations that are exploited by a dual heuristic and used to
guide the branching rule.

The resulting approach is a branch-and-price algorithm where the Lagrangean
dual problem is solved using the analytic centre cutting plane method. In a first
step, we provided improvements to ACCPM, especially the use of a primal-dual
approach to recover primal feasibility and the use of the dual Newton method
to calculate the analytic centre after branching. At an equal level, we provided a
new branch-and-price algorithm where columns are generated based on central
prices. Our implementation is not fully optimized as we tried to test many ideas
at the same time and that accounts for the use of Matlab. Venues for a future
research include the incorporation of new improvements to ACCPM in terms of
the effective management of the box constraints and the possibility of eliminat-
ing them after branching. For the branch-and-price method an obvious item on
the research agenda is the use of valid cuts and variable fixing strategies.
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Prob ACyp AC,est Recp Recrest Dual Iters
Cflssb_15 3 — 2 — —
Cflss5_20 4 2.10 2 1.54 9.46
Cflss5_25 3 4.28 2 3.29 9.26
Cflss5_30 3 3.23 2 3.28 10.07
Cflss8_24 4 3.74 3 2.74 9.43
Cflss8.32 4 — 3 — 0.00
Cflss8_40 4 3.68 2 2.29 10.66
Cflss8._48 3 3.25 3 3.24 12.25
Cflss10-30 3 2.93 2 2.31 9.36
Cflss10_40 3 2.76 3 1.64 9.34
Cflss10-50 3 3.03 2 3.29 10.19
Cflss10_60 4 3.23 2 2.79 9.73
BinG_10 2 0.00 0 0.00 4.40
BinG_20 2 1.25 0 0.00 5.95
BinG_30 1 3.38 0 0.00 4.67
BinG_40 2 0.83 0 0.00 5.54
BinG_50 1 1.50 0 0.00 3.43
BinG_60 2 2.49 0 0.00 7.08
BinG_70 1 1.89 0 0.00 6.24
BinG_80 1 1.59 0 0.00 5.72
BinG_90 2 1.14 0 0.00 6.76
BinG_100 1 2.50 0 0.00 6.62
BinG_120 1 2.23 0 0.00 6.54
BinG_140 2 1.65 0 0.00 6.70
BinG_170 2 0.32 0 0.00 6.27
BinG_200 1 2.15 0 0.00 6.91
BinT_12 1 — 0 — —
BinT_21 1 — 0 — —
BinT_30 1 — 0 — —
BinT_51 1 — 0 — —
BinT_60 1 2.73 0 0.00 5.57
BinT_72 1 2.95 0 0.00 6.23
BinT_81 1 1.96 0 0.00 5.56
BinT_90 1 3.74 0 0.00 7.00
BinT_102 1 3.04 0 0.00 6.28
BinT_111 1 3.50 0 0.00 7.98
BinT_120 1 2.45 0 0.00 6.23
BinT_141 1 3.42 0 0.00 7.44
BinT_150 1 3.49 0 0.00 8.97
BinT_180 1 2.64 0 0.00 6.64
BinT_210 1 2.88 0 0.00 7.96
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[ Prob | Nodes LAGbnd LPbnd FirstFeas CPU(min) ||
Cflss5_15 1 100 61.99 100 0.14
Cflss5_20 35 100 83.15 99.9 1.89
Cflss5_25 31 99.59 92.93 98.98 4.38
Cflss5_30 381 93.38 84.58 91.97 17.47
Cflss8_24 393 93.76 68.91 92.7 19.97
Cflss8.32 1 100 86.43 100 1.33
Cflss8_40 378 96.63 69.01 91.34 61.43
Cflss8._48 182 89.54 72.31 95.57 63.09
Cflss10-30 187 97.24 90.24 94.83 16.65
Cflss10-40 47 99.97 93.03 99.8 17.22
Cflss10-50 167 88.98 84.34 90.19 49.36
Cflss10_50 167 88.98 84.34 90.19 49.36
BinG_10 5 99.99 81.69 100 0.01
BinG_20 21 100 90.18 92.31 0.07
BinG_30 9 99.97 83.31 100 0.08
BinG_40 41 99.99 88.62 96.55 0.33
BinG_50 7 99.99 83.74 100 0.29
BinG_60 71 99.22 95.1 96.97 2.18
BinG_70 37 99.01 84.56 100 1.35
BinG_80 47 99.1 87.59 100 2.24
BinG_90 45 99.12 90.65 100 4.72
BinG_100 253 99.98 91.6 97.06 22.32
BinG_120 261 99.96 90.22 97.54 33.34
BinG_140 261 99.77 93.02 97.73 53.67
BinG_150 127 99.48 89.68 99.04 37.61
BinG_170 215 99.96 90.28 98.23 64.56
BinG_200 215 99.94 90.16 91.17 89.15

binT_12 1 100 100 100 0.03
binT_21 1 100 100 100 0.05
binT_30 1 100 100 100 0.2
binT_51 1 100 100 100 0.97
binT_60 7 100 100 95 2.13
binT_72 13 100 100 95.83 6.26
binT_81 9 100 100 96.3 8.76
binT_90 9 100 100 96.67 11.15
binT_102 25 100 100 97.06 20.78
binT_111 56 100 100 100 20.55
binT_120 31 100 100 97.5 40.55
binT_141 9 100 100 97.87 48.84
binT_150 51 100 100 100 47.28
binT_180 7 100 100 98.33 140.31
binT_210 51 100 100 100 120.7

Min. 88.98 61.99 90.19

Max. 100 100 100

Avg. 98.66 90.52 97.3

24.

25.

26.

27.

28.

Table 2. Summary results for branch-and-price

N. K. Karmarkar. “A new polynomial-time algorithm for linear programming” Combina-
torica, 4, (1984), 373-395.

J.G. Klincewicz and H. Luss, “A Lagrangean relaxation heuristic for capacitated facility
location with single-source constraints”, J. Oper. Res. Soc. , 37:5,(1986),195-500.

A.W. Neebe and M.R. Rao, “ an algorithm for the fixed-charge assigning users to sources
problem”, J. Oper. Res. Soc. , 34:11,(1983),1107-1113.

A. S. Nemirovskii and D. B. Yudin, ”"Problem complexity and method efficiency in opti-
mization”, John Wiley, Chichester, 1983.

Y. Nesterov ”Cutting plane methods from analytic centers: efficiency estimates ”, Math.
program., Ser. B, 69,(1996), 149-176.



26

( Prob [ SPo  SPrest % of SPg CPUy CPUest % of CPUp ||
Cflss5-15 21 0 0 8.2 0 0
Cflss5_20 36 5.82 16.17 26.49 2.48 9.36
Cflss5-25 47 8.5 18.09 41.18 7.15 17.36
Cflss5-30 48 6.4 13.33 46.01 2.63 5.72
Cflss8.24 47 5.63 11.98 78.41 2.85 3.63
Cflss8-32 41 0 0 79.93 0 0
Cflss8_40 54 6.53 12.09 197.11 9.23 4.68
Cflss8_48 74 6.68 9.03 403.96 18.58 4.6
Cflss10-30 38 5.62 14.79 88.26 4.87 5.52
Cflss10_40 52 7.83 15.06 235.39 16.98 7.21
Cflss10_50 63 5.43 8.62 463.53 14.96 3.23
Cflss10-50 63 5.43 8.62 463.53 14.96 3.23
BinG_10 17 1.5 8.82 0.59 0.03 5.08
BinG_20 30 2.4 8 1.62 0.12 7.41
BinG_30 45 1.88 4.18 3.24 0.2 6.17
BinG_40 55 2.05 3.73 8.32 0.28 3.37
BinG_50 71 1.67 2.35 14.4 0.39 2.71
BinG_60 107 2.19 2.05 55.99 1.05 1.88
BinG_70 93 1.86 2 42.66 1.04 2.44
BinG_80 113 1.78 1.58 75.36 1.25 1.66
BinG_90 136 1.84 1.35 176.83 2.37 1.34
BinG_100 153 2.78 1.82 198.46 4.51 2.27
BinG_120 193 2.13 1.1 419.01 6.06 1.45
BinG_140 275 1.83 0.67 1356.73 7.14 0.53
BinG_150 231 1.93 0.84 915.36 10.56 1.15
BinG_170 300 1.63 0.54 2482.33 6.47 0.26
BinG_200 285 1.95 0.68 1966.86 15.73 0.8
binT_12 29 0 0 1.53 0 0
binT_21 48 0 0 3.14 0 0
binT_30 82 0 0 12 0 0
binT_51 146 0 0 58 0 0
binT_60 179 5 2.79 91.78 5.16 5.62
binT_72 234 4 1.71 249.17 9.74 3.91
binT_81 249 4.62 1.86 386.44 15.47 4
binT_90 298 5.12 1.72 486.26 20.31 4.18
binT_102 333 4.96 1.49 614.01 25.3 4.12
binT_111 267 8.75 3.28 271.88 17.16 6.31
binT_120 389 4.63 1.19 1174.48 40.6 3.46
binT_141 466 5.75 1.23 2290.25 71.15 3.11
binT_150 359 9.54 2.66 752.89 40.86 5.43
binT_180 637 4.89 0.77 1062.57 95.53 8.99
binT_210 439 9.98 2.27 2009.84 102.59 5.1

Min. 0 0
Max. 18.08 17.36
Avg. 4.49 3.74
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