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1 Introduction

In mathematics it is important to study functionals that are nonnegative over a given domain. As

an example, the concept of duality is based on such a consideration and in convex analysis, the dual

(polar) of a cone consists exactly of all the linear mappings that are nonnegative (nonpositive) over

the cone itself. As another example, the positive semide�nite matrices are de�ned as the quadratic

forms that are nonnegative over the whole Euclidean space. No doubt these are extremely im-

portant concepts. Recently, optimization with positive semi-de�niteness restrictions (linear matrix

inequalities), known as semide�nite programming, or SDP for short, received a lot of attention; see

[13] and references therein.

In this paper, we shall apply the power of SDP to solve problems involving general quadratic

functions. We �rst introduce the cones formed by quadratic functions that are nonnegative over

a given region. Properties of such cones are discussed. In some special cases, we are able to

characterize these cones using linear matrix inequalities (LMIs). The characterization leads us to

solve several new classes of optimization problems, arising e.g. from the trust region method for

nonlinear programming [9, 3]. The results also provide new tools for robust optimization [2, 1], in

which the constraints can now depend in a quadratic fashion on the uncertain parameter.

Our results can be considered as extensions of Yakobuvich's S-procedure result [14], which charac-

terizes quadratic functions that are nonnegative over the domain de�ned by another single quadratic

function. References on quadratic systems and error bounds can be found in Luo and Sturm [4].

Some recent results on LMIs and nonnegativity expressed as sum of squares (SOS) can be found

in Parrilo [7] and Nesterov [6].

An important concept that is used in our approach is `co-positivity over a domainD', which reduces

to the usual concept of co-positivity when D is the nonnegative orthant (i.e. D = <n

+). When D is

a polyhedral cone, we arrive at the generalized co-positivity concept of Quist et al. [8].

The organization of the paper is as follows. We introduce our de�nitions and notation concern-

ing co-positivity with respect to a cone, cones of nonnegative quadratic functions on a speci�ed

domain, as well as the concept of homogenization in Section 2. Section 3 is devoted to a possible

application of our analysis, namely non-convex quadratic optimization. We describe how general

non-convex quadratic optimization problems can be reformulated as conic linear programming over

cones of nonnegative quadratic functions. In Section 4 we investigate the cones that are obtained by

homogenization of a domain that is given as the intersection of upper level sets of some quadratic

functions. Then, in Section 5, two matrix decomposition results are proven in a constructive way.

The results serve the purpose of characterizing, in terms of LMIs, cones of nonnegative quadratic

functions for three di�erent classes of domains of nonnegativity. The domains considered are de-

�ned either by a non-convex quadratic inequality, or an equality constraint in a strictly concave (or
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convex) quadratic function, or the combination of a covex quadratic inequality and a linear (aÆne)

inequality. Based on the technique of semide�nite programming, these results imply among others

the polynomial solvability of non-convex quadratic optimization problems over (unions of) these

three classes of domains. We conclude the paper in Section 6. We want to remark that the material

of Section 3 is merely an illustration, and the reader can skip this section if desired. After reading

Section 2, it is possible to proceed immediately with Section 5, which includes our main results,

and track back to the technical lemmas in Section 4 whenever they are referred to.

Notation. Given a set D in a Euclidean space, we let cone(D) denote the convex cone consisting

of all nonnegative combinations of elements of D. Similarly, we let conv(D) denote the convex set

consisting of all convex combinations of elements of D. If D is a cone, then conv(D) = cone(D).

We associate with a cone K in a Euclidean space the dual cone K� := fy j x � y � 08x 2 Kg,
where `�' denotes the standard inner product of the Euclidean space. We let Sn�n denote the

n(n + 1)=2-dimensional Euclidean space of symmetric n � n matrices, with the standard inner

product

X � Y = tr XY =

nX
i=1

nX
j=1

xijyij;

for X;Y 2 Sn�n. We let Sn�n

+ denote the cone of positive semide�nite matrices in Sn�n. Also,

`X � 0' (`X � 0') means that X is a symmetric positive de�nite (positive semide�nite) matrix.

2 Preliminaries

Let D � <n be a given set. Consider all symmetric matrices that are co-positive over D, i.e.

C+(D) := fZ 2 Sn�n j xTZx � 0; 8x 2 Dg: (1)

It is obvious that C+(D) is a closed convex cone, and that

C+(D) = C+(D [ (�D)): (2)

We also have an obvious dual characterization of C+(D), namely:

Proposition 1 It holds that

C+(D) =
�
cone

n
yyT

��� y 2 Do�� :

Proof. If X 2 C+(D) then by de�nition 0 � yTXy = X � (yyT) for all y 2 D. Since the sum of
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nonnegative quantities is nonnegative, it follows that X �Z � 0 whenever Z is a nonnegative com-

bination of matrices in fyyTjy 2 Dg. This establishes C+(D) � ( conefyyTjy 2 Dg)�. Conversely,
if X �Z � 0 for all Z 2 conefyyTjy 2 Dg then certainly 0 � X � (yyT) = yTXy for all y 2 D, and

hence X 2 C+(D). Q.E.D.

Clearly, C+(<n) = Sn�n

+ is the set of positive semide�nite matrices. In another well known case,

where D = <n
+, the set C+(D) is called the co-positive cone. Testing whether a given matrix belongs

to the co-positive cone is coNP-hard, i.e., testing whether it does not belong to the co-positive cone

is NP-hard; see Murty and Kabadi [5]. We remark for general D that the validity of the claim

`Z 62 C+(D)' can be certi�ed by a vector x 2 D for which xTZx < 0; this decision problem is

therefore in NP, provided that `x 2 D' is easy to check.

Two classical theorems from convex analysis are particularly worth mentioning in the context of

this paper: the bi-polar theorem and Carath�eodory's theorem [10]. The bi-polar theorem states

that if K � <n is a convex cone, then (K�)� = cl(K), i.e. dualizing K twice yields the closure of

K. Carath�eodory's theorem states that for any set S � <n it holds that x 2 conv(S) if and only if

there exist y1; y2; : : : ; yn+1 such that x =
P

n+1
i=1 �iyi for some �i � 0 with

P
n+1
i=1 �i = 1.

Using the bi-polar theorem, it follows from Proposition 1 that C+(D)� = cl cone
n
yyT

��� y 2 Do.
The following lemma, which is based on Carath�eodory's theorem, implies further that C+(D)� =

conefyyT j y 2 cl(D)g.

Lemma 1 Let D � <n. Then

cl conefyyT j y 2 Dg = conefyyT j y 2 cl(D)g:

Proof. Suppose that Z 2 cl conefyyT j y 2 Dg then Z = limk!1Zk for some Zk 2 conefyyT j
y 2 Dg. Since the dimension of Sn�n is N := n(n+ 1)=2, it follows from Carath�eodory's theorem

that for given Zk there exists an n� (N + 1) matrix Yk such that Zk = YkY
T
k
, and each column of

Yk is a positive multiple of a vector in D. Furthermore, we have

kYkk2F = tr YkY
T
k = tr Zk ! tr Z:

Therefore, the sequence Y1; Y2; : : : is bounded, and must have a cluster point Y � for k ! 1.

Obviously, each column of Y � is then a positive multiple of a vector in cl(D), and since Z =

Y �(Y �)T, it follows that Z 2 conefyyT j y 2 cl(D)g. The converse relationship is trivial. Q.E.D.

By de�nition, C+(D) consists of all quadratic forms that are nonnegative on D. We shall now

consider the cone of all nonnegative quadratic functions (not necessarily homogeneous) that are
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nonnegative on D. Namely, we de�ne

FC+(D) :=

("
z0; zT

z; Z

# ����� z0 + 2zTx+ xTZx � 0; 8x 2 D
)
: (3)

For a quadratic function q(x) = c+2bTx+ xTAx, we introduce its matrix representation, denoted

by

M(q(�)) =
"
c; bT

b; A

#
: (4)

In this notation, q(x) � 0 for all x 2 D if and only if M(q(�)) 2 FC+(D).

In order to derive a dual characterization of the matrix cone FC+(D), we need the concept of

homogenization. Formally, for a set D, its homogenization is given by

H(D) = cl

("
t

x

#
2 <++ �<n

����� x=t 2 D
)
;

which is a closed cone (not necessarily convex). If D is a bounded set, then

H(D) =

("
t

x

# ����� t > 0; x=t 2 cl(D)

)
[ f0g : (5)

Otherwise, this may not be true. A simple example is D = [1;+1); in this case
h
0; 1

iT 2 H(D).

As another example, H(<n) = <+ � <n. The following proposition states that the nonnegative

quadratic functions on D and the nonnegative quadratic forms on H(D) are the same geometric

objects, hence our interest in the concept of homogenization.

Proposition 2 For any set D 6= ;, it holds that

FC+(D) = C+(H(D)) = C+ (H(D) [ (�H(D))) :

Proof. The second identity is a special case of relation (2). Furthermore, to see that C+(H(D)) �
FC+(D), it suÆces to observe that x 2 D implies

h
1; xT

iT 2 H(D) by de�nition of H(D). It

remains to show that FC+(D) � C+(H(D)).

Let
h
t; xT

iT 2 H(D), i.e. there exist tk > 0 and xk=tk 2 D such that t = limk!1 tk and

x = limk!1 xk. Any

"
z0; zT

z; Z

#
2 FC+(D) necessarily satis�es

z0 + 2zT(xk=tk) + (xk=tk)
TZ(xk=tk) � 0;
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or equivalently

z0t
2
k
+ 2tkz

Txk + xT
k
Zxk � 0:

By taking limits we get

z0t
2 + 2tzTx+ xTZx � 0;

which leads to the conclusion that "
z0; zT

z; Z

#
2 C+(H(D)):

Q.E.D.

Combining Proposition 2 with Proposition 1, we arrive at the following corollary.

Corollary 1 For any nonempty set D, it holds that

FC+(D) = convfyyT j y 2 H(D)g�:

Using Lemma 1 and the fact that H(D) is, by de�nition, a closed cone, we can dualize Corollary 1

to

FC+(D)� = convfyyT j y 2 H(D)g: (6)

We remark from Proposition 2 that

FC+(<n) = C+ (H(<n) [ (�H(<n))) = C+(<n+1) = S(1+n)�(1+n)
+ : (7)

In other words, the cone of (n+ 1) � (n+ 1) positive semide�nite matrices is equal to the cone of

(matrix representations of) quadratic functions that are nonnegative on the entire domain <n.

Another case that deserves special attention is the sphere with radius 1 centered at the origin,

B(n) := fx 2 <n j kxk � 1g:

Since this is a bounded set, we may apply (5) to conclude that

H(B(n)) =
("

t

x

# ����� kxk � t

)
=: SOC(n+ 1):

We see that the homogenization of B(n) is the Lorentz cone, or second order cone, denoted by

SOC(n+ 1). According to Corollary 1, it holds that

FC+(B(n)) = (convfyyT j y 2 SOC(n+ 1)g)�:
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In Section 4, we will consider (among others) domains of the form D = fxjq(x) � 0g, where q(�) is
a given quadratic function. Choosing q(x) = 1� xTx yields D = B(n). In Section 5, we will see as

a special case of Theorem 1 that

convfyyT j y 2 SOC(n+ 1)g = fX 2 S(1+n)�(1+n) j X � 0; J �X � 0g;

where J := M(q(�)), i.e.
J =

"
1; 0

0; �I

#
2 S(1+n)�(1+n):

This will then easily lead to the relation

FC+(B(n)) = fZ j Z � tJ � 0; t � 0g;

which is known from Rendl and Wolkowicz [9] and Fu, Luo and Ye [3].

3 Global Non-Convex Quadratic Optimization

Consider the general non-convex quadratic optimization problem

(P ) infff(x) j x 2 Dg;

where f(�) is a (non-convex) quadratic function and D � <n is a possibly non-convex domain. Let

N be an arbitrary positive integer. Then

infff(x) j x 2 Dg = inf

8<
:

NX
i=1

t2i f(xi)

�����
NX
j=1

t2j = 1 and xi 2 D; i = 1; 2; : : : ; N

9=
; :

Namely, f(x) with x 2 D can never be smaller than the right hand side, since one may set xi = x

for all i. Conversely,
P

N

i=1 t
2
i
f(xi) can never be smaller than the left hand side since

NX
i=1

t2i f(xi) � min
j=1;2;:::;N

ff(xj)g � (
NX
i=1

t2i ) = min
j=1;2;:::;N

ff(xj)g � infff(x) j x 2 Dg:

Using the matrix representation of f(�), we have

t2
i
f(xi) = t2

i

"
1

xi

#T
M(f(�))

"
1

xi

#
= yT

i
M(f(�))yi; yi :=

"
jtij
jtijxi

#
:

Obviously xi 2 D implies yi 2 H(D). Conversely, we have for any y =
h
t; �T

iT 2 H(D) with

eT1 y = t > 0, where e1 denotes the �rst column of the identity matrix, that

yT M(f(�))y = t2f(�=t) � t2 infff(x) j x 2 Dg:
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By de�nition of H(D), it thus follows that if infff(x) j x 2 Dg > �1 then

y 2 H(D) =) yT M(f(�))y � (eT1 y)
2 infff(x) j x 2 Dg: (8)

Therefore,

infff(x) j x 2 Dg = inf

8<
:

NX
i=1

yT
i
M(f(�))yi

�����
NX
j=1

(eT1 yj)
2 = 1 and yi 2 H(D); i = 1; 2; : : : ; N

9=
; :

Since the above relation holds in particular for N = 1+n(n+1)=2, it follows from Carath�eodory's

theorem that

infff(x) j x 2 Dg = inf
n
M(f(�)) � Z

���z11 = 1 and Z 2 convfyyT j y 2 H(D)g
o
;

where z11 = eT1 Ze1 denotes the (1; 1)-entry of Z. Using also (6), we conclude that the non-convex

problem (P) is equivalent to the convex problem (MP), de�ned as

(MP ) inff M(f(�)) � Z j Z 2 FC+(D)�; z11 = 1g:

Notice that if D 6= ; then z11 > 0 for any Z in the relative interior of FC+(D)�. It follows that

(MP) has a feasible solution in the relative interior of FC+(D)�. Hence (MP) satis�es the relative

Slater condition, or interior point condition, which implies that there can be no duality gap, and

that either (MP) is unbounded or the dual optimal value is attained [11]. Indeed, the dual of (MP)

is (MD),

(MD) supf� j M(f(�))� �e1e
T
1 2 FC+(D)g:

Since M(f(�))� �e1e
T
1 = M(f(�)� �), we may rewrite (MD) as

supf� j f(x) � � for all x 2 Dg;

and it is clear the optimal value of (MD) is indeed equal to the optimal value of (MP).

In principle, the non-convex problem (P) and the the convex problem (MP) are completely equiv-

alent. Namely, Carath�eodory's theorem implies that if Z is a feasible solution for (MP) then there

exist yi =
h
ti; �T

i

iT 2 H(D), i = 1; 2; : : : ; N such that Z =
P

N

i=1 yiy
T
i
. If there is an i such that

ti = 0 and yT
i
M(f(�))yi < 0 then (P) must be unbounded due to (8). Otherwise, we have

M(f(�)) � Z � minff(�i=ti) j i such that ti > 0g:

Equality holds if and only if

(
M(f(�)) � Z = f(�i=ti) for all i with ti > 0

yT
i
M(f(�))yi = 0 for all i with ti = 0:
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This shows that if Z is an optimal solution to (MP) then the decomposition Z =
P

N

i=1 yiy
T
i
yields

an optimal solution for any yi with e
T
1 yi > 0. Since

P
N

i=1(e
T
1 yi)

2 = 1, it yields at least one (global)

optimal solution.

A solution to the dual problem (MD) can be used to certify global optimality in the primal problem

(MP) or (P). We remark that the classical approach only yields local optimality conditions for (P).

The fact that we can reformulate a general non-convex problem (P) into a convex problem (MP)

does not necessarily make such a problem easier to solve. For example, we already encountered in

Section 2 the NP-hard problem of deciding whether a matrix is in the complement of FC+(<n
+).

Furthermore, Carath�eodory's theorem states only the existence of a decomposition of Z; it is in

general not clear how such a decomposition should be constructed. Indeed it is well known that

problem (P) is NP-hard [12] in its general setting.

However, in all three cases that we will discuss in Section 5, namely,

1. D = fx j q(x) � 0g,

2. D = fx j q(x) = 0g with q(�) strictly concave, and

3. D = fx j q(x) � 0; and aTx � a0g with q(�) concave,

the optimization problem (MP) and its dual (MD) turn out to be Semide�nite Programming (SDP)

problems for which polynomial-time and e�ective solution methods exist. And furthermore, we

propose eÆcient algorithms to decompose matrices in the dual cone FC+(D)� as a sum of rank-1

solutions in FC+(D)�. Therefore, once we �nd a (nearly) optimal Z solution to (MP) we will also

have (nearly) optimal x solutions to (P). This is remarkable, since (P) has some nasty features:

the optimal solution set of (P) can be disconnected, and, in cases 1) and 2), the quadratically

constrained sets `D' are not necessarily convex.

We remark that problem (MD) has only one variable, and only one conic constraint. In general

however, a conic linear programming model has multiple variables and multiple conic constraints.

The general framework allows for the optimal design of quadratic functions, and for robust opti-

mization where the constraints depend on the uncertain parameters in a quadratic fashion. The

dual matrix decomposition will then yield worst case scenarios for the optimal robust design.

4 Quadratically Constrained Sets

In this section we shall study the case when the domainD is de�ned by some quadratic (in)equalities.

Our aim is to show that under certain conditions, H(D) or H(D) [ (�H(D)) can then completely

be characterized by homogeneous quadratic constraints. With such a characterization, it is then
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easy to check whether a given vector belongs to H(D); the claim that a matrix belongs to FC+(D)�

can then in principle be certi�ed due to (6) and Carath�eodory's theorem.

As a �rst step, let us consider one quadratic function q(x) = c+ 2bTx+ xTAx, and its upper level

set

D = fx 2 <n j q(x) � 0g:
Obviously, q(x) � 0 for all x 2 D, so that M(q(�)) 2 FC+(D). The following lemma characterizes

the homogenized cone of D.

Lemma 2 Consider a quadratic function q(x) = c + 2bTx + xTAx for which the upper level set

D = fx j q(x) � 0g is nonempty. It holds that

H(D) [ (�H(D)) =

("
t

x

# ����� t2c+ 2tbTx+ xTAx � 0

)
:

Proof. We remark �rst that M(q(�)) 2 FC+(D) = C+ (H(D) [ (�H(D))), where the identity

follows from Proposition 2. Therefore,"
t

x

#
2 H(D) [ (�H(D)) =) t2c+ 2tbTx+ xTAx � 0:

To show the converse, we consider a pair (t; x) in the set("
t

x

# ����� t2c+ 2tbTx+ xTAx � 0

)
:

If t > 0, then x=t 2 D and so
h
t; xT

iT 2 H(D). If t < 0 then (�x)=(�t) 2 D, and soh
t; xT

iT 2 �H(D). It remains to consider the case t = 0. We have

0 � t2c+ 2tbTx+ xTAx = xTAx = (�x)TA(�x):

Since D 6= ;, there must exist �x such that q(�x) � 0. Let � 2 < n f0g. Then

�2q((x+ ��x)=�) = �2q(�x) + 2�(b+A�x)Tx+ xTAx:

Therefore, if (b + A�x)Tx � 0 then (x + ��x)=� 2 D for all � > 0 and hence
h
0; xT

iT 2 H(D).

And otherwise, i.e. (b + A�x)Tx < 0, we have (x + ��x)=� = (�x � ��x)=(��) 2 D for all � < 0 and

hence
h
0; �xT

iT 2 H(D) so that
h
0; xT

iT 2 �H(D). Q.E.D.

In the sequel of this section, we allow multiple quadratic constraints in the de�nition of D. In

the next lemma, we impose a condition under which D must be bounded, and hence relation (5)

applies.
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Lemma 3 Let qi(x) = ci + 2bT
i
x+ xTAix, i = 1; :::;m. Assume that

D = fx j qi(x) � 0; i = 1; :::;mg 6= ;:

Suppose furthermore that there exist yi � 0, i = 1; :::;m, such that
P

m

i=1 yiAi � 0. In particular,

this implies that D is a compact set. Then we have

H(D) =

("
t

x

# ����� t � 0; t2ci + 2tbT
i
x+ xTAix � 0; i = 1; :::;m

)
:

Proof. We �rst remark that x 2 D implies
P

m

i=1 yiqi(x) � 0. Since
P

m

i=1 yiqi(x) is a strictly

concave quadratic function, it follows that D is (contained in) a bounded set. Since
P

m

i=1 yiAi � 0

and yi � 0 for all i = 1; : : : ;m, we also have the obvious implication

min
i=1;:::;m

xTAix � 0 =) xT(
mX
i=1

yiAi)x � 0 =) x = 0: (9)

Therefore, we have("
t

x

# ����� t � 0; t2ci + 2tbTi x+ xTAix � 0; i = 1; : : : ;m

)

=

("
t

x

# ����� t > 0; t2qi(x=t) � 0; i = 1; : : : ;m

)
[
("

0

x

# ����� xTAix � 0; i = 1; : : : ;m

)

=

("
t

x

# ����� t > 0; x=t 2 D
)
[ f0g

= H(D);

where the last two steps follow from (9) and (5), respectively. Q.E.D.

Since an equality constraint can be represented by two inequalities, we arrive at the following

corollary.

Corollary 2 Let qi(x) = ci + 2bT
i
x+ xTAix, i = 1; :::;m + l. Assume that

D = fx j qi(x) � 0; i = 1; :::;m and qj(x) = 0; j =m+ 1; :::;m + lg 6= ;:

Suppose furthermore that there exist yi � 0, i = 1; : : : ;m + l, such that
P

m+l

i=1 yiAi � 0. Then we

have

H(D) = f
"
t

x

# ����� t � 0; t2ci + 2tbTi x+ xTAix � 0; i = 1; : : : ;m;

t2cj + 2tbTj x+ xTAjx = 0; j = m+ 1; : : : ;m+ lg:
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The next lemma deals with a convex domain. In the presence of convexity, we no longer require

D to be bounded. As a special case, it includes a domain de�ned by one concave and one linear

inequality; this case will be studied in detail later.

Lemma 4 Let qi(x) = ci + 2bT
i
x+ xTAix, i = 1; : : : ;m, be concave functions. Suppose that

D = fx j qi(x) � 0; i = 1; : : : ;mg 6= ;:

We have

H(D) =

("
t

x

# ����� t � 0; t2ci + 2tbT
i
x+ xTAix � 0; tci + 2bT

i
x � 0; i = 1; : : : ;m

)
:

Proof. For
h
t; xT

iT 2 H(D) we have a sequence tn > 0, xn=tn 2 D with (tn; xn)! (t; x). The

fact that xn=tn 2 D implies for all i = 1; : : : ;m that

tn > 0; t2nqi(xn=tn) = t2nci + 2tnb
T
i xn + xTnAixn � 0 (10)

and hence, using the concavity of qi(�),

tnci + 2bTi xn � �xTnAixn=tn � 0: (11)

By taking limits in the relations (10) and (11), we have

t � 0; t2ci + 2tbT
i
x+ xTAix � 0; tci + 2bT

i
x � 0; i = 1; : : : ;m: (12)

Conversely, assume that (12) holds. If t > 0 then (12) implies that t2qi(x=t) � 0 for all i = 1; : : : ;m,

so that x=t 2 D and hence
h
t; xT

iT 2 H(D). Otherwise, i.e. if t = 0, then (12) implies that

xTAix � 0 and bT
i
x � 0 for all i = 1; : : : ;m. Since the Ai's are negative semide�nite, it further

follows that Aix = 0 for all i = 1; : : : ;m. Therefore, we have for �x 2 D and � > 0 that

qi(�x+ x=�) = qi(�x) + 2bTi x=� � 0 for all i = 1; : : : ;m;

and hence
h
�; xT + ��xT

iT 2 H(D). Letting � # 0, it follows that
h
0; xT

iT 2 H(D), as

desired. Q.E.D.

Interestingly, H(D) in Lemma 4 admits a second order cone representation:

Lemma 5 Let q(x) = c + 2bTx+ xTAx be a concave function. Then there must exist a matrix R

such that A = �RTR. Let r and n denote the number of rows and columns in R respectively. The

following three statements for t 2 < and x 2 <n, (13), (14) and (15), are equivalent:

t � 0; t2c+ 2tbTx+ xTAx � 0; tc+ 2bTx � 0 (13)

12



(ct+ 2bTx+ t) �
q
(ct+ 2bTx� t)2 � 4xTAx (14)2

664
c+ 1; 2bT

c� 1; 2bT

0; 2R

3
775
"
t

x

#
2 SOC(r + 2): (15)

Proof. Statements (14) and (15) are obviously equivalent. To see that they are also equivalent

with (13) we observe

ct+ 2bTx+ t � jct+ 2bTx� tj () t � 0; tc+ 2bTx � 0:

Moreover, in general, for any �; � 2 <, we have

�+ � � j�� �j () � � 0; � � 0:

Therefore, we have

ct+ 2bTx+ t � jct+ 2bTx� tj () t � 0; tc+ 2bTx � 0:

The correctness of the lemma is now easily veri�ed. Q.E.D.

The advantage of having a second order cone formulation of H(D), D = fx j q(x) � 0g with q(�)
concave, is that we immediately also get a second order cone formulation of the dual cone, H(D)�.

Namely, we have in general for a given k � n matrix B and a cone K that

Bx 2 K� () yTBx � 08y 2 K () x 2 fBTy j y 2 Kg�; (16)

i.e.

fx j Bx 2 K�g = fBTy j y 2 Kg�; (17)

when x is not a vector but a matrix, we may either use the above identity after vectorization, or

interpret BT as the adjoint of a linear operator B.

Corollary 3 Let q(x) = c + 2bTx + xTAx be a concave functions with D = fx j q(x) � 0g 6= ;.
Then

H(D) = fx j Bx 2 SOC(2 + rank(A))g = fBTy j y 2 SOC(2 + rank(A))g�;
where

B =

2
664
c+ 1; 2bT

c� 1; 2bT

0; 2R

3
775 ;

and R is a rank(A)� n matrix such that A = �RTR.
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For the case that b is in the image of A, or equivalently supfq(x) j x 2 <ng <1, a more compact

second order cone formulation is possible:

Lemma 6 Let q(x) = c + 2bTx + xTAx be a concave function with b = A�. Let R be an r � n

matrix such that A = �RTR. Then maxfq(x) j x 2 <ng = c� bT�. If c� bT� � 0 then

t � 0; t2c+ 2tbTx+ xTAx � 0; tc+ 2bTx � 0

if and only if " p
c� bT�; 0

R�; R

# "
t

x

#
2 SOC(r + 1): (18)

5 Dual Matrix Decompositions

This section addresses the problem of computing the Carath�eodory decomposition of a dual matrix

solution Z 2 FC+(D)� into rank-1 solutions Z =
P

N+1
i=1 yiy

T
i
, yi 2 H(D). Moreover, we will use the

decomposition algorithms in this section to obtain LMI characterizations of cones of non-negative

quadratic functions over certain quadratically constrained regions.

5.1 One quadratic constraint

In this subsection we are concerned with a domain given by an upper level set of a single quadratic

function. We shall �rst discuss a relatively simple matrix decomposition problem. A derivation of

the LMI characterization of FC+(D) follows thereafter.

As is well known, a matrix X 2 Sn�n is a positive semide�nite matrix of rank r if and only if there

exist pi 2 <n, i = 1; 2; : : : ; r, such that

X =

rX
i=1

pip
T
i :

Our new proposition is the following.

Proposition 3 Let X 2 Sn�n be a positive semide�nite matrix of rank r. Let G 2 Sn�n be a given

matrix. Then, G �X � 0 if and only if there exist pi 2 <n, i = 1; 2; : : : ; r, such that

X =
rX

i=1

pip
T

i
and pT

i
Gpi � 0 for all i = 1; 2; : : : ; r:

The proof of this proposition is constructive. The crux of the construction is highlighted in the

following procedure.

14



Procedure 1

Input: X;G 2 Sn�n such that 0 6= X � 0 and G �X � 0.

Output: Vector y 2 <n with 0 � yTGy � G � X such that X � yyT is a positive semide�nite

matrix of rank r � 1 where r = rank(X).

Step 0 Compute p1; : : : ; pr such that X =
P

r

i=1 pip
T

i
.

Step 1 If (pT1Gp1)(p
T

i
Gpi) � 0 for all i = 2; 3; : : : ; r then return y = p1. Otherwise, let j be such

that (pT1Gp1)(p
T

j
Gpj) < 0.

Step 2 Determine � such that (p1 + �pj)
TG(p1 + �pj) = 0. Return y = (p1 + �pj)=

p
1 + �2.

Lemma 7 Procedure 1 is correct.

Proof. If the procedure stops in Step 1 with y = p1 then all the quantities pT
i
Gpi, i = 1; : : : ; r

have the same sign. Furthermore, the sum of these quantities is nonnegative, since

rX
i=1

pTi Gpi = G �X � 0:

Therefore, pT
i
Gpi � 0 for all i = 1; 2; : : : ; r. Moreover, X�yyT =

P
r

i=2 pip
T
i
so that indeed X�yyT

is a positive semide�nite matrix of rank r � 1.

Otherwise (i.e. the procedure does not stop in Step 1), the quadratic equation in Step 2 of Pro-

cedure 1 always has 2 distinct roots, because (pT1Gp1)(p
T
j
Gpj) < 0. The de�nitions of � and y in

Step 2 imply that 0 = yTGy � G �X. Moreover, by letting u := (pj � �p1)=
p
1 + �2, we have

X � yyT = uuT +
X

i2f2;3;:::;rg n j

pip
T
i
;

which has rank r � 1, establishing the correctness of Procedure 1. Q.E.D.

Proof of Proposition 3:

It is obvious that the statement holds true for a matrix X of rank 0. Assume now that such is

true for any matrix X with rank(X) 2 f0; 1; : : : ; rg for a certain r 2 f0; 1; : : : ; n � 1g. Consider

X 2 Sn�n

+ with G �X � 0 and rank(X) = r + 1. Applying Procedure 1, and using Lemma 7, we

can �nd y1 such that

rank(X � y1y
T
1 ) = r; X � y1y

T
1 � 0; 0 � yT1 Gy1 � G �X:

15



By induction, we conclude that there exist y2; : : : ; yr+1 such that

X � y1y
T
1 =

r+1X
i=2

yiy
T
i

where yT
i
Gyi � 0, i = 2; : : : ; r + 1. Q.E.D.

Proposition 3 can be readily extended to a more speci�c form, as shown in the following corollary.

Corollary 4 Let X 2 Sn�n be a positive semide�nite matrix of rank r. Let G 2 Sn�n be a given

matrix, and G �X � 0. Then, we can always �nd pi 2 <n, i = 1; 2; : : : ; r, such that

X =

rX
i=1

pip
T

i
and pT

i
Gpi = G �X=r for i = 1; 2; : : : ; r:

The key to note here is that if pT
i
Gpi = G �X=r are not satis�ed for all i = 1; :::; r, then there will

always exist two indices, say i and j such that pT
i
Gpi < G �X=r and pT

j
Gpj > G �X=r. Similar as

in Procedure 1, we can always �nd �, such that (pi + �pj)
TG(pi + �pj) = G �X=r.

Below we shall use the decomposition result in Proposition 3 to get explicit representations of some

non-negative quadratic cones. We will use the property that if K1 and K2 are two convex cones,

then

K�

1 \K�

2 = (K1 +K2)
�; (19)

where K1 +K2 = fx + y j x 2 K1; y 2 K2g; see Corollary 16.4.2 in Rockafellar [10]. In fact, (19)

is a special case of (17) with K = K1 �K2 and B =
h
I; I

iT
. Dualizing both sides of (19), we

also have (using the bi-polar theorem)

(K�

1 \K�

2 )
� = cl(K1 +K2): (20)

Theorem 1 Let q : <n ! < be a quadratic function, and suppose that the upper level set D = fx j
q(x) � 0g is nonempty. Then

conv
n
yyT

��� y 2 H(D)
o
= fX � 0 j M(q(�)) �X � 0g : (21)

The cone of quadratic functions that are nonnegative on D is therefore

FC+(D) = fX � 0 j M(q(�)) �X � 0g� = clfZ j Z � t M(q(�)) � 0; t � 0g: (22)

Proof. Using Proposition 3 and Lemma 2 respectively, we have

16



fX � 0 j M(q(�)) �X � 0g = conv
n
yyT

��� yT M(q(�))y � 0
o

= conv
n
yyT

��� y 2 H(D) [ (�H(D))
o
;

and obviously convfyyT j y 2 H(D) [ (�H(D))g = convfyyT j y 2 H(D)g. This establishes (21).

Using Corollary 1 and relation (21), we have

FC+(D) = convfyyT j y 2 H(D)g� = fX � 0 j M(q(�)) �X � 0g�: (23)

Applying (20), it further follows that

FC+(D) = cl
�
S(1+n)�(1+n)
+ + ft M(q(�)) j t � 0g

�
= clfZ j Z � t M(q(�)) � 0; t � 0g:

Q.E.D.

We remark that in general, the set fZ j Z�t M(q(�)) � 0; t � 0g is not necessarily closed. Consider
for instance the function q : < ! < de�ned as q(x) = �x2, for which D = fx j q(x) � 0g = f0g.
Clearly, the function f(x) = x is nonnegative on D, but the 2� 2 matrix

M(f(�))� t M(q(�)) =
"
0; 1

1; 0

#
� t

"
0; 0

0; �1

#

is not positive semide�nite for any t. However, for any � > 0 and t � 1=�, we have

"
�; 1

1; 0

#
� t

"
0; 0

0; �1

#
� 0:

Letting � # 0, we see in this case that M(f(�)) is (merely) a limit point of fZ j Z � t M(q(�)) �
0; t � 0g.

As a corollary to Theorem 1, we arrive at the following well known result from robust control,

which is known as the S-procedure [14].

Corollary 5 Let f : <n ! < and q : <n ! < be quadratic functions, and suppose that there exists

�x 2 <n such that q(�x) > 0. Let D = fx j q(x) � 0g. Then

FC+(D) = fZ j Z � t M(q(�)) � 0; t � 0g:

This means that f(x) � 0 for all x 2 D if and only if there exists t � 0 such that f(x)� tq(x) � 0

for all x 2 <n.
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Proof. Let y :=
h
1; �xT

iT
and let

Z 2 clfZ j Z � t M(q(�)) � 0; t � 0g:

Then there exist Zk 2 S(1+n)�(1+n) and tk 2 <+ with Zk � tk M(q(�)) � 0 and Zk ! Z. We have

0 � yT(Zk � tk M(q(�)))y = yTZky � tkq(�x);

so that 0 � tk � yTZky=q(�x). It follows that ftkg is bounded and hence it has a cluster point t

such that Z � t M(q(�)) � 0. This shows that

fZ j Z � t M(q(�)) � 0; t � 0g is closed. (24)

By de�nition, f(x) � 0 for all x 2 D if and only if

M(f(�)) 2 FC+(D): (25)

Using (7), we know that f(x)� tq(x) � 0 for all x 2 <n if and only if

M(f(�))� t M(q(�)) 2 FC+(<n) = S(1+n)�(1+n)
+ : (26)

Using Theorem 1 with (24), we have (25) if and only if (26) holds for some t � 0. Q.E.D.

The regularity condition that there exists �x 2 <n such that q(�x) > 0 is equivalent to stating that

M(q(�)) is not negative semide�nite. Namely, q(x) � 0 for all x if and only if �q(�) is nonnegative
on the whole <n, which holds if and only if M(q(�)) � 0; see (7).

For the special case that q(�) is concave, the LMI representation of FC+(D) as stated in Theorem 1

can also be found in Fu, Luo and Ye [3] and Rendl and Wolkowicz [9].

5.2 One quadratic equality constraint

The following proposition states a special case of Corollary 4.

Proposition 4 Let X 2 Sn�n be a positive semide�nite matrix of rank r. Let G 2 Sn�n be a given

matrix. Then, G �X = 0 if and only if there exist pi 2 <n, i = 1; 2; : : : ; r, such that

X =

rX
i=1

pip
T

i and pTi Gpi = 0 for all i = 1; 2; : : : ; r:

Similar to Theorem 1 we obtain from Proposition 4 and Corollary 2 the following result.
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Theorem 2 Let q : <n ! < be a strictly concave quadratic function, and suppose that the level

set D = fx j q(x) = 0g is nonempty. Then

conv
n
yyT

��� y 2 H(D)
o
= fX � 0 j M(q(�)) �X = 0g

and

FC+(D) = clfZ j Z � t M(q(�)) � 0; t 2 <g:

Corollary 6 Let f : <n ! < and q : <n ! < be quadratic functions, and suppose that q(�) is

strictly concave and that there exist x(1); x(2) 2 <n such that q(x(1)) > 0 and q(x(2)) < 0. Let

D = fx j q(x) = 0g. Then f(x) � 0 for all x 2 D if and only if there exists t 2 < such that

f(x)� tq(x) � 0 for all x 2 <n.

The proof of the above result is analogous to the proof of Corollary 5.

Considering both Corollary 5 and Corollary 6 we remark that if a quadratic function f(�) is

nonnegative on the level set D = fx j q(x) = 0g of a strictly concave quadratic function q(�),
then there cannot exist two solutions x(1) and x(2) such that q(x(1)) < 0 and q(x(2)) > 0, but

max(f(x(1)); f(x(2))) < 0.

5.3 One linear and one concave quadratic constraint

In this subsection we will deal with a domain de�ned by one linear and one concave quadratic

constraint.

Let q(x) = c + 2bTx + xTAx be a concave quadratic function with a nonempty upper level set

D := fx j q(x) � 0g. Because of the concavity of q(�), D is convex and hence H(D) is a convex

cone. Using Lemma 4 we have

H(D) =

("
t

x

# ����� t � 0; t2c+ 2tbTx+ xTAx � 0; tc+ 2bTx � 0

)
:

Due to the concavity of q(�), it holds that xTAx � 0 for all x and therefore

(
t � 0; t2c+ 2tbTx+ xTAx > 0 =) t > 0; tc+ 2bTx > 0

t > 0; t2c+ 2tbTx+ xTAx � 0 =) tc+ 2bTx � 0:
(27)

Suppose that a 2 <1+n and X 2 S(1+n)�(1+n)
+ are such that Xa 6= 0. Let U be a matrix of full

column rank such that

X = UUT:
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Then we have Xa = U(UTa) so that

X � 1

aTXa
(Xa)(Xa)T = U

�
I � 1

kUTak2 (U
Ta)(UTa)T

�
UT: (28)

It is clear that the right hand side in the above equation is a positive semide�nite matrix of rank

r � 1, where r = rank(X). This fact is used in Lemma 8.

Procedure 2

Input: X 2 S(1+n)�(1+n), a concave quadratic function q : <n ! < and a vector a 2 <1+n such

that X � 0, M(q(�)) �X � 0, and 0 6= Xa 2 H(D), where D := fx j q(x) � 0g.

Output: One of the two possibilities:

� Vector y 2 H(D) with 0 � yT M(q(�))y � M(q(�))�X and aTy � 0 such that Xnew := X�yyT
is a positive semide�nite matrix of rank r � 1 where r = rank(X), and Xnewa 2 H(D).

� Vector 0 6= y 2 H(D) with 0 � yT M(q(�))y � M(q(�)) �X and aTy � 0 such that Xnew :=

X � yyT is a positive semide�nite matrix, and Xnewa 6= 0 is on the boundary of H(D), i.e.,

aTXnew M(q(�))Xnewa = 0.

Step 0 Let p1 := Xa=
p
aTXa and compute p2; : : : ; pr such that X � p1p

T
1 =

P
r

i=2 pip
T

i
and that

the �rst entry of pi is non-negative, i = 2; : : : ; r.

Step 1 If pT1 M(q(�))p1 � M(q(�)) �X then return y = p1. Otherwise, let j 2 f2; 3; : : : ; rg be such

that pT
j
M(q(�))pj < 0.

Step 2 Determine � > 0 such that (p1 + �pj)
T M(q(�))(p1 + �pj) = 0. Let

v = (p1 + �pj)=
p
1 + �2 and w(t) = Xa� t(aTv)v:

De�ne 
0 and 
1 to be such that w(t)T M(q(�))w(t) = 
0 � 
1t for all t 2 <.

Step 3 If 
1 > 
0 then let y =
p

0=
1v, else let y = v.

Lemma 8 Procedure 2 is correct.

Proof. By de�nition of H(D), Xa 2 H(D) implies (Xa)T M(q(�))Xa � 0. Therefore, if Proce-

dure 2 stops with y = p1 := Xa=
p
aTXa in Step 1 then yT M(q(�))y = (Xa)T M(q(�))Xa=(aTXa) �

0, and rank(X � yyT) = r � 1 as stipulated by (28). Moreover, aTy =
p
aTXa � 0 so that
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Xnewa = Xa � (aTy)y = Xa �Xa = 0 2 H(D). Therefore, the procedure terminates correctly in

Step 1.

Suppose now that the procedure does not stop at Step 1, i.e.

pT1 M(q(�))p1 > M(q(�)) �X � 0: (29)

Using (27), it follows that the �rst entry of p1 is (strictly) positive. Furthermore, since

rX
j=2

pT
j
M(q(�))pj = M(q(�)) �X � pT1 M(q(�))p1 < 0;

it also follows that there is indeed a j 2 f2; 3; : : : ; rg such that pT
j
M(q(�))pj < 0.

The quadratic equation in Step 2 of Procedure 2 always has one positive and one negative root, due

to pT1 M(q(�))p1 > 0 and pT
j
M(q(�))pj < 0. The procedure de�nes � to be the positive root. Because

the �rst entry in pj was made nonnegative in Step 0, it follows that p1+�pj 2 <++�<n. This further

means that the �rst entry in v := (p1+�pj)=
p
1 + �2 is positive. Moreover, vT M(q(�))v = 0 due to

the de�nition of �. As can be seen from (27), these two properties of v imply that 0 6= v 2 H(D).

This proves that 0 6= y 2 H(D) after termination in Step 3.

Using the de�nition of p1 and p2; p3; : : : ; pr, we have

(

rX
i=2

pip
T
i
)a = (X � p1p

T
1 )a = Xa�Xa = 0:

This implies that
P

r

i=2(p
T
i
a)2 = 0 and hence pT

i
a = 0 for all i = 2; : : : ; r. We further obtain that

aTv =
aT(p1 + �pj)p

1 + �2
=

aTp1p
1 + �2

=

s
aTXa

1 + �2
> 0;

and hence aTy � 0 after termination in Step 3.

The scalars 
0 and 
1 in Step 2 are well de�ned, since vT M(q(�))v = 0 due to the de�nition of �.

In fact, it is easily veri�ed that 
0 = aTXa > 0 and 
1 = 2(aTv)(aTXv). To simplify notations, we

de�ne

� :=

(
1; if 
1 � 
0


0=
1; if 
1 > 
0 (> 0)

so that y =
p
�v. By de�nition of 
0 and 
1, we have

w(t)T M(q(�))w(t) = 
0 + t
1 > 0 for 0 � t < �: (30)

Using (27), this implies by a continuity argument that w(�) 2 H(D). However,

w(�) = Xa� �(aTv)v = Xa� (aTy)y = Xnewa;
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so that Xnewa 2 H(D) as desired. Furthermore, we have

� < 1 =) 0 = w(�)T M(q(�))w(�) = aTXnew M(q(�))Xnewa;

which means that Xnewa is on the boundary of H(D) if � < 1. Furthermore, Xnewa = w(�) 6= 0

since w(t) 6= 0 for any t 6= 1.

It remains to verify that if � = 1 then rank(X � yyT) = r � 1, where r = rank(X). We now

introduce u = (pj � �p1)=
p
1 + �2, for which we have the obvious relation

uuT + vvT = p1p
T
1 + pjp

T
j
:

Since � = 1 implies y = v, we therefore get

X � yyT = X � vvT = uuT +
X

i2f2;3;:::;rg n j

pip
T
i
:

It follows that rank(X � yyT) = r � 1. Q.E.D.

We observe from Lemma 8 that if Procedure 2 does not reduce the rank of X then the vector

Xnewa is nonzero and on the boundary of H(D). However, if we apply the procedure to Xnew

we �nd that 0 6= pnew1 = Xnewa=
p
aTXnewa and pT1 M(q(�))p1 = 0. Therefore, the procedure exits

at Step 1 to produce X�nal := Xnew � pnew1 (pnew1 )T with X�nala = 0. We will decompose X�nal

using Procedure 1. Based on this scheme, we arrive at the matrix decomposition result as stated

in Proposition 5 below.

Proposition 5 Let q : <n ! < be a concave quadratic function, D = fx j q(x) � 0g 6= ;,
X 2 S(1+n)�(1+n)

+ and M(q(�)) � X � 0, and a vector a 2 <1+n be such that Xa 2 H(D). Then

there exist yi, i = 1; : : : ; k for some k 2 fr; r + 1g with r = rank(X), such that

X =

kX
i=1

yiy
T

i

and yi 2 H(D) and aTyi � 0, i = 1; : : : ; k.

Proof. We distinguish three cases.

Case 1. If Xa = 0, then we invoke Procedure 1 to obtain X =
P

r

i=1 yiy
T
i
with yi 2 H(D) for

all i = 1; 2; : : : ; r; see Proposition 3. Moreover, since 0 = aTXa =
P

r

i=1(a
Tyi)

2, it follows that

aTyi = 0 for i = 1; 2; : : : ; r. This shows that if Xa = 0 then the proposition holds with k = r.
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Case 2. Consider now the case that Xa 6= 0 and applying Procedure 2 once on X does not reduce

the rank. Apply Procedure 2 to obtain y1 2 H(D) with aTy1 � 0 such that

Xnew := X � y1y
T
1 � 0; Xnewa 2 H(D); M(q(�)) �Xnew � 0:

If rank(Xnew) = rank(X) = r then aTXnew M(q(�))Xnewa = 0 and we can apply Procedure 2 on

Xnew to obtain y2 2 H(D) with aTy2 � 0 such that

X�nal := X � y1y
T
1 � y2y

T
2 � 0; X�nala = 0; M(q(�)) �X�nal � 0;

and rank(X�nal) = r � 1. Since Case 1 applies to X�nal, we know that X�nal =
P

r+1
i=3 yiy

T
i
, with

yi 2 H(D) and aTyi � 0, i = 3; 4; : : : ; r+ 1. Hence, the proposition also holds true for Case 2 with

k = r + 1.

Case 3. The remaining case is that Xa 6= 0 and applying Procedure 2 once on X reduces the

rank. Since the rank is always nonnegative, we can reduce this case to either Case 1 or Case 2 by a

recursive argument: we can now prove the proposition by induction on rank(X). Namely, suppose

now that the proposition holds true for any matrix X with rank(X) 2 f0; 1; : : : ; rg for a certain

r 2 f0; 1; : : : ; ng. Consider X 2 S(n+1)�(n+1)+ with rank(X) = r + 1, for which Procedure 2 yields

a vector y1 2 H(D) with aTy1 � 0 such that

Xnew := X � y1y
T
1 � 0; Xnewa 2 H(D); M(q(�)) �Xnew � 0;

and rank(Xnew) = rank(X) � 1 = r. By induction, we conclude that there exist y2; : : : ; yk+1 for

some k 2 fr; r + 1g such that

X � y1y
T
1 =

k+1X
i=2

yiy
T
i

where yi 2 H(D) and aTyi � 0 for all i = 2; : : : ; k + 1. Q.E.D.

Using similar reasoning as before, the above decomposition result implies an LMI characterization

of FC+(D).

Theorem 3 Let q : <n ! < be a concave quadratic function, a 2 <n+1. Let

D := fx j q(x) � 0g; L := fx j
h
1; xT

i
a � 0g:

Suppose D \ L 6= ;. Then

conv
n
yyT

��� y 2 H(D \ L)
o
=
n
X 2 S(1+n)�(1+n)

+

��� M(q(�)) �X � 0; Xa 2 H(D)
o
:

Consequently, the cone of all quadratic functions that are nonnegative on D is

FC+(D) =
n
X 2 S(1+n)�(1+n)

+

��� M(q(�)) �X � 0; Xa 2 H(D)
o�

= clfZ j Z � (t M(q(�)) + a T +  aT) � 0; t � 0;  2 H(D)�g:
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Proof. By Lemma 4 we know that

H(D \ L) = fy 2 H(D) j aTy � 0g;

and so

conv
n
yyT

��� y 2 H(D \ L)
o
= conv

n
yyT

��� y 2 H(D); aTy � 0
o
:

Suppose that X is a matrix in the above set, i.e. X =
P

k

i=1 yiy
T
i
� 0 with yi 2 H(D) and aTy � 0

for i = 1; 2; : : : ; k. Since yi 2 H(D), we certainly have yT
i
M(q(�))yi � 0 and consequently

M(q(�)) �X =

kX
i=1

yTi M(q(�))yi � 0:

Moreover, aTyi � 0 and yi 2 H(D) for all i = 1; 2; : : : ; k, and

Xa =
kX

i=1

(aTyi)yi:

In other words, Xa is a nonnegative combination of vectors in the cone H(D), which implies that

Xa 2 H(D).

Conversely, for X � 0 with M(q(�)) � X � 0 and Xa 2 H(D), we know from Proposition 5 that

X =
P

k

i=1 yiy
T
i
with yi 2 H(D) and aTy � 0 for i = 1; 2; : : : ; k. We conclude that

conv
n
yyT

��� y 2 H(D \ L)
o
=
n
X 2 S(1+n)�(1+n)

+

��� M(q(�)) �X � 0; Xa 2 H(D)
o
: (31)

Using Corollary 1 and (31), we have

FC+(H(D \ L)) = convfyyT j y 2 H(D \ L)g�

=
n
X 2 S(1+n)�(1+n)

+

��� M(q(�)) �X � 0; Xa 2 H(D)
o�
: (32)

We remark from (17) that

fayT + yaT j y 2 Kg� = �
X 2 Sn�n

��Xa 2 K�	 ; (33)

where the dual is taken in the Euclidean space Sn�n.

Applying (20) and (32){(33), it follows that

FC+(D \ L) = cl
�
S(1+n)�(1+n)
+ + ft M(q(�)) j t � 0g+ fa +  aT j  2 H(D)�g

�
= clfZ j Z � (t M(q(�)) + a T +  aT) � 0; t � 0;  2 H(D)�g:

Q.E.D.
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We recall from Corollary 3 that

H(D) = fx j Bx 2 SOC(2 + rank(A))g = fBTy j y 2 SOC(2 + rank(A))g�;

for a certain matrix B depending on A; b; c. Therefore, Theorem 1 characterizes FC+(D \ L) and
its dual in terms of semide�nite and second order cone constraints. As a corollary to Theorem 1,

we arrive at the following result.

Corollary 7 Let f : <n ! < and q : <n ! < be quadratic functions, and a 2 <n+1. Suppose q(�)
is concave and that there exists �x 2 <n such that q(�x) > 0 and

h
1; �xT

i
a > 0. Let

D := fx j q(x) � 0g; L := fx j
h
1; xT

i
a � 0g:

Then

FC+(D \ L) = fZ j Z � (t M(q(�)) + a T +  aT) � 0; t � 0;  2 H(D)�g:
This means that f(x) � 0 for all x 2 D \ L if and only if there exists t � 0 and  2 H(D)� such

that

f(x)� tq(x)� (
h
1; xT

i
a)(
h
1; xT

i
 ) � 0 for all x 2 <n:

Proof. Let

Z 2 clfZ j Z � (t M(q(�)) + a T +  aT) � 0; t � 0;  2 H(D)�g:
Then there exist Zk 2 S(1+n)�(1+n), tk 2 <+ and  k 2 H(D)� such that

Zk � (tk M(q(�)) + a Tk +  ka
T) � 0; Zk ! Z: (34)

Let y :=
h
1; �xT

iT
. Clearly, aTy > 0 and yT M(q(�))y = q(�x) > 0. Since q(�x) > 0 it follows that

y is in the interior of H(D) and hence

 T
k
y > 0; for all 0 6=  k 2 H(D)�: (35)

Due to (34) we have

0 � yT(Zk � tk M(q(�))� 2a Tk )y = yTZky � tkq(�x)� 2(aTy)( Tk y):

Now using the fact that q(�x) > 0, aTy > 0 and  T
k
y � 0, we obtain that

0 � tk � yTZky=q(�x); 0 �  T
k
y � yTZky=(2a

Ty);
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which shows that tk and  T
k
y are bounded. Furthermore, y is in the interior of the (solid) cone

H(D), so that the facts that  T
k
y is bounded and  k 2 H(D)� implies that k kk is bounded.

Therefore, the sequences tk and  k have cluster points t and  respectively, and

Z � (t M(q(�)) + a T +  aT) � 0:

It follows that

fZ j Z � (t M(q(�)) + a T +  aT) � 0; t � 0;  2 H(D)�g is closed. (36)

The corollary now follows by the same argument as in the proof of Corollary 5. Q.E.D.

We remark that, using the problem formulation (MD) in Section 3, minimizing a quadratic function

f(�) over the set D \ L can now be equivalently written as

minimize M(f(�)) �X
subject to M(q(�)) �X � 0

Xa 2 H(D)

x11 = 1

X � 0:

This formulation, which is a semide�nite programming problem with the same optimal value as the

original problem, is di�erent from a straightforward semide�nite relaxation problem

minimize M(f(�)) �X
subject to M(q(�)) �X � 0

eT1Xa � 0

x11 = 1

X � 0:

Notice that e1a
T + aeT1 is the matrix representation of the linear inequality, so that the above

relaxation corresponds to applying the S-procedure with two quadratic constraints. This relaxation

may admit a gap with the original problem. For instance, if q(x) = 1 � x2, a =
h
0; 1

iT
and

f(x) = 1+x�x2, then the optimal solutions are x = 1 or x = 0 with value f(x) = 1. However, the

optimal solution to the straightforward semide�nite relaxation is X = I with value M(f(�))�I = 0.

Indeed, Xa = e2 62 SOC(2) so that X cannot be decomposed as a convex combination of feasible

rank-1 solutions.

6 Conclusion

The results claimed in Theorems 1, 2 and 3 are quite powerful. They characterize, using linear

matrix inequalities, all the quadratic functions that are nonnegative over the respectively speci�ed
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domains. If we decompose the dual optimal solution using procedures 1 and 2, we �nd that all the

components yi yield optimal solutions and directions to the (non-convex) quadratic optimization

problem. To the best of our knowledge, such decomposition procedures have not been proposed

before.

In trust region methods for nonlinear programming, one often needs to solve problems of type (P)

in Section 3, where D is a unit ball. The problem is known to be solvable in polynomial time;

for detailed discussions, see [15]. Our result extends the polynomial solvability property to a non-

convex quadratic constraint (inequality or equality) and a non-convex quadratic objective. Another

case that we can handle is a non-convex objective with a concave quadratic inequality constraint

and an additional linear restriction. The complexity status of the problem to minimize a non-

convex quadratic function over the intersection of two general ellipsoids is still an open problem in

the study of trust region methods. However, our last application solves this problem for the special

case where the two ellipsoids, or more generally, level sets of two concave quadratic functions, have

the same geometric structure (may still be of very di�erent sizes)1. Speci�cally, consider

minimize q0(x)

subject to q1(x) = xTQx� 2bT1 x+ c1 � 0

q2(x) = xTQx� 2bT2 x+ c2 � 0:

The key to note is that the feasible set of the above problem can be viewed as the union of two sets

fx j xTQx� 2bT1 x+ c1 � 0g \ fx j 2(b2 � b1)
Tx+ c2 � c1 � 0g

and

fx j xTQx� 2bT2 x+ c2 � 0g \ fx j 2(b1 � b2)
Tx+ c1 � c2 � 0g:

Minimizing an inde�nite quadratic function q0(x) over each of these sets individually can be solved

via an SDP formulation as shown in this paper. Hence, applying the method twice solves the whole

problem.
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