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Abstract

The Cardinality Constrained Circuit Problem (CCCP) is the problem of finding a mini-
mum cost circuit in a graph where the circuit is constrained to have at most k edges. The
CCCP is NP-Hard. We present classes of facet-inducing inequalities for the convex hull of
feasible circuits.



1 Introduction

In the knapsack constrained circuit problem (KCCP), we are given an undirected graph G =
(V,E), a cost ¢, for each edge e € E, a weight w, > 0 for each vertex v € V, and an integer k.
The objective is to find a minimum cost circuit (i.e., a simple cycle) subject to the constraint
that the sum of the weights on the vertices in the circuit is at most k. The KCCP is easily seen
to be NP-hard, because when we subtract a sufficiently large constant from the cost of each edge
and set k=3 .

Although the KCCP is an interesting optimization problem, its importance to us stems from
the fact that it can be used to model the pricing problem in branch-and-price algorithms for
the vehicle routing problem. For a comprehensive discussion of branch-and-price algorithms for
vehicle routing problems the reader is referred to [DSD8&4].

In branch-and-price algorithms for vehicle routing problems, the pricing problem is usually
solved by dynamic programming, i.e., multi-label shortest path algorithms. Solving the pricing
problem by a branch-and-cut algorithm, rather than a dynamic programming algorithm, may

wy, we obtain a traveling salesman problem.

have several computational advantages. First, good feasible solutions, corresponding to columns
with a negative reduced cost, may be found quicker because multi-label shortest path algorithms
find feasible solutions only when the sink node is labeled, which may take a long time if the
underlying network is large. Secondly, using a branch-and-cut algorithm, it is not necessary to
solve the problem to optimality to show that no negative reduced column exists. As soon as the
global lower bound becomes nonnegative, we know the optimal solution will be nonnegative as
well. Finally, if the state space cannot be pruned by restrictions such as time windows, a dynamic
programming approach begins to resemble exhaustive search.

We are interested in investigating the advantages and disadvantages of using a branch-and-
cut algorithm, rather than using dynamic programming, to solve the pricing problem within a
branch-and-price algorithm for vehicle routing problems.

Developing a branch-and-cut algorithm for the KCCP is also interesting from another per-
spective. The polytope defining the set of feasible solutions to the KCCP is the intersection of
two other polyhedra, namely the knapsack polytope and the circuit polytope. We know a lot
about the structure of both these polyhedra, and it is interesting to learn more about the value
of this knowledge when it comes to developing a branch-and-cut algorithm for the KCCP.

To facilitate our investigation, we have decided to start with the special case of unit weights,
i.e., the cardinality constrained circuit problem (CCCP). The CCCP models the pricing problem
that arises in branch-and-price algorithms for the vehicle routing problem with unit demands.

Before we discuss problems that are related to the KCCP and the CCCP, we first present a
transformation that converts node related information to edge related information. This trans-
formation allows us to look at the problems from different perspectives. The weight w, for v € V'
can be placed on the edges by introducing an edge weight w, = 0.5(w,+w,) for alle = {u,v} € E
and requiring that the sum of the weights on the edges in the circuit be at most k.

In the capacitated prize collecting traveling salesman problem (CPCTSP) [BCSL96], we are
given an undirected graph G = (V, E), a travel cost ¢, for e € E, a reward p, and weight w, for
v € V, a depot node vg € V, and a capacity W € Z,. The objective is to find a route, or set
of edges, R starting and ending in vy that maximizes the collected rewards minus the incurred



travel costs, i.e., EUEV(R) Pv — Decr te; subject to the constraint that the total weight on the
route, i.e., EUGV(R) Wy, does not exceed the capacity W.

In the orienteering problem (OP), we are given a graph G = (V, E), rewards p, for v € V, a
depot node vy € V, travel costs t. for e € E, and an upper bound @ € Z. The objective is to
find a route R starting and ending at vy that maximizes the total collected reward ( >, cV(R) Dv)
subject to the constraint that the total travel cost (3 . pt.) is less than Q. Heuristics for
solving the OP are given by Golden et al. [GWL88] and Ramesh et al. [RYK92]; and polyhedral
approaches for OP are given by Fischetti et al. [FGT98] and Leifer and Rosenwein [LR94].

Applying the transformation presented above, we see that the CPCTSP and OP are equivalent
problems. Furthermore, if we remove the requirement that the route goes through the depot node,
then the CPCTSP and OP are also equivalent to the KCCP.

In the prize collecting traveling salesman problem (PCTSP) [Bal89], there is a reward for
visiting a node and penalty for not visiting a node. The objective is to minimize the sum
of the penalties and the travel costs subject to the constraint that the total collected reward
should be greater than or equal to a given minimum. A heuristic for the PCTSP in which the
prize requirement is not considered is given by Bienstock et al. [BGSLW93]. Polyhedral based
approaches to the PCTSP are presented by Balas [Bal89] and Pillai [Pil92].

If we remove the remove the knapsack constraint from the KCCP, we are left with the weighted
girth problem (WGP) or circuit problem (CP), where we are trying to find a minimum cost circuit
in a graph. Bauer [Bau94, Bau97] studies the WGP problem in great detail, presents facet
defining inequalities for its underlying polyhedron, and provides a branch-and-cut approach for
its solution. Wang [Wan95] examines both the CP and the closely related Eulerian subtour
problem.

The remainder of the paper is organized as follows. In Section 2, we give two integer program-
ming formulations for the CCCP and present basic results on the facial structure of the polyhedra
associated with the convex hulls of feasible solutions for both formulations. In Section 3, we show
that many facet inducing inequalities for the WGP polyhedron are also facet inducing for the
CCCP polyhedron. In Section 4, we derive new classes of facets for the CCCP polyhedron.

2 Integer Programming Formulations of the CCCP

In order to ease the exposition, we will first introduce a few definitions. For V' C V, define
EWV') = {(
s(v') = {(

In addition, we will write é(v) instead of 6({v}) for v € V. For a given subset of edges E' C E,
we use the notation

V! {(i,j) e E:ieV' jeV'}, and
VY= {(i,j)eE:icV' jgV'}.

i
i

V(E'Y={veV:ENjw) #0}

to define the set of nodes spanned by E'.



To formulate the CCCP, we use decision variables z., e € E, and y,, v € V, to describe a
circuit C' with the following meanings:

1, ifeeC,
Te = 0, otherwise,
and
y :{1 if v e V(C),
! 0 otherwise.

For notational convenience, we often write z(E") for ), z. for a set of edges E' C E, and
y(V') for 37 oy yo for a set of vertices V! C V. Also, for two subsets S,7 C E, SNT =0, we

let
z(S:T)= Z T

seS,teT

An integer programming formulation of the CCCP can be given as follows:

Minimize
Z CeTe (2.1)
eCE
subject to
z(6(v)) =2y, Yv eV, (2.2)
2(6(5)) 2 2(yu +y» — 1) VS CV, 3|5 <n =3,
ue S, veV\S§s, (2.3)
z(E) >3, (2.4)
z(E) <k, (2.5)
z. €{0,1} Ve € E, (2.6)
¥y €{0,1} YveV. (2.7)

In this formulation, the degree equations (2.2) ensure that a feasible solution goes exactly
once through each visited node, and the disjoint circuit elimination constraints (2.3) make sure
that our solution is a connected circuit. Constraint (2.4) eliminates the null circuit, constraint
(2.5) is the cardinality constraint, and constraints (2.6) and (2.7) give the integrality conditions
on our variables.

Let C,, be the set of circuits of K, the complete graph on n nodes, and let x“ be the incidence
vector of a circuit C. We are interested in studying the cardinality constrained circuit polytope

PEE = conv{(x%, x" T e REFIVI|C e ¢,,|C| < k}
= conv{(z,y)T € REFIVI|(z y) satisfies (2.2) — (2.7)}.

Pg’k is precisely the intersection of the two polytopes:

Pz
I

conv{(z,y) € REFIV|(z ) satisfies (2.2) — (2.4), (2.6) — (2.7)} and
conv{z € REl|z satisfies (2.5) and (2.6)}.



Hence, any valid inequality for PZ or P}} is also valid for Pg’k. We will show that in many cases
facet defining inequalities for P7 and P! are also facet defining for Pg’k.

By substituting out the node variables y, (v € V') using (2.2), we obtain a formulation of the
CCCP that uses only edge variables z. (e € E).

Minimize
> e
c€E
subject to
z(6(v)) <2 Yo eV, (2.8)
z(6(v) \e) —z. >0 Yo € V,e € §(v),

)
—z((S:T))<2 Ve = (u,v) € E such that
S, T is a partition of

VA {u,v},|S]IT| = 2, (2.10)

2(E) >3, (2.11)
2(E) <k, (2.12)
z. € {0,1} Ve € E. (2.13)

The degree constraints (2.8) and the parity constraints (2.9) ensure that every vertex has
degree zero or two. The disjoint circuit elimination constraints (2.10) ensure our circuit is
connected. Since there are no node variables in this formulation, the associated cardinality
constrained circuit polytope and circuit polytope have different definitions:

P2F = conv{x“ e Rl | C e C,,|C| <k}

{z € RIFl|z satisfies (2.8) — (2.13)}

and
P2 =conv{x“ e R¥ | C €C,,}.

Bauer [Bau94] [Bau97] and Wang [Wan95] have studied the facial structure of PZ and we will
frequently use their results.

Our next goal is to show some properties of the polytopes introduced above and to establish
relations between them. Similar proofs appear in [BCSL96].

Theorem 2.1 For4 <k <mn,
dim(PZ) = dim(P%) = dim(P2"*) = dim(P%*) = |E| = n(n — 1)/2.

Proof. Bauer [Bau94] and Wang [Wan95] establish that dim(Pg) = |E|. Their proofs use circuits
of at most length four, so dim(ﬁg’k) = |E|. The rank of the set of equalities (z(d(v)) = 2y, Yv €
V) is |V|; thus, dim(P%) < |E| and dim(Pg’k) < |E|. The proofs of Bauer and Wang show that
there are |E| + 1 circuits (of length at most 4) whose incidence vectors z € RIZ! are affinely



independent. For these same circuits, the incidence vectors in terms of edge and node variables
(z,y)" € REFIVI are also affinely independent, so dim(PZ) > |E| and dim(P%*) > [E|. O

Since the two formulations of the CCCP describe the same set of feasible circuits, we would
also suspect that their polyhedra have the same facets.

Theorem 2.2 If the inequality a”x < ag is facet defining for Pg’k, it is also facet defining for
PR IfbTa+dy < by is facet defining for P3*, then hTa < by, where h = (h);; = bj+1(d;+d;)
is facet defining for Pg’k.

Proof. If a”z < ag is facet defining for Pg’k, there are |F| affinely independent circuits that
satisfy a’z = ag. These same |E| circuits written in terms of edge and node variables are also
affinely independent and satisfy the equality a” z = ag. If T z+d”y < by is facet defining for Pg’k,
then there are |E| affinely independent circuits (z*,y")7, (22,42)7,..., («/E, y/ENT ¢ RIEFIVI
such that bTxd +dly/ = by Vj = 1,2,...|E|. As y, = 2(6(v))/2 Vv € V, we find by substitution
that these circuits also satisfy h”7z = by. Further, the incidence vectors of circuits z!, z2, . .. z! Pl

are affinely independent, for if not, we would have

1,2 B
g2 lE ' 2?2 .. 2lP
|E| > rank L1 L= rank | y' 2 ... ylPl (2.14)
—1-1... -1
which would imply that the original circuits (z!,y")7, (22,37, ..., (@B, yENT ¢ RIFFIVI were

not affinely independent. [

Since the polyhedra are the same, we use only the notation Pg’k when referencing either
polyhedron for the remainder of the paper.

Let us introduce the following two polytopes which are closely related to P% and Pg’k. For a
node set K CV, we let

PX = conv{(x%, xV )T e REFIHIKL | ¢ ig a circuit in G(K) = (K, E(K))}

and

PYE = conv{(x%, xV ()T ¢ RIEHIVE ¢ € ¢,, C covers only nodes in G(K)}
= conv{(x%, x"NT e REHVI | c e C,, 2. =0for all e ¢ B(K),

yy =0 for all v ¢ K}.

The following lemma will be useful in helping us characterize when facet defining inequalities
for P% are also facet defining for Pg’k.

Lemma 2.3 Let 4 <k <n and let az + fy < ag be facet defining for P%. Suppose there is a set
K CV with | K| < k such that the restriction az+ fy < ap of ax+ fy < ap to G(K) = (K, E(K))
is facet defining for PX . Moreover, assume that for any e € E \ E(K) there is a circuit C' € C,,
with e € C, |C| < k and ax® + fxV(©) = ay. Then az + fy < ay is facet defining for Pg’k.



Proof. Since az + fy < ao defines a facet of Pk, we can conclude that az + fy < ao defines
a facet of PN, With P2™ = P2% 0 {(x,9)T € RFTY |z, = 0foralle € E\ BE(K),y, =
0 for all v € K}, the claim follows from the existence of a circuit C' € C,, with e € C, |C| < k,
and ax® + fxV(© =ao Ve € E\ E(K). O

Bauer [Bau94] has characterized when the basic inequalities defining PJ are facet inducing.
Because of Theorem 2.2 and the fact the proofs require only circuits of lengths 3 and 4, we have

Theorem 2.4
(i) The trivial inequalities z. > 0, e € E, define facets of Pg’k forn >5 and k > 4.
(ii) The degree constraints z(J(v)) < 2, v € V, define facets ong’k forn > 5 and k > 4.

(iii) The parity constraints z(6(v) \z.) —z. > 0, v € V, e € §(v), are facet inducing for Pg’k,
n>5and k > 4.

(iv) Let e = (u,v) € E, and let S,T be a partition of V \ {u,v} with S,T > 2. Then the
disjoint circuit elimination constraint

Te+z((u:T))+z((v:S)—z((S:T)) <2
defines a facet ong’k, n > 6 and k > 4.

v) The inequality z(E) > 3 is facet defining for P** n > 5 and k > 4.
( ) Y g C

Next, we show that the cardinality constraint, which is facet inducing for P}’ is also a facet
inducing for Pg’k.

Theorem 2.5 Let 4 < k < n. Then the cardinality constraint
z(E) <k
is facet defining for Pg’k.

Proof. Assume that there is an inequality bx < by, b € IRlEl, b # 0, which is valid for Pg’k and
satisfies {z € Po* | 2(E) = k} C {x € P2" | bz = by}.

Let f = (u,v) and ¢ = (w, z) be any two nonadjacent edges in E, define h = (v,w), | = (u, 2),
and let C be a circuit of cardinality k& containing the edges f and h, but not the node z. With
C' = C\ {f, h}U{g,1}, we have by® = bx“" = by and thus

bf+bh:bg+bl.
Analogously, we can derive
bg + by, =b + bf

and get b, = bs. Since for any two adjacent edges, we can find an edge which is not adjacent
to either of them, we get the same coefficient for all edges e € E. This immediately yields that
bx < by is a positive multiple of z(E) < k. O



In the next sections, we introduce valid inequalities and facets for the polyhderon Pg’k that
do not explicitly appear as inequalities in the integer programming formulation. In Section 3,
we give conditions under which some facets of Pj are also facets of ng In Section 4, we derive
valid inequalities and facets for Pg’k which are not valid inequalities for P%. Some of the these
are obtained from lifting facets of PZ that define only lower dimensional faces of Pg’k, and others
are obtained independently.

3 Inequalities from the Circuit Polytope

In this section, we show that two classes of valid inequalities for P7 are also valid for Pg’k. The
cut inequalities are facet inducing for both P% and Pg’k for n > 7. The forest inequalities are
facet defining for P% for n > 7, and facet inducing for Pg’k if an easy to check condition is
satisfied.

3.1 The Cut Inequalities

The cut inequalities, introduced by Seymour [Sey79], generalize the parity constraints (2.9). They
are shown to be facet defining for P%, n > 2, by Bauer [Bau94]. Her proof involves only circuits
of length 3 and 4 and thus immediately yields the following theorem.

Theorem 3.1 Let n > 7 and k > 4. For S CV,3 < |S| < n—3, and e € §(5), the cut
inequality

z(6(S)\e) —z. >0

is facet defining for Pg’k.

3.2 The Forest Inequalities

Bauer [Bau94, Bau97] gives several classes of facet defining inequalities for PZ that are derived
using the fact that the traveling salesman polytope is a face of the circuit polytope. Among them
are the forest inequalities, which are obtained from the facet inducing clique tree inequalities of
Grotschel and Pulleyblank [GP86]. It turns out that, if an easy to check condition on the “size”
of the inequality is satisfied, the inequality is also a facet for Pg’k.

A clique tree is a connected graph composed of cliques which satisfy the following properties
(in the following a clique tree is always considered a subgraph of K,,):

1) The cliques are partitioned into two sets, the set of handles and the set of teeth.

2) No two teeth intersect.

3) No two handles intersect.

4) Each tooth contains at least two nodes, at most n — 2 nodes, and at least one node not

belonging to any handle.

(1)
2)
3)
(4)



(5) For each handle, the number of teeth intersecting it is odd and at least three.

(6) If a tooth and a handle intersect, then their intersection is an articulation set of the clique
tree.

Suppose we are given a clique tree with handles Hy, ..., H, and teeth Ty, ..., T;. For every
tooth T}, we denote by ¢; the number of handles which intersect T;. Choose from every tooth
T;, 1 < j <t, anode r(j) not belonging to any handle, referred to as the root of T;. Choose
from every nonempty intersection H; N7, 1 <i <r,1<j <s, of a tooth and a handle a node
u(i, 7), which we call the link of H; and T;. Define R to be the set of all roots 7(j), 1 < j <'s,
and U to be the set of all links u(i, j), where 1 <@ <r,1<j <s, and H; NT; # (. Using the
result of Bauer [Bau94] and performing the substitution z(d(v)) = 2y, Yv € V, the following can
be shown to be true.

Theorem 3.2 Let a clique tree of K, n > 6, be given by a set of handles Hy, ..., H., r > 1,
and a set of teeth Ty, ..., Ts. Let R be a set of roots and U a set of links. Then the forest
inequality

S (BHY) + Y #(BT) £ Y yH) + Y (1) — 1) —y() = y(R) + 5= 1)

i=1 j=1
is facet defining for PZ.

Using Lemma 2.3, we can find a sufficient condition for a forest inequality to be facet defining
for Pg’k.

Theorem 3.3 Letn > 9,4 < k < n, and let ax+ fy < ag be a forest inequality with set of roots
R and set of links U. Then azx + fy < ay is facet defining for Pg’k whenever |R| + |U|+ 2 < k.

Proof. We let K = U UR and apply Lemma 2.3. Let e = (u,v) be any edge not contained
in E(K). The inequality ar + fy < ao, where (a, f) is the restriction of (a,f) to G =
(K U{u,v}, BE(K U {u,v})) is also a forest inequality and hence there is a circuit C' of length at
most |K U {u,v}| < k containing e and satisfying ax¢ + fxV(©) = ax® + fxV (@) =ao. O

If r=1and [T;NHi| =1Vj =1,...,s, we call the inequality a simple forest inequality.
Simple forest inequalities correspond to the simple comb inequalities of the TSP polytope. If, in
addition, |Tj| = 2 Vj = 1,...,s, we call the resulting inequality a 2-forest inequality. 2-forest
inequalities correspond to 2-matching inequalities of the TSP polytope.

4 Inequalities Specific to the Cardinality Constrained Cir-
cuit Polytope

In this section, we derive valid inequalities for Pg’k that are not valid for P%. The first two, the
cardinality-path inequalities and the k-partition inequalities are derived from first principles. They



are also shown to be facet inducing for Pgl” The second two, the cardinality-tree inequalities
and the mazimal set inequalities are obtained by strengthening inequalities known to be valid
and facet inducing for PZ.

4.1 The Cardinality-Path Inequalities

If P is a path with k£ edges and C is a circuit of cardinality at most k, then the cardinality-path
inequality corresponding to P says that C' never uses more edges of P than inner nodes of P.

Theorem 4.1 Let 4 < k < n, P be a path in K,, consisting of k edges, and P denote the set of
inner nodes of P. Then the cardinality-path inequality

z(P) <y(P)
defines a facet of Pg’k.

Proof. First, we prove that the cardinality-path inequalities are valid for Pg’k. Suppose for a

contradiction that C'is a feasible circuit satisfying z(P) > y(P) + 1 for some path P consisting
of k edges. By definition y(P) = k— 1, so z(P) > k. Since C is a circuit, z(C'\ P) > 1, but then
z(C) = z(C\ P) + z(P) > k, so C was not feasible.

We will use the “indirect-method” to show that the cardinality-path inequality is facet defin-
ing. Let us assume that we have an inequality bz < dy + by, b € IRlEl, d e IR‘Vl, (b,d) # 0,
which is valid for P2" and satisfies {(z,y)T € P2* | z(P) = y(P)} C {(z,9)T € PY* |
br = dy + bp}. If we can show that there is a A > 0 and a vector p € IR‘Vl, such that
br — dy = Az(P) — y(P)) + Y vev Ho(z(6(v)) — 2y,) and by = 0, then z(P) < y(P) is facet
defining for P2".

The columns in the coefficient matrix corresponding to the node variables y, v € V are
linearly independent. Therefore, with an appropriate choice of multipliers p,, we can fix the
values of d, v € V to be ]

dv:{l’ ifve P,
0, otherwise.
We assume that V = {1,...,n} and P = {(1,2),(2,3),...,(k,k + 1)}. Define the following

circuits:

Co ={(1,2),(2,k+1),(k,k+1),(1,k)},
CLJ' =1{(1,2),(2,3),...(G = 1,4),(1,5)}, 3<j <k,
Ci;  =11,2),(2,3),...( — 1,5),

(1,k+1),(j,k+l)}, 2<j<k-1,
Cj7k+1 = {(.]7.] + 1)5(] + 15.] +2)7

---;(k7k+1)7(j>k+1)}7 QSJSk_ly

Cj,k+1 = {(]).7 + 1)7(] + ]-7] +2))
"'7(k7k+1)7(17j)7(17k+1)}7 3§j§k7

Ci,j = {(172)77@ - lal)a(la.])a(.]7.7+1)a
o (B k+1), (1, k+ 1)}, 2<i<j—-1<k.



The incidence vectors of all circuits defined above satisfy z(P) = y(P) and hence bz = dy+bo.
We will first show that by = 0. Observe that for any j € {3,...,k — 1} we have

Xé1,2 + Xék,k+1 + Xcl,j + ch,k+1 _ XCO _ Xél,j _ Xéj,kJrl =0

and thus b0 = d0 + by which yields by = 0.
We start determining the coeflicients of b by looking at the circuits C; ; and C ; for some
je{3,...,k—1}. We get

bio + ...+ bj_1; + b =j-1
blyg + ...+ bjflyj + bl,k+1 + bj,k+1 = ] -1

and thus b1 j = by g+1 +bj k1. Analogously, from Cj ;41 and éj,k+1, we get bj g1 = b1 j + b1 k1
and hence bj ;1 = b1 ; and by p41 = 0.
Now, consider the circuits Ci ; and C j+1, 3 < j < k—1. We have

bio + ...+ bj 1 + by =j—1
bz + ...+ bj1 + bjj+1 + bt =
and thus
bjj+1 +brj+1 — b1 =1. (4.15)

The circuits Cj 41 and Cjq1 41 give us, for 2 < j <k —2,

bjjr1 + bjyijee + oo+ brrrr + bjri =k—j
bj+1,j+2 + ...+ bk,k+1 + bj+1,k+1 =k—-—j5—-1
and hence
bjj+1 + bjktr = bjpiper = 1. (4.16)

Since for 3 < j < k—1, we have by j = b; x41 and for 2 < j < k—2 we have by j4+1 = bj+1,6+1,
we get, with the equations (4.15) and (4.16) b; j+1 = 1 and b1 j = by j41 for 3 < j < k —2. Thus,
we know that b;j11 =1for3<j<k—-2andbj=bjp41 =afor3<j<k—-1

To calculate the coefficients by 3 and by_1 , we look at C 3 and Cj—1 1. We get

b1’2 + b2’3 + a = 1
br—1k + bprt1 +a =1

and thus
bio+baz—br_1r —bprt1 =0. (4.17)

From the circuit Cs ;41 we get

bag +k—4 + bp_1p + bppy1 +bop1 =k—1

10



or equivalently
bas + bp 1k + brry1r + bogp1 = 3.

Adding this equation to (4.17), we obtain by o+2bs 34+ba 11 = 3. From C} o, we get by o4bs 11 =
1, and thus, we have by 3 = 1. Analogously, we can derive b,_; ;, = 1. Equation (4.15) for j = k—1
gives us b1 ; = a and equation (4.16) for j = 2 gives us b2 g+1 = a.

From the circuits C~’1,2 and ék’kJrl, we get by 2 +a =1 and by x4+1 +a =1 and thus by 5 =
bk,k+1 =1-a.

Now, leti e {2,...,k—2},j € {4,...,k} and j > i+ 1. The circuit C; ; gives us 2(1 — a) +
(i—2)+(k—j)+b;; = (i—1)+(k+1—j) and thus 2(1 — &) + b; ; = 2. Hence, we have b; ; = 2a
forall2<i<j—-1<k-1

So far, we considered all edges with both endnodes in V(P). Now we will determine the
coefficients for edges with one node in V(P). Assume now that we have a node v ¢ V(P).
Observe that, if C' is a circuit satisfying x(P) = xV(¢) (P), every circuit C' obtained from C' by
replacing an edge (i,7) € C'\ P by the edges (i,v) and (v, ) also satisfies x°(P) = xV(©)(P).
Thus, we know that for all (,j) € E(V(P)) \ P, we have b; , + b, j = b; ;. This yields

bl,v + bk+1,v =0
bl,v + bj,v =
by + brt1y = @

where j € {3,...,k} and | € {2,...,k —1}. We get b1y = b1, = 0 and b;, = « for
je{2,...,k}.
Finally, for two nodes v,w € V \ V(P), we get by, = 0 by looking at the circuit C =

{(1’ 2)7 (]"U)’ (U’w)’ (2,’11})}-

Now, let A = 1 — 2a and consider the vector b — Ax*. We have

(1-a—(1-2a)=a fore=(1,2)ore=(k,k+1),

a fore=(1,5),3<j<kor
e:(j7k+1))2gjgk_]-v

1-(1-2a)=2a fore=(5,j+1),2<j<k-1,

(b—AXP)e:“a fore = (i,j), 2<i<j—1<k—1,

0 fore=(1,k+1),

a for e = (4,v), v ¢ V(P), j €1{2,...,k},

0 fore=(1,v), e= (v,k+1) or

L e= (v,w), v,w ¢ V(P).

Thus bz —Az(P) = a ), pr(6(v) = 2ay(P). With 2a = 1—\, we have bz —Az(P) = (1-\)y(P)
which is equivalent to

br — y(P) = \x(P) — \y(P).
Since e.g. the circuit C' = {(1,3), (3, k+1), (1, k + 1)} satisfies by® < xV(©)(P), we have 2a < 1,
which is equivalent to A > 0. We assumed that b,d # 0 and thus we have shown that the

inequality bz < dy + by is a positive multiple of z(P) < y(P). O
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4.2 The k-Partition Inequalities

The k-partition inequalities ensure that we use enough edges across a partition of V' into sets of
size k — 1.

Theorem 4.2 Let 4 <k <n, s =[:2;] and V = J;_, V; be a partition of V with |V;| = k — 1
for1<i<s—1and|Vs|] <k—1. Then

23 (B + Y 3wV 1) < 26k 1)

i=1 j=it+1
is facet defining for Pg’k.

Proof. To see that the k-partition inequalities are valid, note that all circuits of length k& — 1
satisfy the inequality. Further, a circuit of length k& must use at least two edges in Uf;ll i1 (Vi:
V;), so the inequality is satisfied in this case as well.

We now show that the k-partition inequalities are facet defining for Pgl” Let the inequality
25 2(B(V;) + Yo Y (Vi = Vi) < 2(k — 1) be denoted by az < ao. Suppose
that we have an inequality bx < by, b € IRlEl, b # 0, which is valid for Pg’k and satisfies
{z € P*|az = ap} C {x € P2"|bz = bo}.

Let biz < by be the restriction of the inequality bz < by to E(V;), for 1 < i < s. We first
show that we may write b = b’ + i A where p' € RF=!, A% is the node edge incidence matrix
corresponding to G; = (E(V;),V;) and where k — 1 components of b%, which correspond to a
linearly independent subset of the columns of A%, are fixed to any values.

Since each Hamiltonian circuit H of G; satisfies ax™ = ay, it is also true that bixH = by.
Therefore the inequality b’z < by must be a linear combination of the constraints z(6°(v)) < 2,
where §%(v) is the set of all edges in E(V;) which are incident to v. Therefore, b® = o A®.

Without loss of generality, assume that the columns 1,2,...,k — 1 of A’ are linearly indepen-
dent. The submatrix A* generated by these columns is nonsingular, so we may select any values
of b, b, ...,bt | and find multipliers 7% = (7}, 74...,7} ) such that (b%,b5,...,bi ) = T A%
Let b* = 7*A’. Then

by =b' 4+ 0A' — TPA = b 4 Pl A,
with pé = o — 7%, and k — 1 components of b’ are fixed to values of our choosing.

Now let i =1and V; = {1,...,k—1}. Wefix bl , =2forall 2<t < k—1and b}, =2 If
k = 4, we have INJ},t =2, for all r,t € {1,2,3}, r #t.

Else, if £ > 6, let r € {4, ...,k — 2} and consider the circuits

c={1,r),(r,r—-1),...,(4,2),(2,3),8,r+1),...,(k—2,k—1),(1,k - 1)}

and
C={1,2),(2,4),...,(r—1,7),(r3),3,r+1),..., (k= 2,k —1),(k—1,1)}.

Fork=5and r=4or k> 6 and r = k — 1, define

c={1,r),(rr-1),...,(4,2),(2,3),(3,1)}
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and

C=1{(1,2),(2,4),...,(r —1,7),(r,3),(3,1)}.
From C and C, we get . . . .
b%,r + b%,3 = biQ + bé,r

and hence B%,r = 2. By iterating this argument, we get IN);T =2forallg,re{1,....,k—1},q #r.

Thus, we have b = 2I + p' A', where I is the vector of 1’s. Similarly, we can derive b’ =
20+ Al 1<i<s—1.

Now, let i € {2,...,s} with |V;] > 2. Let v € V1 \ {1,2} and let P, be a path in E(V}) having
endnodes 1 and 2 and containing all nodes of V; except node v. Let e = (u,w) € E(V;) and

consider the circuit
C. = P, U{(u,w), (1,u),(2,w)}.

We have

k—1
P'x =2k =3)+2 > pj— i — b+ buw + bru + 2w = bo
j=Li#v

and since the last equation holds for all v € V5 \ {1,2}, we get ul =: A! for all v € V; \ {1,2}.
Repeating this argument, we get pul =: A! also for v € {1,2} and hence b' = 21 + (A\'T)AL.
Analogously, we get b' = 21 + (N T)A?, for all 1 < i < s where |V;| > 2.

Moreover, any Hamiltonian circuit in V;, 1 < i < s — 1, gives us by = 2(k — 1) + 2\i(k — 1)
and thus, we conclude \; =: X for all 1 <i < s —1 and b® = 2T+ (\I) A"

Now, choose an arbitrary node z ¢ V;. Let

Ci2=Pi2U{(1,2),(2,2)}
and
Coz =P 3U{(2,2),(3,2)}
where P,;, r,t € V1, r # t, denotes a Hamiltonian path in V; with endnodes r and t. We have
bXCLz = 2(k: — 2) + 2(/{: — 2))\ + bl,z + b2,z = by
bx©23 = 2(k —2) + 2(k —2)\ + + ba, + b3 = by
and thus by . = bs .. Similarly, we get b; . = b;. for all ¢,j € {1,...,k — 1}. Moreover, we
have by = 2(k — 1) + 2A(k — 1) and thus b; , = 1+ A for all s € {1,...,k — 1}. With analogous
arguments, we get also b,, =1+ AforallreV;,ze V\V;,;,1 <i<s—1.
Thus, the coefficients b, ,, where u,w € V; remain to be calculated. For e = (u,w), u,w € Vj,

consider again
C. =P, U{(u,w), (1,u),(2,w)}.

We have
bo=2(k—3)+2X(k—3)+byw+ 1+ +(1+N)

and hence, with by = 2(k — 1) + 2A(k — 1), we conclude by, =4+ 4X —2(1+X) =2+ 2.

13



Altogether, we have

- 201+ 1)) ifee B(V;),ie{l,...,s},
Tl 14+ ifee (V;:V),i,j€{l,...,s},i#J

and thus b, = (14 M)ae for all e € E. Since e.g. the circuit C' = {(1,2), (2,n),(1,n)} satisfies
bx® < 2(k—1)+2X\(k—1), we get A > —1 and thus (1+ A) > 0, which completes our proof. O

4.3 Maximal Set Inequalities

Wang [Wan95] introduces a class of inequalities he calls the multipartition inequalities and shows
them to be facet defining for P%. His theorem is stated below.

Theorem 4.3 Let K, = (V,E), 4 < k < n and a partition of V be given by V = |J;_, V; where
|[Vi| > 2 for all 1 < i < s. Moreover, let T; C E(V;), 1 <i < s, be a spanning tree of the complete
graph induced by V; and T; be its complement with respect to E(V;). Then a facet of P is
induced by the inequality

2w+ Y D al(Vii i) 22

i=1 j=i+1

These inequalities do not in general induce facets of Pg’k but can be strengthened by replacing
the sets T;, which are the complements of maximal sets in E(V;) not containing any circuit, by
complements of maximal sets in E(V;) not containing any circuit of cardinality less than or equal
to k.

Theorem 4.4 Let K,, = (V,E), 4 < k < n, and let a partition of V be given by V.= J;_, Vi
where |V;| > 2 for all 1 < i < s. Moreover, let M; C E(V;), 1 < i < s, be a maximal edge
set with respect to E(V;) not containing any circuit of cardinality less than or equal to k. Let
M; = E(V;) \ M; be its complement with respect to E(V;). Then a facet of Pg’k is induced by
the maximal set inequality

23 2T+ Y Y #((Vi:Vy) > 2

i=1 j=i+1

Proof. The inequality is valid, since every feasible circuit either uses at least one edge in
Us_, M; or two edges in Ui US_,, (Vi : V;). Let us denote the inequality 2)°;_, =(M;) +
St Yicir1 #((Vi 1 Vj)) > 2 by az > 2. Assume that we have an inequality bz > by, b € RIZT,
which is valid for P2* and satisfies {z € P%* | az = 2} C {z € P%* | bz = by}. We show that
bx > by is simply a scalar multiple of ax > 2.

We first show that b, = %0 for all e € (V;,V;) where 1 <i < j <sand by =0 for all f e M;,

1 < i < s. Let, without loss of generality, ¢ = 1 and 7 = 2. Let z,y € V; and v,w € V5 be such
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that my = (x,y) € My and my = (v,w) € M; and denote the edge (x,v) with e. Observe that e
is substitutional for all edges in (V7 : V3), since we can always find edges in M; and M, adjacent
to a given edge in (V1,V2). Let the other edges induced by z, y, v, w be denoted as in Figure
4.1.

W

U N

Figure 4.1: Description of Edges

From the circuits {e,1,m2}, {e,2,m1}, {2,3,m2} and {1,3,m;}, we derive the equations

be + b1 + by, = bo
be + bo + bm, = by
by + b + by, = bo

by + b3 + by, = by.

From these equations, we may conclude that by = ba, by, = by,,, and bz = b,.
Adding the first two equations and subtracting the equation

bl +b2 +bm1 +bm2 = b07

b

bo bo
2

. Hence, also b3 = 2 and thus with

which we get from the circuit {1,2,m,m»}, yields b, = 5

the equation
be + b3 + bm1 + bmg = bO;

we conclude by, = by, = 0. Also, by = by = %0

We now show that b, = bo for all edges in M;, 1 < ¢ < s. Let w.l.o.g. i =1 and g € M. Since
g ¢ M, there must be a circuit C' € M; U g with |C| < k. This circuit satisfies by = by® = b,
and thus we conclude b, = bo.

Since bz > by has to be valid also for the circuit {e, 1,2,3}, we know that by > 0, which

completes the proof. O
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4.4 The Cardinality-Tree Inequalities
Wang [Wan95] introduces the following generalization of the degree inequalities.

Theorem 4.5 Let T be a spanning tree of K,,. For each e = (u,v) € E\ T, define IT as the
length of the unique (u,v) path in T'. The tree inequality

Zme + 2(2—12)1«6 <2

ecT e¢T

is a valid inequality for P%. If T is such that every edge e € T is in a star K; 3 C T, then the
inequality is also facet defining for Pg.

Using the fact that all circuits must be of length at most k, this inequality can be strengthened.

Theorem 4.6 Let T be a spanning tree of K,,. For each e = (u,v) € E\ T, define Il as the
length of the unique (u,v) path in T'. Define

2-1F if2<If <k-1,
4-2k+17 ifk <IT < [3k/2] -2,
wl{ =< 2—-k/2 if k is even and [T > 3k/2 — 1,

(3—k)/2  ifkisodd and [T = [3k/2] — 1+ 2i for somei € Z.,
(5—k)/2  ifkisodd and [T = [3k/2] + 2i for some i € Z.,.

The cardinality-tree inequality

er+ Z wl{me§2

ecT e€E\T
is a valid inequality for ng

Proof. The proof relies on the concept of coefficient improvement. We will improve the coeffi-
cients of the variables corresponding to edges e € E \ T'. These coefficients w, start out at their
initial values 2 — 1, and it is our goal to show that they can be increased to at least wl{, thereby
strengthening the inequality. Note first that the coefficients of edges f € E\T with l? <k-1lare
not changed, so the “new” coefficients wle are certainly valid in this case. For an edge f € E\T,
define the coefficient improvement problem (CIP) for f as

mwax szZwe-i— Z WeTe

eeT e€ E\T
subject to: x is the incidence vector of a circuit C,

IC] <&,
:L’f =1.

With the above definitions, we can state the following lemma.

Lemma 4.7 The coefficient w} = 2 — 1] can be increased by 2 — zj.
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The following lemma will also come in handy:

Lemma 4.8 Define PT as the unique path in T between the endpoints of e. If f € C N (E\T)
and (C'\ f)N(E\T) #0, then P\ C C Ueeiernpnvr) PT.

Proof. Consider the graph G¢ with edge set U.con(e\1) (PT'JC). G¢ is planar, so draw G¢
with C as its outer face, as in Figure 4.2. In this embedding, edges on interior faces are in

Ueecn(B\T) PI Tetge PJT \ C. g is on the boundary of two interior faces, so g is also on some
Plforec (C\f)n(E\T). O

Tree edge

_________ Non-tree edge
Figure 4.2: An embedding of C' and PT

Now, suppose for a contradiction that the coefficient for edge f € E \ T cannot be increased
to wlj;, this implies by Lemma 4.7 that

2—1f +2—z <w/ -1 (4.18)
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Since edge f must be in an optimal solution z to problem (CIP), we have

zf = Zwe+2—l}:+ Z Wele- (4.19)
eeT ee(E\T)\f

Combining (4.18) and (4.19) gives that

wlj; + Z Weke > 3 — Zme. (4.20)

e€(E\T)\f eeT

Let C be the optimal circuit defined by incidence vector z. Define m as m = |[CN(E\T)].
We now proceed to prove the validity of the coefficient improvements on a case by case basis.
Case L. k <1} < [3k/2] — 2, so that w/, =4 — 2k +1].

Subcase La.l. k is even and 3g € (C'\ f) N (E\ T) such that [] > k.

In this subcase, it can be shown by definition of w/ that w,?; <2—k/2,and w, < 2 — k/2.
Also by definition of w,{, we know that w, < 0 Ve € E\T. Using these facts and (4.20), we may
write

2—k/242-k/2>w), tw, > wl + Y wew. >3- =,
c€E\T\ f =

ZmeZk—l.

ecT

Since f,g € CN(E\T), the circuit C with incidence vector z has |C| > k+1. But this contradicts
our cardinality constraint.

which yields

Subcase La.2. kis odd and 3g € (C'\ f) N (E\ T) such that I > k.

Suppose first that one of the following occurs:
o k<IT <[3k/2] -2,
e k< l; < [3k/2] =2, or
o I =[3k/2] — 1+ 2i for some i € Z.
By definitions of the weights w/”, it can be shown that either w/, < (3—k)/2 and w, < (5-k)/2,

or w/, < (5~ k)/2 and wy < (3~ k)/2. Using (4.20), we can now write

(3—k)/2+(5—k)/22w17; + w, Zwlj; + Z Wee 23—2566,
eeEE\T\f eeT

ZweZk—l.

ecT

which yields
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As in subcase L.a.1, we have a contradiction since the circuit C' is too long.

Now suppose that [T = [3k/2] —2 and I] = [3k/2] — 2 or I} = [3k/2] + 2i for i € Zy. We
can write I = [3k/2] + 2(j — 1) for some j € Z, . By definition of the weights, we know that
w], = wy = (5~ k)/2. Using (4.20), we have

(5—k)/2+(5—k)/22wlj;+wgZwlj;—k Z wemeZB—er,
e€E\T\f €T

ZweZk—Q.

ecT

which yields

It must be that ) .,z = k — 2, or else we violated our cardinality constraint.
Suppose f,g,C, and T look as in Figure 4.3. Let [,, denote the length of the path in 7" from
z to y. Then we know that

Us f Vo

Tree edge

______ Non-tree edge
Figure 4.3: The circuit, tree, and edges in C N (E\ T)

low, +lap +low, = (3k+1)/2, (4.21)
law2 +lap + lpwy, = (3k+1)/2+2(j — 1) for some j € Z, (4.22)
lowy + laws + looy +lpwy, = k— 2. (4.23)

Subtracting (4.21) from (4.22) and adding it to (4.23) yields:

2(lguy +lovs) =k —242(j — 1).

19



The left hand side of this equation is even and the right hand side is odd, a contradiction.

Subcase I.b Ag € CN(E\ T f) such that [T > k.

In this subcase we know that wle =4-2k+ l? and w, = (2—1T)Ve € CN(E\T\ f). Recall
that m = |C N (E\ T)|. Beginning with inequality (4.20) we deduce the following:

4-2k+17 + Yoo 2= >3-

ec(C\f)N(E\T) ecT
4-2k+1] +2(m—1) - > IF'>34+m—k
e€(C\fIN(E\T)
- > 'z k+1-m
e€(C\HIN(E\T)
Using Lemma 4.8, this is equivalent to
\Pfnc|- > |PI\P}|>k+1—m. (4.24)
e€(C\HIN(E\T)
It is clear that
IC| > |Pf NC|+m. (4.25)

Combining (4.24) and (4.25) gives

ICl>k+1+ Y  [PI\Pf|>k+1,
e€E\T\f

a contradiction, since C' is too long.

Case II. l}’ > [3k/2] - 1.
Subcase ILa.l. k is even, and 3g € (C'\ f) N (E \ T) such that I > k.

In this subcase we know by definition of the weights wlTe that wle =2-k/2,and w, <2—-k/2.
A contradiction is derived in a manner similar to subcase L.a.1.

Subcase ILa.2. k is even, and Ag € (C'\ f) N (E\T) such that I > k.

In this subcase, we know that w/, =2 —k/2 and we =2~ ] Ve € (C'\ f) N (E\T). Using
(4.20), we can get the following inequalities:

2—k/2+ d>oooo@-1h)=3-) =
ec(C\f)N(E\T) eeT
2—k/242(m—1)— > r'>34+m—k
e€(C\/)N(E\T)
- oo =3 -m-k/2 (4.26)
e€(C\/)N(E\T)
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Adding the inequality l? > 3k/2 —1 to (4.26), we get
- > i'zk-m+2
e€(C\)N(E\T)

Using Lemma 4.8 we find that this is equivalent to

|Pfnel- > |PT\ PF| >k —m+2.
e€(C\f)N(E\T)

This leads us to

IC|>|1PfnCl+m>k+2+ Y |PI\Pf|>k+2,
e€EE\T\f

which is a contradiction, since C' is too long.

Subcase IL.b.1.i. £ is odd, l? = [3k/2] — 1+ 2i for some i € Z,, and g € CN(E\ T\ f) such
that [] > k.

In this subcase, we know that wlj; = (3 — k)/2. Further, we know that w, < (5 —k)/2. Using
(4.20), we have

(3—k)/2+(5—k)/22wlj;+wgZwlj;—k Z wemeZB—er,
e€E\T\f e€T

Z%Zk—la

ecT

which yields

a contradiction.

Subcase IL.b.1.ii. k is odd, l? = [3k/2] =1+ 2i for some i € Z,, and Age CN(E\T\ f)
such that I > k.

We know that w/, = (3 — k)/2 and we =2~ ] Ve € (C'\ f) N (E\T). (4.20) implies that

(3—k)/2 + >oooo@-1H=3-) =z

ec(C\f)N(E\T) ecT
Using the fact that ), ., z. <k — m, this inequality can be manipuated to
- > IT>((7-k)/2-—m (4.27)
e€(C\f)N(E\T)
Furthermore, we know that
17 > [3k/2] - 1= (3k—1)/2 (4.28)
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Adding inequalities (4.27) and (4.28) and applying Lemma 4.8, we get that
\Pfnc|- > \PI\ P}| >k —m+3.
e€(C\F)N(E\T)

Therefore,
IC|>|1PFnCl+m>k+3+ Y  |[PI\Pf|>k+3,
e€E\T\ f

which gives the contradiction |C| > k.

Subcase IL.b.2.i. k is odd, IJT = [3k/2] + 2i for some i € Z;, and g € CN(E\ T\ f) such
that [T > k.

Suppose first that k < 11" < [3k/2] — 2 or I] = [3k/2] — 1+ 2i for some i € Z . In this case
wy < (3 —k)/2. Using (4.20) we can say

(5—k)/2+(3—k)/22w,7;+wgZw?;+ Z wemeZB—er,

e€E\T\f €T

erzk_la

ecT

which yields

a contradiction.
Now suppose that I1 = [3k/2] -2 or IT = [3k/2] +2i for some i € Z, which can equivalently
be written as I] = [3k/2] 4+ 2(j — 1) for some j € Z. From (4.20), we get

wle +w, = (5—k)/2+(5—k)/22w17; + Z WeTe 23—2566.
eeEE\T\f eeT

This inequality implies that ), .. z. > k — 2, but since edges f and g are also in the circuit, it
must be that ) ., z. = k —2, or else the cardinality constraint would be violated. Referring to
Figure 4.3, we know that

law, +lab + 1o, = (3k+1)/2+ 2i, for some i € 7.1 (4.29)
lawz +lap + lpw, = Bk +1)/2+2(j — 1), for some j € Z (4.30)
lowy + laws + looy +lpwy, = k — 2. (4.31)

Subtracting (4.29) from (4.30) and adding it to (4.31) yields:
2lgus +lows) =k —24+2(0 — j+ 1).
The left hand side of this equation is even and the right hand side is odd, a contradiction.

Subcase I1.b.2.ii. k is odd, [T = [3k/2] + 2i for some i € Z,, and Ag€ CN(E\ T\ f) such
that [T > k.
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In this subcase, we know that wlz; =06B-k/2andw. =2-1F Vee (C\f)n(E\T).
Therefore, (4.20) implies that

(5-k)/2+ oo 2= >3-) =

ec(C\f)N(E\T) ecT

Using the fact that ) ;2. <k —m, this inequality can be manipulated to give

- > IT>G-k)/2-m (4.32)
e€(C\f)N(E\T)
Furthermore, we know that
17 > [3k/2] = (3k — 1)/2 (4.33)

Adding inequalities (4.32) and (4.33) and applying Lemma 4.8, we get that

|Pfnel- > |PT\ PF| >k —m+3.
e€(C\/)N(E\T)
Therefore,
IC|>|1PFnCl+m>k+3+ Y  |[PI\Pf|>k+3,
e€E\T\ f
which gives the contradiction |C| > k.

We have shown that in all possible cases, if the coefficient of an edge e € E'\ T' in the original
tree inequality cannot be improved to wl{, then there is a contradiction. [

Theorem 4.9 Let n > 5, k > 4. Let a spanning tree T of K,, have the following properties:
e Ifv is a leaf node of T with adjacent node u, then |§(u)| > 3.

e Ife € E\T is such that [T > [3k/2] — 1, then there exists and edge f € E \ T with
I} =17 =1, and a circuit C, |C| = k, consisting of e, f and edges of T.

Then the inequality

Zwe-i— Z wlTea:eSQ

eeT e€ E\T

is facet inducing for Pg’”

Proof. Let us denote the inequality EeeT Te + EeeE\T mee < 2 by ax < 2. Assume that we
have an inequality bz < by, b € IRlEl, which is valid for Pg’k that satisfies {x € P3| az = 2} C
{z € P% | bx = by}. We show that bz < by is a scalar multiple of az < 2, which implies that it is
facet defining for Pg’k.

We first determine the coefficients for edges e € T incident to a node adjacent to a leaf of T'.
We have the situation shown in Figure 4.4.
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Figure 4.4: Description of Edges

The circuits {e1, e2,e4}, {€2,e3,e5},{e1,e3,e6}, {e1,e2,e5,e6},{ea, e3,€e4,66}, and {e1,e3,¢e4, €5}
are on the face ax < 2, so

be, + be, + be, = b
be, + be, + bes = b
be, + b, + bey = bo
be, + be, + bey + beg = by
be, + bey + bey + beg = bo
be, + bey + bey, + beg = bo.

From these equations, we can deduce that b., = be, = be, = bo/2.

We next determine the coefficients for the remaining edges e € T'. If e € T and e is not
incident to a node adjacent to a leaf, then we have a situation as shown in Figure 4.5.

The circuits {e, e1,e3},{e,ea,es}, and {e1,e2,e3,e4} lie on the face ax < 2, so

be + be1 + b€3 = bO
be + bez + be4 = b[)
b61 + bez + b€3 + b€4 = b[)
Adding the first two equations and subtracting the third yields that b, = bo/2.
We next determine the coefficients for edges e € E '\ T with [T < k — 1. The fundamental
circuit of e with respect to T lies on the face ax < 2, so
17 (bo/2) + be = bo =
be = (bo/2)(2— 1) = (bo/2)wiz. (4.34)

For edges e € E \ T such that k <1 < [3k/2] — 2 consider the circuit shown in Figure 4.6.
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Figure 4.5: Description of Edges

Tree edge

--------- Non-tree edge

Figure 4.6: A circuit
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This circuit consists of the edge e, k — 2 edges of the P., and a “shortcut” edge f. Edge f
has [T =17 — (k —2) < k — 1. This circuit lies on the face az < 2, since

wi +wl, +k—-2=4-2k+1 +2 17 +k -2
=4-2%+1T+2- (1T —(k-2)+k-2
= 2.
Therefore we know that
be + by + (bo/2)(k — 2) = b. (4.35)
Since ZJT < k — 1, we know from (4.34) that by = (bo/2)(2 — l?) Substituting this into (4.35)
gives
be = (bo/2)(4 — 2k +17). (4.36)
Finally, consider an edge f; € E'\ T with l}; > [3k/2] — 1. By assumption, there is a circuit

(4, |C1]| = k, consisting of fi, g1 and edges of T', such that lng = l}l — 1. We first show that this

circuit lies on the face ax < 2. There are four cases to consider.
If £ is odd and l]?l = [3k/2] — 1, then I{ = [3k/2] — 2 and wlj;l =4-2k+I11 =4-2k+
3k +1)/2 —2 = (5— k)/2. Therefore,

wl, +wl +k-2=0@B-k/2+(E-k)/2+k-2=2.
If k is odd and [} > [3k/2], then since I =1} —1,
wi, +wi +k-2=03B-k/2+(G-k)/2+k-2=2.
If £ is even and l?l = [3k/2] -1, then ] = [3k/2]—-2,and wlj;l =4-2k+1] =4-2k+3k/2-2=
2—k/2. So,
wi, +wl +k—-2=2-k/2+2-k/2+k-2=2,
If k is even and I] > [3k/2], then
wl, +w) +k—-2=2-k/2+2—k/2+k—-2=2.

If lng > [3k/2] — 1, then by assumption there exists another circuit Cs, consisting of k — 2
edges of T', edge ¢1, and an edge g» € E\ T, with lgT2 = lgl — 1. Cs is also on the face ax < 2 by
the same argument that showed that C; was on the face ax < 2.

More generally, there is a series of circuits {C1,Cs,...,Ci—1,C:}, such that the circuit C}
consists of k — 2 edges of T and two edges f;,g; € E\ T. Further, lg; = lJTJ_ —lforj=1...,t
gj = fiy1 for j=1,...,t—1, and l,, = [3k/2] — 2. The incidence vector of C; lies on the face
ar < 2.

Since each C; is on the face az < 2, it must also be on the face bx < by, which leads us to
the following series of equalities:

bft + bgt + (b0/2)(k - 2) = bO
bro_y +bg,_, + (bo/2)(k —2) = bo

br, + by, + (bo/2)(k —2) = bo.
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Substituting for the g;, we have

bft + b!}t + (b0/2)(k - 2) = bO (437)
bfi—l + bft + (b0/2)(k - 2) = bO (438)
bfl + bfz + (b0/2)(k - 2) = bO- (4.39)

If £ is even, then we have already determined that b, = (bo/2)(4 — 2k + 3k/2 — 2) =
(bo/2)(2 — k/2). Substituting into (4.38), we get that

br, = bo — (bo/2)(k — 2+ 2 — k/2) = (bo/2)(2 - k/2).

By substituting into the equations up to (4.39) in turn, we can determine that by, = (by/2)(2 —
k/2).

If k£ is odd, then we know that b,, = (bo/2)(4 — 2k + (3k + 1)/2 — 2) = (by/2)((5 — k)/2).
Substituting into (4.38), we get that

b, =bo — (bo/2)(k =2+ (5 —k)/2) = (bo/2)((3 — k)/2).
Substitution of this expression for by, into (4.39) gives
by =bo = (bo/2)(k =2+ (3= k)/2) = (bo/2)((5 - k)/2).
Repeating this process for the remaning equations up to (4.39), we get that

b — (3—k)/2 iftiseven
M=V (5-k)/2 iftis odd.

This is equivalent to

b — (bo/2)(3 —k)/2 if%: [3k/2] — 1+ 2i for some i € Z.,,
7 (bo/2)(5 = k)/2 if 1] = [3k/2] + 2i for some i € Z.

At this point, we have shown that

(bo/2)(2 1) 2<l} <k-—1,
(bo/2)(4— 2k +17) k< 17[3k/2] -2,

be = < (bo/2)(2 — k/2) k even and II > 3k/2 — 1,
(bo/2)((3 —k)/2) k odd and [T = [3k/2] — 1 + 2i for some i € 7.,
(bo/2)((5—k)/2)  kodd and IT = [3k/2] + 2i for some i € Z,

or b, = (bo/2)a. for all e € E. In Figure 4.4, the circuit C' consisting of edges eq, e5, and eg must
satisfy bx < by, so bg > 0. We have therefore shown that the inequality bx < by is a positive
multiple of ax < 2, and the proof is complete. [

Using techniques found in this proof, we can show that the condition that if v is a leaf node of
T with adjacent node w, then |§(u)| > 3 is both necessary and sufficient for the tree inequalities
to be facet defining for PZ%. This strengthens Theorem 4.5 of Wang [Wan95).
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5 Conclusions

We have presented many classes of facet inducing inequalities for the polyhedron arising from an
integer programming formulation of the cardinality constrained circuit problem. A branch and
cut algorithm based on these inequalities is presented in [BLSO01].
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