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metrics. These models are usually presented to the reader as unconstrained optimization
models with recursive terms in the literature whereas they actually fall into the domain of
nonconvex nonlinear programming. Our results demonstrate that constrained nonlinear pro-
gramming is a worthwhile exercise for GARCH models, especially for the multivariate case as
they offer a substantial improvement over the Diagonal VECH and the BEKK models that
are popular in the literature.

Keywords. Financial Econometrics, Constrained Nonlinear programming, GARCH, Volatility
estimation, Maximum likelihood estimation.

*Corresponding author, e-mail: mustafap@bilkent.edu.tr. Part of this research was conducted while this author
was visiting University of Dundee, Department of Mathematics in July 2000 supported by a grant from the Royal
Society. The hospitality and encouragement of Professor Roger Fletcher are gratefully acknowledged.



1 Introduction

Volatility plays an important role in several areas of current finance literature. It is central to
portfolio selection models in that efficient portfolios are formed by computing the maximum return
for a given level of volatility. General equilibrium models like Capital Asset Pricing Model (CAPM)
require the estimation of market variance as well as the covariance of risky assets with the market
portfolio. Prices of options are also expressed as functions of volatility. As a result, volatility and
correlation estimation is an important research area for both academia and practitioners.

ARCH (Autoregressive Conditional Heteroskedasticity, Engle (1982)) and GARCH (Generalized
ARCH, Bollerslev (1986)) volatility forecasting models have been the major tool for characterizing
volatility, by using past unpredictable changes in the returns of an asset to predict the future time
varying second order moments. Volatility clustering phenomena (Mandelbrot (1963), and Fama
(1965)), is the driving force for GARCH family of models. The success of these models in the
univariate case for volatility estimation has inspired an interest in correlation estimation which is a
harder problem, and led to the development and application of the multivariate extensions. ' The
major difficulty in the multivariate case stems form the highly nonlinear and nonconvex nature of
the resulting optimization problem.

The first extension in the multivariate direction was the diagonal VECH model of Bollerslev,
Engle and Wooldridge (1988) where they assumed constant correlations and extended the uni-
variate case to the vectorized conditional variance matrix. This first attempt can be thought of
as a trade-off between estimation intractability and practical applicability since the condition of
positive definiteness is difficult to impose. Later, statistical tests have been developed to check the
validity of the assumption of constant correlations; see Bera and Kim (1996), Tse (2000). Their
results for national stock markets show that the correlations are in fact time varying. Therefore,
other methods that can deal with the complexity of the multivariate estimation problem need to
be developed.

The Factor ARCH model of Engle, Ng, and Rotschild (1990) and The BEKK model of Baba,
Engle, Kraft and Kroner (1989), were attempts to solve this problem by ensuring positive definite-
ness of the variance-covariance matrices in the process of optimization. All of these models impose
very different restrictions on the covariance matrix for computational tractability.

The purpose of the present paper is to solve the optimization problem by proposing a more for-
mal approach by taking a constrained nonlinear programming view of GARCH volatility estimation
models both in the univariate and multivariate cases without imposing artificial restrictions for
tractability. This is made possible by advances in the numerical optimization algorithms and soft-
ware literature. ARCH and GARCH models are usually presented to the reader as unconstrained
optimization models in econometrics, and finance texts (see e.g., Hamilton (1987), Gourieroux
(1992)) with recursive terms whereas they actually fall into the domain of nonconvex nonlin-
early constrained nonlinear programming. They are usually solved by extensions of Newton or
quasi-Newton methods that take into account the recursive nature of terms defining the objective
function. Against this background a major goal of this paper is to test the practical solvability
(i-e., computing a Karush-Kuhn-Tucker point) of these models as nonlinearly constrained noncon-
vex programs using the AMPL modeling language (Fourer, Gay and Kernighan 1993), and the
state-of-the-art optimization packages available through the recently developed NEOS interface
at the Argonne National Laboratory. We believe this research effort is a worthwhile undertak-
ing as the current financial econometrics literature does not currently use these valuable sources
of optimization software, to the best of our knowledge. Second, we establish through our com-

1See Engle (1987), Bollerslev, Engle and Wooldridge (1988), Giovannini and Jorion (1989), Engle, Ng, and
Rothschild (1990), Bollerslev (1990), Ng, Engle, Rothschild (1991), Conrad, Giiltekin and Kaul (1991), Kroner and
Claesens (1991), Kroner and Sultan (1993), Lien and Luo (1994), Karolyi (1995), Park and Switzer (1995), Tse
(2000).



putational results that the bivariate GARCH volatility estimation models for which relative few
software systems exist in the market, are solved very effectively by our approach, thus contributing
a methodology to the econometric finance literature. Furthermore, our results for FTSE and S & P
500 indices demonstrate that our approach tracks realized volatility better than both the diagonal
VECH and the BEKK representations.

We organize the rest of this paper as follows. In section 2, we review the univariate GARCH
model. Section 3 is devoted to a review and discussion of the multivariate and, in particular of
the bivariate GARCH model on which we concentrate. In section 4, we illustrate our approach by
applying it to daily returns of S & P 500 and FTSE 100 indices, report our results, and compare
them with the diagonal VECH and BEKK representations. The paper is concluded in section 5.

2 Univariate Model

In this section we briefly review the univariate GARCH volatility estimation models. Excellent
references are available on this important topic. The interested reader is referred to [8, 19, 20] for
details.

We consider the following autoregressive process
Yi=¢1Yioi+ Yo+ .. .+ ¢nYiom +&
where € = (g¢) is a weak white noise satisfying the martingale difference sequence condition:
E(et/et—1) =0.

Instead of assuming that the conditional variance of the noise, i.e., E(g7/e;—1) is time independent,
we allow for time dependence through an autoregressive equation for the squared error terms
(innovations) as follows

q p
E(El /e 1) =hi=c+ Mu?.mwl. + Mu%i:\% a, #0,8, #0. (2.1)

i=1 j=1

The above model is referred to as GARCH(p,q). In case p = 0, we have the ARCH(q) model:

q
E(e}/er1) =hi=c+ Y aigi_;, ag #0. (2.2)

i=1

In the above models, ¢ € R™, a € R:, B € RE | and ¢ is a positive scalar, to ensure asymptotic
second order stationarity; see Property 3.19 of [19].

An important tool in the estimation of the above parameters is the technique of maximum
likelihood estimation. Assuming a Normal distribution for Y; given the past observations, appli-
cation of the maximum likelihood technique in the case of GARCH(p,q) leads to the following
optimization problem:

max log L7(8) (2.3)
where . . ,
log Ly(0) = IM log 2w — W m_om ht(0) — W m Emm%v (2.4)
where 6 = (¢, a, 8, ¢), subject to the stationarity condition
max{p,q¢}
Yot pi<l, (2.5)
i=1



the specification of conditional variances given by (2.1), and the non-negativity condition on ¢, o, 5.

Therefore, for the GARCH(p,q) case we can formulate the following optimization problem:

1 & 1 o &2
t
max |MM~OW\§|MM-|&
t=1 t=1
q p
s.t. n.vMuQs.mwl}TMU\&.\:l. = h,Vt=1,...,T
i=1 j=1

m
YodiYeite = YVi=1,...T

i=1
max{p,q}
Y a+pi <1
i=1
c>0
673 N Oq<s.H yeees(
%s. N OV<N.HH“..JE

Regarding issuses of convexity in the above model we can offer the following remarks. We
notice that the function logh; + w|m is a quasi-convex function in (g, ht). Unfortunately, the
sum of quasi-convex functions is not necessarily quasi-convex. Therefore, we do not expect to
detect hidden convexity in the objective function of the above model. The constraints are also of
a polynomial nature, and obviously non-convex. These observations imply that any attempts at
numerical solution of the above model is bound to yield at best a Karush-Kuhn-Tucker point (not

necessarily a local maximum).

3 Multivariate Model

When ¢; is a multivariate process of dimension n, we can introduce the same formulation as in the
univariate case for all the components of the conditional variance-covariance matrix. Let us denote
the error terms by ep,l = 1,...,n, and the components of H; = V(e;/et—1) by hgi. Therefore,
we have the following representation: T

q p
hiie = Cra + Y (D arikrricr p—ir a—il + 3 (O brawrvr b vre—i) (3.1)

i=1 k'l j=1 k'l

Here, one has to make sure that the matrices H; are symmetric. Therefore, one has to add the
following conditions:
Cri = Cii,

Aklk'l'i = Qlkk'l'iy QkIk'l'i = QKL K i)

brivriri = bikrrvriy drinrs = brorprs.

The log-likelihood function to be maximized in the multivariate case is given as

T
1
L(©) = -3 > (logdet Hy + [ H; 'ey)

t=1



where © represents the vector of parameters to be estimated.

Following Kraft and Engle (1982) and Bollerslev, Engle and Wooldridge (1988) an equivalent
and natural multivariate extension of univariate GARCH (3.1), which is easier to view than the
above representation, is as follows

q P
vech(H;) = vech(C) + MU Ajvech(er el ) + MU Bjvech(H;_j). (3.2)

i=1 j=1

where vech is the operator which consists in stacking up the lower triangular and the diagonal
portions of the columns of a symmetric matrix into a vector, the matrices A; and B; are of size

1 1 . . . . . . .
% X %ﬂ and C is a symmetric matrix of size n x n. This general formulation is termed

the VECH model by Engle and Kroner (1993).

Now, we consider the following estimation problem that we refer to as the Constrained NLP
formulation:
1 Z
max  — mﬁ_om det H; + ¢} H; 'et)

q P
s.t. vech(H;) = vech(C) + MU Ajvech(e; el ) + MU Bjvech(H;_;),VYt=1,...,T

i=1 j=1
m

%:M\Mhls.nTm: = M\w?(ﬁ” Hu...uﬂuNH Hu...u\;
i=1

H = 0vt=1,...,T

The above mathematical program is the most general multivariate GARCH specification model,
from which simplified specifications were obtained by imposing certain restrictions on matrices A;
and B;. Below we briefly review the most important two from the literature in sections 3.1 and
3.2, respectively.

We obtained above a nonlinear programming problem with semi-definiteness constraints. In
this case, the stationarity condition is not easy to incorporate into the above problem as it requires
that the roots of the determinant of I — 37 | A;z* — Y% | Bjz/ be greater than one. However,
this condition considerably simplifies into an implementable constraint in the bivariate case. It is
easy to verify that for n = 2, the stationarity condition is equivalent to

I-A-B»0

which can be incorporated as nonlinear constraint(s) into the model, where we take A and B to
be symmetric for tractability. Notice also that the function wMWHHQom det H; + ¢ H; &) is a
difference of convex functions since the second component function is a convex function in H;,é&;
(see Vanderbei and Benson (1999)), and the negative of the first component function is also known
to be convex in H;.

We now compare the above approach with the Diagonal VECH and the BEKK representations,
the two competing models used in the present paper.

3.1 The Diagonal VECH Model

The Diagonal VECH representation was proposed by Bollerslev, Engle and Wooldridge (1988) who
took the matrices A; and B; to be diagonal. For a GARCH(1,1) process the entries h;;; of the



matrix are specified according to the recursion
hijt = wij + Bijhiji—1 + Qij€it—1€5t—1, (3.3)

where g; is a multivariate process of dimension n.

max L(0O)
s.t. .m.w = Dl_ﬁ\w@mw\HmWIHn_lm@mw\T,QwH”_.v...“HNJ

@N&M\qul&nTm: = M\M?/ﬂwn Hu...uﬂuNH Hu...u:
=1

H = 0Vt=1,...,T

where the notation ® is used to represent the componentwise product (Hadamard product) of
two matrices of conformable dimensions.

3.2 The BEKK Model

As the positive semi-definiteness conditions of the general VECH model were found hard to handle,
Engle and Kroner (1993) proposed to model the variance and covariance function with quadratic
forms, which is called the BEKK representation. Now, the conditional variance/covariance matrices
are represented in the form

H,=CTC+BTH,_ B+ ATe, 1€} A (3.4)

where A, B and C are n x n matrices. Clearly, this model ensures positive semi-definiteness
of H; at the expense of increasing the number of parameters to be estimated in comparison to
the Diagonal VECH model. From a numerical optimization point of view, the BEKK model also
increases the nonlinearity of the constraints by utilizing a higher-order polynomial representation
in comparison to specification (3.2).

3.3 The Bivariate Case

The bivariate case is of special interest since we can give an explicit nonlinear programming formu-
lation in this case using a simple formula for the determinant or a Cholesky-type decomposition.
For ease of exposition let us consider an ARCH(1) process. We have three distinct conditional
variance-covariance components

hiie = mﬂmw“\mﬁhv
hi2y = E(e11€2t/et—1)

hao = mAmWw\mTL

The recurrence relation (3.2) becomes

2

\:5 C11 @11 Q12 Q13 €1 ¢—1
)

\:Nw = C12 + Q12 Q22 A23 €1,t—1€2,t—1
2

haa ¢ C22 as1 a3 Gs3 €341

Hence, we have the following optimization problem:



T

1 €1thoot + €athi1 ¢ + €1:€2:h
2 1tN22.¢ 2tN11t 1t€2thi2,t
max —g M log(h11,thas,t — hisy) + 5
2 t=1 5:35 - 35
2 2
s.t. \:: = ¢ +an€i_q + a12€1,t—1€2,¢—1 + @mewhlud\ t=1,...,T
2 2
higt = c12 +a2ey g + aer 162,01 +agser,  Vi=1,...,T
2 2
hazt = ca2 + 316741 + az2€1t-162,6-1 +aszer, Vi=1,...,T
m
M $1iY1—i +erw = Y, VE=1,...,T
i=1
m
M G2iYo i +ea = Yo ,Vt=1,...,T
i=1
2
hi1ithozs —hisy > 0,VE=1,...,T

We refer to the above formulation as the determinant-Constrained NLP formulation.

Note that the constraints can be rewritten as

hiig=cu+(e1-1 €241

hisg=cro+( e14-1 €241

hiieg=cu+( e -1 €241

1l
1l

More succinctly, the above constraints can be put as:

E1,t—1 E2,t—1 0 0
mw =C +
0 0 €1,t—1 €2,t—1

It suffices that the matrices C' and 4; =

guarantee positive semi-definiteness of Hy.

a22

a23
asz2

a33

@12
azo

a31
as2

a22

a23
as2

a33

€1,t—1
€2,t—1

€1,t—1
)
€2,t—1

E1,t—1

€2,t—1

a
2z €11 0

a3 €2,4—1 0
az>
2 0 €1,6—1

ass 0 €2,4—1

be positive semidefinite to

In the present paper, we chose to work with the bivariate Constrained NLP formulation above as
it was the easiest to code in AMPL. An alternative formulation to the determinant-vech formulation
is obtained by parameterizing the matrices H; as Hy; = L;D;LT, t = 1,...,T where L; is a
unit-lower triangular matrix, and D, is a diagonal matrix. Clearly, the requirement that H; be
positive (semi)definite is equivalent to the requirement that the entries of the diagonal matrix Dy
be positive (non-negative). We utilize both the LDL? model and the determinantal model in our

tests, wherever computationally appropriate.



4 Estimation and Empirical Results

To validate our approach first we applied the constrained NLP formulation to the univariate case.
In the univariate case our data consists of daily returns of S & P 500 index with 2000 data points.?
The data covers from 25.4.1988 to 13.3.1996. Table 1 reports the coefficients, standard errors, and
the log-likelihood values for the GARCH(1,1) model with the traditional univariate GARCH for-
mulation and the constrained NLP model proposed in the present paper. The traditional GARCH
estimation is carried out using S-PLUS GARCH module, and the NLP model is solved using the
FILTER software [14] for constrained nonlinear programming. The results demonstrate that the
coefficient values obtained by the two models are very close to each other with comparable stan-
dard errors. There is a slight improvement in the log-likelihood function for the constrained NLP
model. The value of this exercise is that it validates our approach prior to an application to the
multivariate setting.

Method c a1 b1 Log-Likelihood Value
Constrained NLP | 0.00201931 0.978463 0.0180615 —2179.67
(St. Err.) (0.0015) (0.00784) (0.00103)
SPLUS 0.00285 0.97250 0.02204 —2181.8
(St. Err.) (0.000762) | (0.003177) | (0.0034232)

Table 1: Results with the Univariate Model on SP500 Data

For the multivariate application we choose to concentrate on the bivariate case. Our data
consist of daily returns of two stock indices: S & P 500 and FTSE 100 with 1500 data points
covering from 18.5.1990 to 12.3.1996. We compare the constrained NLP model with the most
popular bivariate models available in S-PLUS GARCH module, namely Diagonal VECH and the
BEKK specifications. To solve the constrained NLP models for the bivariate case we used the
SNOPT software [16]. The nonlinear programs resulting from this exercise have approximately
4500 constraints and 4500 variables. Table 2 reports the coefficients, standard errors, and the log-
likelihood values for these three models. We would like to note here that the coefficients are not
very easy to interpret intuitively for both the constrained NLP and the BEKK models, compared
to the Diagonal VECH model. However, log-likelihood values show that constrained NLP brings
a substantial improvement over the Diagonal VECH and BEKK representations. As explained in
previous sections the log-likelihood function to be maximized is identical in all three approaches
compared in the present paper. We believe this result is due to the following three factors: 1.
Our constrained NLP approach uses a more general representation compared to its competitors,
2. incorporates the stationarity condition as a side constraint, and 3. employs state-of-the-art
optimization software.

Further evidence to the improvement due to the use of the constrained NLP approach can be
observed in Figures 1, 2 below where we plot the annualized realized volatility® and the conditional
annualized volatility obtained from GARCH specifications* for the last 500 data points. The solid
lines in the figures are the model’s conditional annualized volatilities whereas the dotted lines
represent the annualized realized volatility. In Figure 3 we plot realized covariances® and the
conditional covariances obtained from the three different models. We observe from the figures that
the Diagonal VECH and BEKK results exhibit a rather similar behavior in that the series tend to
follow a certain mean value with very small variations. A possible explanation for this behavior
can be be given as follows. It is highly likely that the numerical optimization algorithm used in

2For GARCH diagnosis, autocorrelation functions and Ljung-Box statistics have been checked. The data can be
supplied upon request.

3volatility is defined as /\&Qi@ﬂmgﬁsmm X 252.

4defined as v/conditional variances obtained from the estimations x 252

Srealized covariance = daily return S & P 500 x daily return FTSE 100.




S-PLUS Diagonal VECH and BEKK implementations lands on very close Karush-Kuhn-Tucker
points. On the other hand, the Constrained NLP results display series which seem to follow more
closely the trends in realized volatility although it has a tendency to overestimate at times. It
is conceivable that the Sequential Quadratic Programming algorithm used in SNOPT lands at
a completely different Karush-Kuhn-Tucker point compared to the Diagonal VECH and BEKK
models.

5 Conclusions

The paper proposed a constrained nonlinear programming view of Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) volatility estimation models in financial econometrics.
These models are usually presented to the reader as unconstrained optimization models consisting
of the maximization of a nonconvex, nonlinear likelihood function defined through recursive terms
in the literature whereas they actually fall into the domain of nonconvex constrained nonlinear
programming. Our results demonstrated that constrained nonlinear programming is a worthwhile
option for GARCH estimation problems, especially for the multivariate case as it is a significant
competitor to the Diagonal VECH and the BEKK models popular in the literature.

A trivariate application of the



Coefficients | Constrained NLP | D-VECH BEKK
c11 —0.198775 0.021812 0.126516
(0.00597) (0.07542) | (0.026245)
c12 1.24346 0.016743 0.005078
(0.00471) | (0.010096) | (0.018835)
C22 —0.121942 0.005688 0.059896
(0.00211) | (0.001437) | (0.009138)
aiy 0.20436 0.04509 0.196017
(0.00036) | (0.009925) | (0.024318)
a12 —0.384304 0.026886 | —0.013858
(1.27 x 1079) | (0.011565) | (0.024476)
a1 —0.003001
(0.016084)
a3 0.17964
(0.000106)
a13 0.17964
(0.000106)
a22 0.959926 0.033912 0.171552
(0.000824) | (0.005841) | (0.017128)
a23 —0.382031
(0.000346)
a33 0.248888
(0.0001308)
b11 0.396459 0.930056 0.971880
(0.01033) | (0.016520) | (0.007864)
b1 2.11141 0.885738 0.001883
(0.01133) | (0.062685) | (0.005981)
ba1 0.003817
(0.004755)
b13 —0.446092
(0.002658)
bas —8.53698 0.954386 0.980089
(0.11985) | (0.007181) | (0.004033)
b3 1.62468
(0.007876)
b33 0.509248
(0.004097)
Log-likelihood —2572.48 | —3453.05 | —3461.91

Table 2: Results with the Bivariate Model on SP500 and FTSE 100 Data (Numbers in parentheses
are standard errors).
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