An Efficient Exact Algorithm for the Vertex p-Center
Problem

Taylan IlThan*
Mustafa C. Pmar '

September 27, 2001

Abstract

Inspired by an algorithm due to E. Minieka [5] we develop a simple, and yet very efficient
exact algorithm for the problem of locating p facilities and assigning clients to them in order
to minimize the maximum distance between a client and the facility to which it is assigned.
After a lower bounding phase, the algorithm iteratively sets a maximum distance value within
which it tries to assign all clients, and thus solves integer feasibility subproblems. Excellent
computational results are reported on a set of 84 test problems derived from OR-Lib and
TSP-Lib problem instances with up to 900 vertices, and solved to optimality for the first time.

Key words. Integer programming, p-center problem, facility location.

1 Introduction

The purpose of this paper is to describe a simple and efficient algorithm for the solution of the
vertex (discrete) p-center problem. The algorithm can be considered a two-phase extension of a
well-known algorithm due to Minieka [5] long considered inefficient. In fact, in a recent paper where
tabu search and variable neighborhood search heuristics are applied to the p-center problem [4],
the authors claim that “no exact algorithm able to solve large instances (of the p-center problem)
seems to exist up to now”. The computational results of this paper serve as an update to this
statement by solving to provable optimality large scale p-center problems for the first time, to the
best of the authors’ knowledge.

The p-center problem consists of locating p facilities and assigning clients to them so as to
minimize the maximum distance between a client and the facility it is assigned to. The problem
is known to be NP-hard [3]. A typical application is locating fire stations or ambulances, where
the distance from the facilities to the farthest client is to be minimum. For a detailed exposition
of the p-center problem and available solution methodology, the reader is directed to Chapter 5 of
the textbook [2].

Let W = {w;y,ws,...,wy,} be the set of all possible locations for facilities with |W| = M,
V = {v1,va,...,u,} be the set of all clients with |V| = N. The distance for each facility pair
(w4, v5) is given as d;;. We assume in this paper that W UV is the vertex (node) set of a complete
graph, and distances d;; represent the length of the shortest path between vertices ¢ and j (in

*E-mail: taylani@bilkent.edu.tr
tCorresponding author. E-mail: mustafap@bilkent.edu.tr. Both authors are at the Department of Industrial
Engineering, Bilkent University, 06533 Ankara, Turkey.

the test problems of Section 3, we deal with a single vertex set, i.e., with the special case where
W =V).

An integer programming formulation for the problem that we refer to as (PCIP) is the following
(see, e.g., [2]):

Minimize z

subject to
dwy = 1 VieV (1.1)
J

Ti; <Y VieV,jeW (12)

Yy, < p Viev (1.3)
JjEW

JjEW
Tij,Yj; € {0, 1} Vie V,VjeW (15)

where z;; assumes value one if client ¢ is assigned to facility site j, and value zero otherwise.
The binary variable y; assumes value one if facility site j is open. Constraints (1.1) express the
requirements that all clients must be assigned to some facility site. Constraints (1.2) prevent a
client from an assignment to a facility site which is not open. In total at most p facility sites are
to be opened, a requirement which is modeled by constraint (1.3). It is well-known that solving
to optimality even small instances (N + M = 40,p = 10) of the p-center problem using the PCIP
formulation is still very time consuming (more than 7 hours on a SUN Sparc 10 using CPLEX 6.0
[4]), and that LP relaxations to the above PCIP formulation give notoriously loose lower bounds,
an observation reconfirmed in our own experimentation, whereas none of these statements are true
of the p-median problem where the sum of total distances are minimized.

In Section 2 we explain the idea underlying the proposed algorithm and describe it in detail. In
Section 3 we give our detailed computational results.

2 The Algorithm

An old algorithm due to Minieka [5] proposes to solve the p-center problem by solving a series of
set covering problems. The idea is to choose a threshold distance as radius and to check whether
all clients can be covered within this radius using no more than p facilities. A more elaborate
version of this algorithm as described in [2] works as follows: select initial lower and upper bounds
on the value of the p-center objective function, solve a set covering problem using the average of
the lower and upper bounds on the objective function as the coverage distance. If the number of
facilities needed to cover all nodes at that distance is less than or equal to p, reset the value of the
upper bound on the value of the p-center objective function to the coverage distance that was just
used; if the number of facilities needed is greater than p, reset the lower bound to the coverage
distance that was just used plus 1. If the lower and upper bounds are equal, stop; if not, solve the
set covering problem with a coverage distance equal to the average of the lower and upper bounds
and continue the process.

Our algorithm can be considered a two-phase extension of this idea. In the first phase simple
LP feasibility problems with covering and upper bound on the sum of open facilities constraints
are solved to obtain a suitable lower bound on the optimal value. In the second phase, starting
from this lower bound a series of IP feasibility problems of the same type as above (as to whether
there is a solution to the problem with z = € or not), with different ¢ values for the radius are
solved. The feasibility problem for a specific radius e, that we refer to as (IP), is given below:

Z bijwj > 1 VieV (21)
JEW
dwj < p (2:2)
JEW
w, € {01} VYjew (2.3)

where w; is one if facility site j is open, and, b;; is a parameter calculated as:

1 di]' S 9
bij = .
0 otherwise.

If this (IP) formulation is infeasible, it means that for the specific radius €, there is no feasible
solution to p-center problem and ¢ is less than the optimal solution of the problem. Thus we have
to increase the maximum radius, €, until the (IP) formulation above becomes feasible. At the €
value that we just reach the feasibility, we also reach optimality in the p-center problem.

The algorithm is as follows':
Step 1. Find the minimum, [, and maximum, u, of weights of all edges,
[l = min{dij Vi e V,Vj € W}
u=max{d;; :Vie V,Vj e W}
Step 2. Calculate e = [(u —1)/2]
Step 2.1. if d;; < e then set b;; = 1
Step 2.2. else set b;; =0
Step 3. Solve the LP relaxation of (IP) above by replacing constraint (2.3) with:

0 <w;< 1 VjeW (2.4)

Step 3.1. If the LP relaxation is not feasible then set | = ¢
Step 3.2. else set u = €.
Step 4. Calculate (u —1).
Step 4.1. If (u — 1) <1 then go to Step 5.
Step 4.2. else go to Step 2.
Step 5. If the LP formulation is not feasible then Set ¢ = u else set £ = [
Step 6. If d;; < e then set b;; =1 else set b;; =0
Step 7. Solve the (IP) problem.
Step 7.1. If (IP) infeasible then increase the value of e:
¢’ = min {le : dij >e,VieV,Vje W}
then set € = &’ and go to Step 6.
Step 7.2. else (IP feasible) Stop.

In our algorithm, we solve LP and IP formulations iteratively by changing the radius of the
p-center problem. In the first part of the algorithm (Step 1 through Step 5), where we solve LP
problems, we search for the best possible bound that will be used as the starting radius for the IP
part(Steps 6 and 7). In the LP part, we use the bisection method to find the minimum radius that
maximize the objective function. In the second part where we solve IP feasibility problems, we
start from the minimum e value found by the first part of the algorithm. Until reaching a feasible
solution, we continue to solve IP formulations by increasing € to the minimum distance value that
is greater than €. When we reach a feasible solution to (IP), we can conclude that we obtained an
optimal solution to our p-center problem.

L Although this algorithm is for integer data set, it can be easily modified for real data sets.

3 Computational Results

In this section, we report the computational results obtained with our algorithm on OR-Lib [1]
p-median and TSP-Lib [6] problems using CPLEX 5 linear and mixed-integer program solvers!.
We note that these problems are solved to optimality for the first time in the literature, to the
best of our knowledge. All programs? are coded in C and tested on a Sun Enterprise Workstation
4000 running Solaris 7. We use the CPLEX 5 LP and MIP solvers to solve the LP and IP
feasibility problems in our algorithm. Since there is no specific algorithm in the literature available
to compare with our algorithm for large scale problems, we used the CPLEX 5 MIP solver on the
PCIP formulation to compare with our algorithm with respect to time efficiency. The comparison is
limited to the first ten OR-Lib p-median problems as the solution of the p-center PCIP formulation
consumes very large amounts of computer time already for small problems.

The results of the comparison on p-median problems are given in Table 1 where “size” refers to
the number of vertices in the graph. Since the size of the problems are very large for the PCIP
formulation we put a time limit of 3600 seconds. This time limit is very reasonable when we
compared with the run times of our algorithm. In our experiments we also compared the results of
LP relaxation of the PCIP formulation with the results obtained from LP phase of our algorithm.
“File no.” represents the file number of p-median data in OR-Lib, “obj.” is the objective function
value, and “cpu ¢.” is the amount of cpu time in seconds.

PCIP Formulation Proposed Algorithm
LP Relaxation PCIP LP Part LP+IP
file no. | size | p obj. cpu t. | obj. cput. || obj. | cput. | obj. | cpu t.
1 100 | 5 | 90.92 60.98 | 127 | 3601.79 || 121 0.89 | 127 2.08
2 100 | 10 || 63.35 49.21 | 110 | 3601.74 98 0.78 98 0.87
3 100 | 10 || 62.48 82.98 | 137 | 3601.44 92 0.69 93 0.83
4 100 | 20 41.5 58.66 | 119 | 3601.41 73 0.52 74 0.64
) 100 | 33 || 19.12 49.41 60 | 3601.67 48 0.53 48 0.58
6 200 | 5 || 62.87 | 2017.63 | 150 | 3611.58 83 3.17 84 6.13
7 200 | 15 || 37.14 | 1654.81 90 | 3607.54 55 2.03 56 2.7
8 200 | 20 || 33.84 | 1647.99 | 202 | 3605.25 55 1.66 55 1.88
9 200 | 40 || 20.02 | 747.19 65 | 3609.69 36 1.51 37 1.74
10 200 | 67 8.76 | 524.76 75 | 3605.49 19 1.2 20 1.37

Table 1: Comparison of PCIP Formulation on CPLEX 5 with Proposed Algorithm over p-median
data

As can be seen in the table, the PCIP formulation of all of the problems reaches the time limit
without finding the optimal solution. In all cases, we report the best integer solution value found
by CPLEX when the 1 hour cpu time limit was reached. Although for the first problem instance
it reached the optimal solution, it continued to run to be able to verify optimality of the solution.
However, if we look at the cpu times of our algorithm, it found optimal solutions for each problem
instance in less than 7 seconds, and in 1.9 seconds on average. This shows that our algorithm is
computationally far more efficient than the PCIP formulation on a general purpose MIP solver.

We also tested the first phase of our algorithm and LP relaxation of the PCIP formulation.
When we look at the computational efficiency and the quality of the lower bound obtained, the
first phase of our algorithm gives lower bounds much superior to the regular LP relaxation. The
average run times for LP relaxation and LP part of our algorithm are 689.36 and 1.30 seconds,
respectively. The deviations from the optimal values are also given in the Table 2. These deviations
are calculated by taking the distance between the objective function value and the optimal value
and then dividing it by the optimal value.

I1We do not have access to higher versions.
2The code is available from the authors upon request.

file no. PCIP | LP relax. | LP part

(%) (%) (%)

1 0.00 28.41 4.72

2 12.24 35.36 0.00

3 47.31 32.82 1.08

4 60.81 43.92 1.35

5 25.00 60.17 0.00

6 78.57 25.15 1.19

7 60.71 33.68 1.79

8 267.27 38.47 0.00

9 75.68 45.89 2.70

10 | 275.00 56.20 5.00
| Average | 9026 | 4001 178
| Max [27500] 6017 5.00 |

Table 2: Deviations of PCIP Formulation, its LP relaxation, and LP part of the algorithm from
the optimal solution for each p-median problem instance

In the first column of Table 2, it is observed that the deviation from the optimal value for
the PCIP formulation goes up to 275% in spite of the 3600 seconds run time. In the second and
the third columns, the obvious superiority of our algorithm appears. The regular LP relaxation
deviates up to 60%, but our algorithm’s LP part deviates at most by 5%, and it finds the optimal
value three times. However we should state that finding the optimal value does not necessarily
mean finding an optimal integer solution.

The results of the algorithm for all OR-Lib problems are given in Table 3. In the table, two
new columns named “iter. no.”, which means number of iterations, are included. The first one
shows how many feasibility problems, both LP and IP, have been solved until reaching the optimal
solution. The second one shows how many LP relaxations of the feasibility problem mentioned in
the Section 2 are solved or, in other words, how many iterations have been done until reaching
step 5 of the algorithm.

The run times of the algorithm are also very low when one considers the sizes of the problems.
Even for the problems with 900 vertices, run times are less than 10 minutes of cpu time. Also the
quality of lower bounds obtained from the first phase of the algorithm is very high. The deviations
from the optimal value never goes beyond 10%, and for 12 out of 40, it finds the optimal values.

Although the deviation from optimality is an important criterion for evaluating the quality of the
lower bound obtained from the first phase, another important criterion is the number of iterations
done after the LP part. There are two reasons for considering this issue. The first one is that the
less the number of iterations after the first phase, the less the run time, since the non-polynomial
part of our algorithm is the IP part. The second reason is that if the homogeneity of the data
is very low, i.e., the difference between distance values are very high, then the first phase of the
algorithm may give relatively loose lower bounds. Our algorithm works by adding or deleting edges
(or arcs) and by considering new radius values in each iteration. In the IP part of the algorithm
the radius is changed by increasing it to the next higher distance value. If the difference between
consecutive radiuses is very high, the LP part of the algorithm may fall far from the optimal value
even if only one more IP feasibility problem was additionally solved. For instance, consider the
problems 1 and 25 in Table 3. In problem 1, six additional iterations were done over the LP
part, and in problem 25, only two. However, the deviations are 4.72% in problem 1, and 9.09% in
problem 25. This shows that homogeneity of the problem data is high in the problem 1, but low
in problem 25, at least around the optimal values.

File Compl. Algorithm LP Part
no. | size p || obj. | iter no. | cpu t. obj. | iter no. | cpu t. | devia.(%)
1 100 5 127 16 2.08 121 9 0.89 4.72
2 100 10 98 10 0.87 98 9 0.78 0.00
3 100 10 93 11 0.83 92 9 0.69 1.08
4 100 20 74 11 0.64 73 9 0.52 1.35
5 100 33 48 10 0.58 48 9 0.53 0.00
6 200 5 84 10 6.13 83 8 3.17 1.19
7 200 15 56 10 2.7 55 8 2.03 1.79
8 200 20 55 9 1.88 55 8 1.66 0.00
9 200 40 37 10 1.74 36 8 1.51 2.70
10 200 67 20 9 1.37 19 7 1.2 5.00
11 300 5 59 9 9.13 58 7 6.85 1.69
12 300 10 51 10 8.21 50 8 6.5 1.96
13 300 30 36 9 4.2 35 7 3.27 2.78
14 300 60 26 9 3.42 25 7 2.99 3.85
15 300 | 100 18 9 2.72 17 7 2.38 5.56
16 400 5 47 8 13.94 47 7 11.93 0.00
17 400 10 39 9 13.41 38 7 9.05 2.56
18 400 40 28 9 19.42 27 7 5.92 3.57
19 400 80 18 9 4.85 17 7 3.85 5.56
20 400 | 133 13 8 4.08 13 7 3.86 0.00
21 500 5 40 8 42.34 40 7 19.79 0.00
22 500 10 38 9 | 130.46 37 7 20 2.63
23 500 50 22 8 35.81 21 6 7.13 4.55
24 500 | 100 15 9 7.84 14 7 7 6.67
25 500 | 167 11 8 7.06 10 6 6.35 9.09
26 600 5 38 10 | 121.72 36 7 34.09 5.26
27 600 10 32 8 73.53 31 6 25.11 3.13
28 600 60 18 9 18.16 17 7 13.48 5.56
29 600 | 120 13 7 10.18 13 6 9.67 0.00
30 600 | 200 9 8 9.99 9 7 9.59 0.00
31 700 5 30 8 | 108.22 29 6 33 3.33
32 700 10 29 10 | 460.34 27 7 33.46 6.90
33 700 70 15 8 32.37 14 6 14.51 6.67
34 700 | 140 11 8 15.56 10 6 14.13 9.09
35 800 5 30 7 66.46 30 6 56.39 0.00
36 800 10 27 8 342.1 27 7 55.53 0.00
37 800 80 15 8 35.18 15 7 33.2 0.00
38 900 5 29 8 96.04 28 6 68.05 3.45
39 900 10 23 8 | 536.48 22 6 57.38 4.35
40 900 90 13 7 404.9 13 6 28.94 0.00

Table 3: Results of the experiments with p-median data

File Compl. Algorithm LP part

no. size | p || obj. | iter no. cput. || obj. | iter no. | cput. | devia. (%)
pr226.tsp 226 | 40 650 16 2.24 649 14 2.02 0.15
pr226.tsp 226 | 20 || 1366 19 2.9 || 1352 14 2.21 1.02
pr226.tsp 226 | 10 || 2326 16 2.8 || 2325 14 2.5 0.04
pr226.tsp 226 | 5 || 3721 31 7.77 || 3658 14 3.13 1.69
pr264.tsp 264 | 40 316 16 130.97 299 13 2.63 5.38
pr264.tsp 264 | 20 515 15 3.54 514 13 3.11 0.19
pr264.tsp 264 | 10 850 15 3.91 849 13 3.44 0.12
pr264.tsp 264 5 || 1610 14 4.74 || 1610 13 4.42 0.00
pr299.tsp 299 | 40 355 15 4.01 354 13 3.67 0.28
pr299.tsp 299 | 20 559 14 4.71 559 13 4.49 0.00
pr299.tsp 299 | 10 889 15 9.59 888 13 6.65 0.11
pr299.tsp 299 | 5 || 1336 14 8.38 || 1335 12 7.16 0.07
pr439.tsp 439 | 40 672 16 12.36 671 14 10.28 0.15
pr439.tsp 439 | 20 || 1186 15 18.99 || 1186 14 15.7 0.00
pr439.tsp 439 | 10 || 1972 15 17.32 || 1971 13 | 14.53 0.05
pr439.tsp 439 | 5 || 3197 15 29.64 || 3197 14 | 27.49 0.00
pcb442.tsp 442 | 40 316 19 39.72 309 13 13.77 2.22
pcb442.tsp | 442 | 20 447 13 38.9 447 12 16.9 0.00
pcb442.tsp 442 | 10 671 14 53.65 670 12 27.28 0.15
pcb442.tsp 442 5 || 1025 14 107.31 1024 12 82.01 0.10
kroA200.tsp | 200 | 40 258 14 1.76 257 12 1.58 0.39
kroA200.tsp | 200 | 20 389 13 1.91 389 12 1.8 0.00
kroA200.tsp | 200 | 10 599 14 2.91 598 12 2.27 0.17
kroA200.tsp | 200 5 911 15 3.48 910 13 3.04 0.11
kroB200.tsp | 200 | 40 253 14 1.75 252 12 1.55 0.40
kroB200.tsp | 200 | 20 382 17 2.71 378 12 1.84 1.05
kroB200.tsp | 200 | 10 582 14 2.67 581 12 2.28 0.17
kroB200.tsp | 200 | 5 898 13 3.38 898 12 3.07 0.00
lin318.tsp 318 | 40 316 18 5.3 311 12 3.67 1.58
lin318.tsp 318 | 20 496 14 4.76 495 12 4.23 0.20
lin318.tsp 318 | 10 743 14 7.64 743 13 7.22 0.00
lin318.tsp 318 5 || 1101 13 9.14 || 1101 12 8.68 0.00
gr202.tsp 202 | 40 3 8 1.96 3 7 1.86 0.00
gr202.tsp 202 | 20 6 2.44 6 2.25 0.00
gr202.tsp 202 | 10 9 2.98 9 2.73 0.00
gr202.tsp 202 5 19 9 4.41 18 7 3.35 5.26
d493.tsp 493 | 40 206 14 36.03 205 12 | 27.18 0.49
d493.tsp 493 | 20 313 15 106.89 311 12 71.81 0.64
d493.tsp 493 | 10 458 14 81.7 457 12 67 0.22
d493.tsp 493 | 5 753 14 78.48 752 12 | 56.09 0.13
d657.tsp 657 | 40 250 18 | 7072.22 244 12 26.94 2.40
d657.tsp 657 | 20 375 14 | 154.39 374 12 | 60.67 0.27
d657.tsp 657 | 10 575 14 | 196.74 574 12 | 166.55 0.17
d657.tsp 657 | 5 881 14 | 360.28 880 12 | 303.53 0.11

Table 4: Results of the experiments with TSP data

However, even though the deviations in some problems, such as problem 25 and 33, are higher
than some other deviation values, the number of iterations of the IP part still remains quite low.
Therefore, when we consider the number of iterations, we can accept the objective function values
produced by the first phase as good lower bounds if the second phase uses a small number of
iterations.

In addition to p-median problems from OR-Lib data set, we also applied our algorithm to some
problems from the TSP-LIB data set. The sizes of the problems range from 200 nodes to 657 nodes.
We chose four different p values for each problem as 5, 10, 20, and 40. The results are given in
Table 4. If we consider the results of the LP part, the maximum deviation from the optimal value
is 5.28% and average run time is 24.65 seconds. The complete algorithm is also computationally
very efficient with an average 196.58 seconds. For one case, problem “d657.tsp”, the cpu time is
relatively high, 7072 seconds. However, it is still very good if we consider the PCIP formulation
where we can safely claim that it cannot be solved for the same problem in a reasonable amount
of computer time.

References

[1] J.E. Beasley (1985), A note on solving large p-median problems, European J. Oper. Res. 21,
270-273.
[2] M. Daskin (1995). Network and Discrete Location, Wiley, New York.

[3] O. Kariv and S.L. Hakimi (1979), An algorithmic approach to to network location problems
Part I: The p-centers, SIAM J. Appl. Math. 37, 513-538.

[4] N. Mladenovic, M. Labbé, P. Hansen (2000), Solving the p-center problem with tabu search
and variable neighborhood search, Technical Report, SMG, Université Libre de Bruxelles,
available from smg.ulb.ac.be/Preprints/Labbe0020.html.

[5] E. Minieka (1970), The m-center problem, STAM Review 12, 138-139.

[6] G. Reinelt (1991), TSP-Lib-A traveling salesman problem library, ORSA J. Comput. 3, 376~
384.

