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Un algorithme PQS tronqu� pour r�soudre les probl�mes

d�optimisation non convexes sous contraintes d��galit�

R�sum� � Nous proposons un algorithme pour r	soudre les probl�mes d�optimisa�
tion sous contraintes d�	galit	 g	n	raux
 Il utilise le gradient conjugu	 tronqu	 pour
prendre en compte la non�convexit	 	ventuelle des fonctions d	�nissant le probl�me
 La
recherche lin	aire permet d�assurer la convergence des it	r	s� m�me en cas de d	marrage
en un point 	loign	 d�une solution
 Des tests ont 	t	 r	alis	s sur banc d�essai �collection
cute� et sur des probl�mes d�optique ophtalmique
 Les r	sultats num	riques comparent
l�approche propos	e � celle impl	ment	e dans les codes � r	gions de con�ance ETR et
Knitro


Mots�cl�s � Contraintes d�	galit	 � convergence globale � fonction de p	nalisation
exacte � gradient conjugu	 tronqu	 � m	thode de Newton � optimisation non convexe
� programmation quadratique successive � recherche lin	aire




A truncated SQP algorithm �

� Introduction

In this paper� we consider with an algorithmic viewpoint the problem of minimizing a
nonlinear function on a nonlinear manifold de�ned by equality constraints
 The problem
is written as follows

minimize f�x�
subject to c�x� � ��

��
��

where the objective f � Rn � R and the constraints c � Rn � R
m are smooth func�

tions
 Our approach accepts nonconvex functions� but requires f and c to be twice
di�erentiable
 Hessian�vector products are indeed used to speed up the convergence
and to deal with the possible nonconvexity of the problem
 In practice� these products
could be approximated by �nite di�erences of gradients� but we do not report here any
experiment along this line


The algorithm uses line�search and can be viewed as a natural extension of the
truncated Newton method of Dembo and Steihaug ���� for solving unconstrained mini�
mization problems
 Despite its simplicity� we have not found any published description
of such an algorithm� although it is linked to the Steihaug technique for solving approxi�
mately the quadratic subproblems in the trust region approach �see ���� ��� �
��
 Several
details of the proposed algorithm di�er from those used in the trust region framework�
because of the need to generate descent directions
 The extension of this algorithm to
problems with inequality constraints with a nonlinear interior point approach is consid�
ered in ��� and the forthcoming paper ����


The trust region �TR� approach is often presented as a robust technique to solve non�
convex constrained optimization problems and numerical experiments have con�rmed
this viewpoint �see the impressive ��
� for a state of the art on TRs�
 However� this
approach still needs modi�cations to solve e�ciently large scale optimal control prob�
lems �OCPs�
 According to us� their main current limitations may be due to the use
of spherical trust regions
 First� this makes preconditioning di�cult
 Second� spher�
ical trust regions have the propensity to force the use of a restoration operator that
is perpendicular to the space tangent to the constraint manifold �the restoration step
in ��� ��� ��� has this property when the trust region does not intersect the linearized
constraint manifold�
 This aspect of the algorithm is time consuming in many large
scale OCPs
 On the other hand� the proposed line�search algorithm is probably less
robust than those using trust region techniques �for example� the method cannot deal
with pointwise singular constraint Jacobians and it is not guaranteed that its limit
points are at least stationary points of the norm of the constraints�� but it encounters
no particular di�culties with preconditioning and nonnormal restoration operators
 We
believe also that it can be very helpful for solving a large class of OCPs� because of its
ability to take advantage of their structure� as we now explain


From the optimization viewpoint� a discretized OCP is a general nonlinear problem
like ��
��� with the following structure �inequality constraints are often present in these
problems� but we shall not consider that general case here� see ��� for a recent overview
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� L� Chauvier� A� Fuduli� J� Ch� Gilbert

on the use of mathematical programming techniques to solve OCPs�
 The variables
x � �x�� � � � � xn� to optimize are partitioned in x � �y� u�
 The components of y � R

m

�as many as equality constraints�� called state variables� describe the state of the system
under study� while the components of u � R

n�m � called control variables� are parameters
that can be used to modify and control the state of the system
 Accordingly� the m�n
Jacobian matrix of the equality constraints A�x� �� c��x� is partitioned as follows

A�x� �
�
B N

�
�

where B � B�x� � �c
�y �x� and N � N�x� � �c

�u�x�
 A key feature of OCPs is that it is
reasonable to assume the nonsingularity of the matrix B
 In this case� by the implicit
function theorem� the state variable y can be expressed as a function of the control
variable u and the equality constraint c�y� u� � �� also called state equation� re�ects
how the state y varies when u is changed


Often� engineers have already an extensive experience in modelization when they
come to optimization
 The system they study is described by some equation� F �y� � �
say� with F � Rm � R

m 
 The question then arises to know how to optimize the system�
with respect to some criterion� by modifying some parameters u
 The model equation
is then written c�y� u� � �� the previous equation being recovered for some value u�
of the control parameter� F ��� � c��� u��
 A typical example is shape optimization in
hydrodynamics� in which the boundary of the domain of interest �described by shape
parameters� has to be designed to obtain optimal properties of the simulated �ow ����

Another example is the determination of optimal trajectories in the presence of obstacles
�see ��� �� for a problem where a deep tethered vehicle is controlled by a towing ship�
this problem has been used as test�problem in the design of our algorithm�


These applications have in common that the state of the system is computed by
solving the equation F �y� � � by �possibly damped� Newton�s iterations
 Speci�c
research may have yielded e�cient techniques for solving the linear system B�r � �F
de�ning the Newton step �r
 We think of exploiting the sparsity of the matrix B � F �

or using parallelism� for instance
 The optimization algorithm that we propose tries to
use as much as possible the fact that� for OCPs� the step �r is a good displacement for
computing the state of the system
 From this viewpoint� our optimization algorithm
is a technique modifying the direction �r in order to reach optimality
 This has also
the advantage of allowing the algorithm to use adapted numerical techniques developed
before the optimization has come into play


The paper is organized as follows
 Section � presents the properties that are helpful
to design the algorithm
 In section �� we describe the algorithm and show its global
convergence
 Finally� section � relates some numerical experiments� comparing our
approach with the TR codes ETR and Knitro


Notation

We denote by k � k the �� or Euclidean norm
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A truncated SQP algorithm �

� The search direction

Let us denote by A�x� the m� n Jacobian matrix of c at x
 It will always be assumed
to have full row rank
 Then� for any solution x� of ��
�� there exists a unique Lagrange
multiplier �� � Rm such that �see for example �������

rf�x�� �A�x��
��� � �

c�x�� � ��
��
��

The �rst equation is the gradient �associated with the Euclidean scalar product� with
respect to x of the Lagrangian function

�x� �� � R
n � R

m �� ��x� �� �� f�x� � ��c�x� � R�

Its Hessian with respect to x is denoted by

L�x� �� �� r�
xx��x� ���

A point x� satisfying ��
�� for some �� is called a stationary point
 At a solution
�x�� ��� of ��
��� L� �� L�x�� ��� is positive semi�de�nite on N�A��� the null space of
A� �� A�x��
 We say that �x�� ��� is a strong solution if L� is positive de�nite on
N�A��� d

�L�d � � for all nonzero d � N�A��
 A stationary point x�� with associated
multiplier ��� is said to be regular if A� is surjective and if any d � N�A�� such that
L�d � N�A��

� vanishes
 When the constraint Jacobian is surjective� a strong solution
is an example of regular stationary point �see ����


The standard version of the SQP algorithm for solving ��
�� is a Newton�like method
for �nding a solution of ��
�� �see for example ���� �� ��� ��� ���
 An iteration starting
at �x� �� �rst solves the following linear system for �d� �QP���

M A�x��

A�x� �

��
d
�QP

�
� �

�
rf�x�
c�x�

�
��
��

where M is a symmetric matrix� which can be inde�nite
 In Newton�s method M is the
Hessian of the Lagrangian L�x� �� and in quasi�Newton methods M is updated at each
iteration to approximate L�x� ��
 In these cases� M depends directly or indirectly on �

Next� �x� �� is updated by

x� � x� d and �� � �QP�

The pair �d� �QP� is also a primal�dual stationary point of the quadratic problem

min rf�x��d�
�

	
d�Md

s
t
 A�x�d� c�x� � ��
��
��

It is known that� if the �rst iterate �x�� ��� is close enough to a regular stationary pair
�x�� ��� of ��
��� the SQP algorithm with M � L�x� �� is well de�ned �i
e
� ��
�� has a
unique solution� and generates a sequence f�xk� �k�gk�� of primal�dual pairs converging
quadratically to �x�� ���
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��� System reduction

To compute a solution of the linear system ��
��� one can proceed as follows
 The dual
solution �QP being determined by the value of d and the �rst equation of ��
�� �remember
that we assume that A�x� is surjective�� the main task consists in determining d


Any direction d satisfying the linearized constraints can be written d � r� t� where
r is a particular solution of

A�x�r � �c�x�

and t is a displacement in N�A�� the null space of A�x�
 The displacement r is called
the restoration step and t is called the tangent step since it is tangent to the manifold
c���c�x��
 There are several meaningful ways of decomposing d in a restoration step
and tangent step


As we said in the introduction� in OCPs� x is partitioned in �y� u� and the Jacobian
matrix A�x� is similarly partitioned in

A�x� �
�
B�x� N�x�

�
�

�
�c

�y
�y� u�

�c

�u
�y� u�

�
�

with B�x� nonsingular
 The vector r can then be computed by

r � �

�
B�x���

�

�
c�x�� ��
��

Clearly� the �rst m components of r� �B�x���c�x�� is the Newton step to solve the
state equation c��� u� � � with �xed control parameters u
 In OCPs� computing r as
above is often the most straightforward and natural approach
 For example� when the
constraint comes from the discretization of a di�erential equation� B is a sparse lower
block triangular matrix
 It is therefore very attractive to compute r in that way and
to have an optimization algorithm where this step is allowed
 On the other hand� the
columns of �

�B�x���N�x�
I

�
��
��

form a basis of N�A�x��� so that the tangent step can be taken in the range space of
this matrix


More generally� since A�x� is assumed to have full row rank� it has a right inverse�
this is an injective matrix A��x� � R

n�m such that

A�x�A��x� � Im� ��
��

The matrix factor of �c�x� in ��
�� is an example of right inverse of A�x�� which is
adapted to OCPs
 The restoration step can then be computed by r � �A��x�c�x�

The algorithm does not require that the matrix A��x�� nor its transpose� be explicitly
formed
 Only products of these matrices with various vectors are needed
 Let also

INRIA



A truncated SQP algorithm �

Z��x� be an n � �n �m� matrix whose columns form a basis of N�A�x��� i
e
� Z��x�
is injective and

A�x�Z��x� � Om��n�m�� ��
��

The reduced gradient associated with the  basis! Z��x� is the vector of Rn�m de�ned by

g�x� �� Z��x��rf�x�� ��
��

In OCPs� the matrix ��
�� is a natural basis and the reduced gradient is often computed
by �rst solving the so�called adjoint equation

B�x��p � ryf�x�

and next g�x� � ruf�x��N�x��p

In the sequel� we suppose that for any x the matrices A��x� and Z��x� are given

and adapted to the problem to solve
 We want to design an optimization algorithm
that uses these matrices� without modifying them by costly computations


In the formalism given above� any solution of the linearized constraints can be
written

d � r � t

with
r � �A��x�c�x� and t � Z��x�u�

for some u � R
n�m to determine
 This is a �rst way of decomposing d
 Substituting

this expression of d into the �rst equation of ��
�� and multiplying on the left by Z��x��

yields the so�called reduced system

Hu � v� ��
�
�

where

H �� Z��x��MZ��x� and v �� �g�x� � Z��x��MA��x�c�x�� ��
���

The symmetric matrix H� called the reduced matrix� need not be assembled in our
algorithm
 When M � L�x� ��� H depends on x and � and is positive de�nite �resp

nonsingular� at a strong solution �resp
 a regular stationary point� of ��
��


��� Conjugate gradient iterations

When M � L�x� ��� it is instructive to compare the linear system ��
�
� with the
Newton system in unconstrained optimization� i
e
� r�f�x�d � �rf�x�
 In both cases�
the matrix of the system is symmetric and positive semi�de�nite at a minimum point

For unconstrained problems� it is rarely appropriate to compute an exact solution of
this linear system when x is far from a minimization point� it is unlikely to be a descent
direction of f �except if f is strongly convex� and it requires therefore unnecessary

RR n� ���	
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computational e�ort
 In the truncated Newton approach ����� this linear system is solved
more and more accurately as the iterates progress to the solution� by a controlled number
of conjugate gradient �CG� iterations
 By adapting the accuracy with which system
is solved one can get a superlinear or quadratic rate of convergence
 An interesting
property of this approach is that� provided the CG is interrupted before encountering a
negative curvature direction �see below�� the approximate solution is a descent direction
of f 
 We follow the same idea and solve the reduced system ��
�
� inexactly by truncated
CG iterations
 In section �
�� we show that this strategy provides a direction d along
which some classical exact penalty merit function decreases


The truncated conjugate gradient �TCG� algorithm for solving ��
�
� approximately
is presented below
 Its iterations are called inner iterations as opposed to the outer it�
erations of the SQP algorithm
 The algorithm starts with u� � � as the initial approx�
imation of u� generates approximate solutions uj for j � �� � � � � i� as well as conjugate
directions vj 
 The negative residual is denoted by rj � v �Huj


The algorithm can be stopped at any iteration� but it must certainly be interrupted
at uj if the next conjugate direction vj is a quasi�negative curvature direction
 We mean
by this that the following inequality does not hold�

�vj��Hv
j � �kvjk�� ��
���

The parameter � � � is maintained constant during the CG iterations �but it will vary
along the outer iterations� see section ��
 Algorithm TCG will simply discard quasi�
negative directions� hence also negative curvature directions �for which the left�hand
side in ��
��� is negative�


Algorithm TCG �Truncated Conjugate Gradient��

�
 Set u� � � and r� � v

�
 If v � �� set i � � and go to Step �

�
 For j � �� �� � � � do the following�

�
�
 Stop to iterate and go to Step � with i � j if desired

�
�
 Compute the jth conjugate direction�

v
j ��

�
r� if j � �

rj � krjk�

krj��k�
vj�� if j � ��

�
�
 Compute pj � Hvj

�
�
 If ��
��� does not hold� then go to Step � with i � j

�
�
 Compute the stepsize�

t
j �

krjk�

�vj��pj
�

INRIA



A truncated SQP algorithm �

�
�
 Compute the new iterate uj�� � uj � tjvj and the new negative
residual rj�� � rj � tjpj


�
 If i � � take u � v� else take u � ui� as approximate solution of ��
�
�


It is important to note that the algorithm uses quasi�negative directions in a di�erent
way when i � � or i � �
 In the �rst case� u is set to that quasi�negative direction
v� � r� � v� while in the latter case the quasi�negative direction vj is discarded
 In this
way� the approximate solution u of ��
�
� computed by the algorithm is zero only when
v � �


The next proposition shows that the approximate solution u � ui can be written in
a compact form ui � Jv� where J is a positive semi�de�nite matrix� which can then be
viewed as an approximation of the inverse of H �provided this one exists�


Proposition ��� The approximate solution u of ��
�
� computed by Algorithm TCG
can be written

u � Jv�

where J is the identity matrix if i � � and

J ��

i��X
j��

vj�vj��

�vj��Hvj
� if i � �� ��
���

Proof
 If i � �� u � v and the result follows
 Otherwise Algorithm TCG generates
conjugate directions v�� � � � � vi��� so that for � 	 j 	 i� ��

krjk� � �vj��rj � ��vj���Hu
j � v� � ��vj��H

�
j��X
l��

t
l
v
l

�
� �vj��v � �vj��v�

by conjugacy of vj and vl
 Therefore

u �

i��X
j��

t
j
v
j �

i��X
j��

�vj��v

�vj��Hvj
v
j �

	
 i��X
j��

vj�vj��

�vj��Hvj

�A v�

��� Descent direction

The direction produced by our algorithm adds the restoration step r � �A�c and the
tangent step t � Z�u� where u � Jv is the approximate solution of the reduced system
��
�
� computed by Algorithm TCG�

d � r � t � �A�c� Z�Jv� ��
���

RR n� ���	
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where v is given by ��
���
 Introducing the following right inverse eA� �� eA��x� of
A �� A�x� �use ��
�� and ��
�� to see that A eA� � Im��

eA� � �I � Z�JZ��M�A�� ��
���

the direction d can be rewritten

d � er � et� ��
���

where

er � � eA�c and et � �Z�Jg� ��
���

Formula ��
��� gives a second way of decomposing d in its restoration and tangent steps

Consider the merit function


��x� � f�x� � 	kc�x�k
P
� ��
���

where k � k
P

is an arbitrary norm on R
m and 	 is a positive penalty parameter
 We

denote by k � k
D

the dual norm of k � k
P
� which is de�ned by

kvk
D
� sup

kuk
P
��

u�v�

Note that ju�vj 	 kuk
P
kvk

D

 It is known that if �x�� ��� is a strong solution of ��
�� and

if 	 � k��kD � then x� is a strict local minimum of 
� �this is known as the exactness
property of the penalization by 
�� see ���� �� for example�
 To force convergence of an
algorithm using d as a basic step� it is standard to carry out a line�search at x along
the direction d� forcing the decrease of 
�
 The parameter 	 will be adapted at some
iteration to ensure the exactness of 
�


The question to know whether d is a descent direction of 
� at x is examined in the
next proposition
 The expression of the directional derivative 
�

��x� d� makes use of the
reduced gradient g de�ned by ��
�� and the multiplier estimate e�� associated with the
right inverse eA��

e� �� � eA��x��rf�x�� ��
���

Proposition ��� Suppose that f and c are di�erentiable at x� Then 
� has a direc�
tional derivative at x� Its value in the direction d given by ��
��� is


�
��x� d� � �g�Jg � e��c� 	kck

P
� ��
�
�

It is negative if x is nonstationary and 	 � ke�k
D
�

Proof
 Since a norm is Lipschitz continuous and has directional derivatives� k�k
P

c has

directional derivatives and the chain rule applies� �k � k
P

 c���x� d� � �k � k

P
���c�Ad� �

INRIA
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�k � k
P
���c��c� � �kck

P

 The last equalities come from the fact that d satis�es the

linearized constraints and from the very de�nition of a directional derivative
 Therefore


�
��x� d� � rf�d� 	kck

P
�

Using ��
��� and ��
���� we get ��
�
�

Suppose now that 	 � ke�k

D

 Using e��c 	 ke�k

D
kck

P
� we obtain


�
��x� d� 	 �g�Jg � �ke�k

D
� 	�kck

P
	 ��

If 
�
��x� d� � �� it follows that c � � and g�Jg � �
 If i � � is set by Algorithm

TCG� J � I and therefore g � �
 Now i cannot be � �� since otherwise one would
have v �� � �see Step � of Algorithm TCG� and therefore g �� � �since c � ��
 But
with the structure of J and the fact that v� � v � �g when c � �� one would have
g�Jg � �g�v��
�v�Hv� � kgk�
�g�Hg�� which would contradict the fact that g�Jg � �

Hence x is stationary


Proposition �
� shows that if 	 is larger than the computable threshold ke�k
D

� the
direction d� whose tangent component is determined by Algorithm TCG� is a descent
direction of 
�
 We use this fact in section � to design a line�search algorithm� in which

� is decreased at each iteration
 Before this� let us show how e� can be computed
inexpensively


��� Computation of e�

According to formulas ��
��� and ��
���� the de�nition of e� involves the matrix J 
 This
matrix is formed with the conjugate directions vj generated by Algorithm TCG� see
��
���
 We do not want to store these vectors or the matrix J � however� since this
would be in opposition with the low memory requirement of the CG algorithm
 In fact�
a closer look at the de�nition of e� shows that it is su�cient to evaluate �Jg
 This
vector is an approximate solution of the linear system

Heu � �g� ��
���

obtained by using the same conjugate directions vj and the same Hessian�vector prod�
ucts pj � Hvj � j � �� � � � � i� �� as those used to compute u as an approximate solution
of ��
�
�
 This claim will be easy to verify in a moment


Algorithm TCG� below computes this approximate solution eu of ��
��� by using the
vectors vj and pj in sequence� so that the computation can be made in parallel with the
one of u� without having to store these vectors
 This algorithm also needs to update
the approximate solution �uj and the negative residual �rj � ��H�uj � g� associated with
��
���


Algorithm TCG��

�
 Set u� � � and r� � v
 Set �u� � � and �r� � �g
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�
 If v � �� set i � � and go to Step �

�
 For j � �� �� � � � do the following�

�
�
 Stop to iterate and go to Step � with i � j if desired

�
�
 Compute the jth conjugate direction�

v
j ��

�
r� if j � �

rj � krjk�

krj��k�
vj�� if j � ��

�
�
 Compute pj � Hvj

�
�
 If ��
��� does not hold� then go to Step � with i � j
�
�
 Compute the stepsizes�

t
j �

krjk�

�vj��pj
and �tj �

��rj��vj

�vj��pj
�

�
�
 Compute the new iterates

u
j�� � u

j � t
j
v
j and �uj�� � �uj ��tjvj

and the new negative residuals

r
j�� � r

j � t
j
p
j and �rj�� � �rj � �tjpj�

�
 If i � � take u � v� else take u � ui� as approximate solution of ��
�
�

If i � � take eu � �g� else take eu � �ui� as approximate solution of ��
���


It is not di�cult to show that� as announced� the approximate solution eu of ��
���
computed by Algorithm TCG� can be written

eu � �Jg� ��
���

Indeed� if i � �� Algorithm TCG� takes eu � �g and ��
��� follows since J � I
 If i � ��
Algorithm TCG� takes

eu � �ui �
i��X
j��

�tjvj �
i��X
j��

��rj��vj

�vj��pj
v
j�

Now� using an argument similar to the one in the proof of Proposition �
�� one has

�vj���rj � ��vj���H�uj � g� � ��vj��H

�
j��X
l��

�tlvl

�
� �vj��g � ��vj��g�

by conjugacy of vj and vl
 Therefore

eu � �

	
 i��X
j��

vj�vj��

�vj��Hvj

�A g � �Jg
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and ��
��� follows again

Finally� the multiplier that is used in the algorithm for setting the lower threshold

ke�k
D

for the penalty parameter 	 �see section �
�� is computed by

e� � �A���rf �MZ�eu�� ��
���

where eu is now the approximate solution ��
��� of ��
��� computed in Algorithm TCG�

Note that� when H is positive de�nite and J � H��� e� is not the QP multiplier �QP�
but the multiplier of the problem

min rf�et� �

	
et�Met

s
t
 Aet � ��
��
���

An approximation of �QP could also be obtained by

�QP � e��A��MZ��u� eu� �A��MA�c�

This approximation could be useful for TR algorithms� but we shall not need it in the
present context


� The algorithm and its global convergence

The overall algorithm for solving Problem ��
�� generates a sequence fxkgk�� by the
recurrence

xk�� � xk � �kdk�

where the direction dk � R
n is determined by ��
������
��� as in section � and the

stepsize �k � � is determined by a line�search along dk on the merit function 
�k

de�ned by ��
���
 In this section� all quantities depending on the iteration index k
receive a subscript k� vk for v� vjk for vj � etc
 We also note ck � c�xk�� rfk � rf�xk��
gk � g�xk�� etc


The tangent part of the direction dk depends on the number of CG iterations per�
formed in Algorithm TCG�
 In turn� this depends on the quasi�negative curvature
threshold �k� which is allowed to vary from iteration to iteration
 One would like to
take �k small when xk is close to a solution and larger far away
 The speed of convergence
depends indeed on the precision with which the reduced system ��
�
� is solved close
to the solution
 Arbitrary small �k � � can prevent convergence
 The only condition
required by the convergence theory below is the following��
�

if for some sequence K 
 N �
there exists � � � such that� for all k � K� kckk� kgkk � ��
then� there exists �� � � such that� for all k � K� �k � ���

��
���

For example� the rule �k � min �� �� � ���kckk� kgkk��� where � � and � �� are positive
constants� satis�es this assumption


RR n� ���	



�� L� Chauvier� A� Fuduli� J� Ch� Gilbert

Proposition �
� has shown us that dk is a descent direction of 
�k provided xk is

nonstationary and 	k � ke�kkD 
 To get convergence of the algorithm� however� it is
necessary to ask slightly more on the penalty parameter 	k
 We �x a constant �	 � �
and assume that���
���

�a� for all k� 	k � ke�kkD � �	�
�b� there exists an index k� such that�

if k � k� and 	k�� � ke�kkD � �	� then 	k � 	k���
�c� if f	kg is bounded� 	k is modi�ed �nitely often


��
���

Conditions �a���b� imply that after a �nite number of iterations� f	kg is nondecreasing

By condition �c�� in the favorable case when f	kg is bounded� the merit function 
�k is
no longer modify for large iteration indices� so that it is always the same function that
is decreased �this is a key point to have convergence�
 These properties are satis�ed�
for example� by the Mayne and Polak ��
� update rule �the constant ��
 is given to be
speci�c� actually� any constant � � is convenient��

if 	k�� � ke�kkD � �	 then
	k � 	k��

else

	k � max���
	k��� ke�kkD � �	�
end if

Assume now that 	k satis�es ��
���
 Since at a nonstationary iterate xk� dk is a
descent direction of 
�k � one can determine a stepsize �k � � such that the Armijo
condition


�k�xk � �kdk� 	 
�k�xk� � 
�k

�
�k
�xk� dk� ��
���

holds
 In ��
���� 
 is a constant chosen in ��� �� �
 In the algorithm� �k is determined by
backtracking


We can now summarize the overall algorithm for solving the equality constrained
problem ��
��


Algorithm TSQP �Truncated SQP��

�
 Initialization
 Set k � �
 Choose an initial iterate �x�� ��� � R
n�Rm and

set the constants � � � �� � �� � � �quasi�negative curvature constants�� 
 �
��� �� � �slope modi�er in the Armijo condition�� �	 � � �penalty parameter
threshold�� and � � ��� �� � �backtracking safeguard parameter�


�
 For k � �� �� 	� � � � do the following�
�
�
 Stopping test � Stop if ck � � and gk � �
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�
�
 Step computation�
� Compute the restoration step rk � �A�k ck

� Run Algorithm TCG� described in section �
�� with a quasi�nega�

tive curvature threshold �k satisfying condition ��
���� to compute
an approximate solution uk of ��
�
� and an approximate solutioneuk of ��
���


� Compute the tangent step tk � Z�k uk

� Compute the total step dk � rk � tk


�
�
 Penalty parameter setting �
� Compute e�k by ��
���

� Update 	k such that ��
��� holds


�
�
 Linesearch�
� Set � � �

� While � does not satisfy Armijo�s inequality ��
���� take a new

stepsize � in ���� �������

� Set �k � �


�
�
 New iterates� Set xk�� � xk � �kdk and �k�� � �LSk 


Before proving the global convergence of this algorithm� let us make some obser�
vations
 In a concrete implementation of this algorithm� the stopping test in Step �
�
should be replaced by a condition checking that ck and gk are su�ciently small
 Also
in Step �
�� the new stepsize chosen in the interval ���� ������� during the line�search
should be determined by interpolation
 In Step �
�� we have set the new multiplier �k��
to the least�squares multiplier

�LSk �� �A��k rfk�

The interest of this choice is that this multipler estimate does not depend on second
derivatives
 In contrast� using e�k or �QPk may not be always faithful during the �rst
iterations of the algorithm


Here are the assumptions that are necessary to have global convergence of Algo�
rithm TSQP
 The convergence proof does not require to have Mk � r�

xx��xk� �k�� so
that there is no assumptions related directly to the second derivatives of f and c
 In
practice� however� this is when second derivatives are used that Algorithm TSQP is the
most useful


Assumptions ��� �i� The functions f and c are continuously di�erentiable with Lips�
chitz continuous derivatives
 �ii� The sequences fZ�k g� fA

�
k g� fMkg� and fe�kg generated

by Algorithm TSQP are bounded


Theorem ��� Suppose that Assumptions ��� hold� Then the sequence of penalty pa�
rameters f	kg is stationary for k su�ciently large� 	k � 	� If furthermore f
��xk�g
is bounded below� then the sequences fckg and fgkg converge to ��

RR n� ���	



�� L� Chauvier� A� Fuduli� J� Ch� Gilbert

Proof
 We denote by C�� C�� � � � positive constants
 By ��
�����b� and the bound�
edness of fe�kg� f	kg is bounded� hence stationary for k large �by ��
�����c��
 The �rst
part of the theorem is proved


Since from some index� say k�� the penalty parameters 	k have the common value 	�
the Armijo inequality ��
��� shows that 
��xk� decreases
 This sequence is also bounded
below �by assumption�� hence it converges
 This implies that �k


�
��xk� dk� tends to ��

or equivalently �use Proposition �
� and ��
�����a��

�kg
�
kJkgk � � and �kck � �� ��
���

We proceed by contradiction assuming that there is an unbounded subsequence K
of indices k and a positive constant � such that

kgkk� kckk � �� for k � K
 ��
���

By condition ��
���� this implies that there is a constant �� � � such that �k � ��� for
k � K


Let us now show that f�kgk	K is bounded away from 

 By the line�search �Step
�
��� when �k � �� there is a stepsize ��k � ��� �� such that �k � �� ��k� �������k� and


��xk � ��kdk� � 
��xk� � 
��k

�
��xk� dk��

Using the smoothness of f and c and the fact that dk satis�es the linearized constraints�
one has successively

f�xk � ��kdk� � f�xk� � ��kf
��xk� � dk �O����kkdkk

���

c�xk � ��kdk� � ��� ��k�c�xk� �O����kkdkk
���


��xk � ��kdk� 	 
��xk� � ��k

�
��xk� dk� � C� ��

�
kkdkk

��

Therefore �
 � ��
�
��xk� dk� � C� ��kkdkk

� or

g�kJkgk � kckkP � C���kkdkk
�� ��
�
�

where C� � C�
����
�minf�� �	g�
 Using kvjk�v
j
k�
�k � kvjkk

� and �vjk�
�Hkv

j
k � ��kvjkk

��
one has from Proposition �
�

kJkk 	 max

	
��
i��X
j��

kvjk�v
j
k�
�k

�vjk�
�Hkv

j
k

�A 	 max

�
��
n�m

��

�
�

Hence fJkgk	K is bounded
 With the boundedness of fA�k g and fZ�k g �by Assump�

tions �
��� the expression ��
��� of dk yields dk � O�kJ
���
k vkk� kckkP �
 Now� the de��

nition ��
��� of vk� the boundedness of fMkg and fJkgk	K provide dk � O�kJ
���
k gkk�

kckkP �
 Inequality ��
�
� then becomes

g�kJkgk � kckkP � C	��k�g
�
kJkgk � kckk

�
P
�� for k � K�
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By ��
���� �kck � � and therefore

g�kJkgk � C	 ��kg
�
kJkgk� for k large in K�

This inequality shows that g�kJkgk � � when �k � � and k is large enough in K and
that f��kgk	K is bounded away from zero
 Since �k � � ��k� f�kgk	K is also bounded
away from zero
 From ��
���

g�kJkgk � � and ck � �� for k � K� ��
���

We now want to show that gk � � for k � K� which will contradict ��
��� and
will conclude the proof
 Observe that� with the boundedness of fMkg and fZ�k g� the
formula ��
��� of Jk provides

g�kJkgk �
�g�k vk�

�

v�kHkvk
� C�

�g�k vk�
�

kvkk�
� for k � K�

The numerator can be bounded below as follows� �g�k vk�
� � ��kgkk

��O�kgkk kckk��
� �

kgkk
��O�kgkk

	 kckk��O�kgkk
� kckk

�� � �
�kgkk

��C
kgkk
� kckk

�
 For the denominator�
we use the upper bound� kvkk

� 	 	kgkk
� � C�kckk

�
 Therefore

g�kJkgk �
�
�kgkk

� � C
kckk
�

	 � C��kckk�
kgkk��
� for k � K�

This inequality and ��
��� imply that gk � � for k � K


� Numerical experiments

Algorithm TSQP has been implemented in Fortran���� with some additional heuristics

The resulting code is denoted by TSQP below
 In this section� we relate our experiments
with this code
 Actually� TSQP is part of a general purpose optimization software� called
Opinel� which can also deal with inequality constraints
 This latter software will be
presented in a forthcoming paper ����
 The current version of the software is 

�a


One of the aims of these experiments is to make a comparison between the simple and
�exible line�search approach implemented in TSQP and the robust� but more complex�
trust region �TR� technique
 For this reason� we have chosen to compare TSQP with two
other TR codes� ETR �an equality constraint solver ����� and Knitro �Version �


� an
equality and inequality constraint solver ��� �� ����


��� Conditions of the tests

Our benchmark is formed of a subset of test�problems from the cute collection ���
and some industrial�real�life test�problems provided by Essilor� a lens manufacturing
company �see also in ���� Jonsson�s contribution to this application�
 All the selected
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problems deal with equality constraint optimization
 The codes have been run on a
DEC�alpha PWS�

 platform� under the Unix operating system


We compare the solvers ETR� Knitro� and TSQP� through their performance pro�les�
a concept introduced by Dolan and Mor	 ����
 For the reader�s convenience� we brie�y
summarize here the key points of this comparison principle
 For a given collection
of test�problems and a chosen performance criterion �such as the number of function
evaluations� or gradient evaluations� etc�� a graph is drawn with a curve relating the
e�ciency of each solver with respect to the other ones
 For example� the �rst graph
in �gure �
� compares the relative performance of ETR� Knitro� TSQP� and TSQP�prec

�� curves� the code TSQP�prec is described below�� when one considers the number of
function evaluations as the performance criterion and one uses a subset of the cute
collection as benchmark
 Only three facts need to be kept in mind to have a good
interpretation of these curves �for a precise de�nition of the curves� see the original
paper ������

� the value given by a curve at abscissa 
 is the percentage of test�problems on
which the corresponding code is the best�

� the value given by a curve at the rightmost abscissa is the percentage of test�
problems that the corresponding code can solve �this is independent of the per�
formance criterion in consideration��

� more generally� a point of a curve with coordinates ��� �� � ���������� �� provides
the following information� the number of test�problems for which the performance
of the corresponding code is never worse than 	� times the performance of the
best code is a fraction � of the total number of test�problems� to this respect� the
range of values taken by � in a particular graph is meaningful


With performance pro�les� the relative e�ciency of each code appears at a glance� the
higher is a particular curve the better is the corresponding solver


We have drawn these performance pro�les for describing the behavior of four codes�
ETR� Knitro� TSQP� and TSQP�prec
 Also� four performance criteria have been selected�
which leads to four graphs per benchmark� the number of function evaluations� the
number of gradient evaluations� the number of Hessian�vector products r�

xx��xk� �k� v�
and the CPU time


In order to make the comparison meaningful� the same stopping criterion is used
in all the codes
 The outer iterations are stopped at the current point �xk� �k� if the
following conditions hold�

kr��xk� �k�k
 	 �l ��
���

kc�xk�k
 	 �c� ��
���

where �l and �c are positive tolerances� which may depend on the test problems and
will be speci�ed below
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��� Heuristics

Trust region codes like ETR and Knitro have been developed during several years
 To
have a chance to be competitive with them� the skeleton Algorithm TSQP needs some
heuristics
 We brie�y describe here some of those that have been implemented in TSQP�
to enrich the basic algorithm� and that contribute signi�cantly to the e�ciency of the
solver


Precision criterion for the CG iterations

Each CG iteration requires a Hessian�vector product r�
xx��x� �� v
 This may be an ex�

pensive operation for large problems when the Hessian of the Lagrangian is not cheaply
available
 In order to avoid to make a large number of CG iterations at each outer iter�
ation� the reduced system ��
�
� is solved with low accuracy at the �rst outer iterations
and progressively more precisely as the outer iteration index k increases


TSQP has several ways of controlling the precision to which the linear system ��
�
�
has to be solved by CG iterations
 To get the results presented below Nash�s stopping
rule ���� has been used� Algorithm TCG� is interrupted in Step �
� at iteration j � � if

qj��k � qjk

�qjk
j
	 �CGk �

where

qjk � �v�ku
j �

�

	
�uj��Hku

j

is the value at uj of the quadratic model associated with ��
�
� and �CGk � ��� �� is a
precision threshold


Clearly� ��
�
� is solved with a higher accuracy when �CGk is smaller
 The number of
CG iterations is then controlled by �CGk � which is updated by a rule using the stepsize
�k�� of the previous outer iteration to decide whether a higher precision is desirable at
the current outer iteration
 Here is the rule for updating �CGk 


if k � � then
�CGk � ����

else

if �k�� � � then
�CGk � max������ �� �

CG

k���
else

�CGk � min������ 	 �CGk���
end if

end if

Handling negative curvature directions

TSQP does not implement any sophisticated technique for dealing with negative �resp

quasi�negative� curvature conjugate directions� which are those directions v

j
k for which
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�vjk�
�Hkv

j
k is negative �resp
 almost negative�
 The code just discards them by inter�

rupting the CG iterations as in Algorithm TCG�� with a threshold �k �see ��
���� that
is maintained �xed to a small value


Second order correction

Using the nondi�erentiable merit function ��
��� can a�ect the convergence rate of
Algorithm TSQP �but not its convergence� because unit stepsizes can be rejected
 In
order to avoid this phenomenon� known as the Maratos e�ect ����� we have implemented
a second order correction �see for example ���� ���


Recall the notation for the restoration� tangent� and total steps at iteration k�

erk � � eA�k c�xk�� etk � �Z�k Jkgk� and dk � erk � etk�
The positive constant CME below is initially set to CME �� ��� ker�k�
ket�k�� where er� andet� are the initial restoration and tangent steps
 It is also updated at some iterations by
a rule that is not essential to specify here


if 
�k�xk � dk� 	 
�k�xk� � 

�
�k
�xk� dk� then

xk�� �� xk � dk
else

if kerkk� 	 CMEketkk� then
ek �� � eA�k c�xk � dk�
if 
�k�xk � dk � ek� 	 
�k�xk � dk� then

do an arc�search along � �� xk � �dk � ��ek
else

do a line�search along � �� xk � �dk
end if

else

do a line�search along � �� xk � �dk
end if

end if

The line�search or arc�search �rst tries � � �
 If this stepsize does not lead to a decrease
of the merit function� the stepsize is reduced� using safeguarded interpolation
 It can
be shown that with this technique� the unit stepsize is accepted asymptotically


Tangent BFGS preconditioning� TSQP�prec

A nice feature of TSQP is its ability to use  curvature! information from the reduced
Hessian at previous iterations to form a preconditioning matrix for solving more rapidly
the reduced systems ��
�
� and ��
��� at the current iteration
 This information is
collected during the CG iterations� using the BFGS formula
 This is quite similar to
the approach proposed in ���� �see also ���� where the approach is used to accelerate
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Newton�s method within the TR framework and ���� for a convergence proof in the TR
context�
 We refer to this technique as the tangent BFGS preconditioning


One advantage of line�search algorithms� over the TR approach� is their ability to
use tangent BFGS preconditioning� without increasing its complexity
 This technique
is more di�cult to implement with TR� where the preconditioning is made through a
modi�cation of the trust regions
 Since the updated matrix only intervenes in the tan�
gent part of the step and provides no information on how to precondition the restoration
part� tangent BFGS preconditioning suggests to modify the  tangent trust region! with�
out a�ecting the region controlling the full step
 The algorithm has then to control two
trust regions� whose consistency is more di�cult to maintain �see ���� for more details�


We have denoted by TSQP�prec� the version of TSQP that uses tangent BFGS pre�
conditioning
 Full BFGS updates are performed
 We shall see that this code is very
e�cient on the Essilor problems


��� Tests on the cute collection

In this section� we present the numerical results obtained by running ETR� Knitro�
and TSQP on some test�problems from the cute collection
 These have been given
by the  selection facility! with the following rules� the number of variables is �xed
between � and �

 and the number of constraints is �xed between � and �


 Then�
��� test�problems �from academic� modeling exercises and real life cases� have been
selected
 Next� we have discarded the problems with inequality constraints �the selection
facility does not o�er the possibility to select equality constrained problems directly�
and those with m � n �argauss� growth� nystrom��
 Finally� we have not considered
the problems for which the Jacobian of the constraints has not full rank at the initial
point �cluster� heart�� heart�� hs��� pfit�� pfit�� pfit�� pfit	 and s���
�����
since TSQP is presently not designed for solving this kind of problems
 As for problem
hs���lnp� it was not possible to have the results because of a running error� appeared
also when using Knitro and ETR
 Although we have investigated on this� we have not
been able to �nd a remedy
 Thus it remains �
 test�problems which are given in table �
��
together with their dimensions� n is the number of variables and m is the number of
equality constraints


The positive thresholds used in the stopping tests ��
��� and ��
��� are set in the
three codes to �l � �c � ����
 Also� we declare a failure on a test�problem when the
stopping tests cannot be satis�ed in less than ��

 function evaluations


Figure �
� gives the performance pro�les of ETR� Knitro� TSQP� and TSQP�prec�
comparing the number of function calls� gradient calls� and Hessian�vector products

We do not compare the codes on the CPU time� since this one is usually so small
that its variation from run to run makes such a comparison meaningless
 The selected
problems have sometimes as many constraints as variables
 When such is the case� the
reduced space is of dimension n�m � � and there is no Hessian�vector products
 As a
result� the performance pro�les comparing the number of Hessian�vector products were
made on a subset of the selected problems
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Figure �
�� Performance pro�les of ETR� Knitro� and TSQP on the cute problems
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Problems n m n�m

aircrfta � � �

booth � � �

bt� � � �

bt� � � �

bt� � � �

bt� � � �

bt� � � �

bt� � � �

bt� � � �

bt	 � � �

bt
 � � �

bt�� � � �

bt�� � � �

bt�� � � �

byrdsphr � � �

coolhans 	 	 �

dixchlng �
 � �

genhs�	 �
 � �

gottfr � � �

hatfldf � � �

Problems n m n�m

hatfldg �� �� �

himmelba � � �

himmelbc � � �

himmelbd � � �

himmelbe � � �

hs� � � �

hs� � � �

hs	 � � �

hs
 � � �

hs�� � � �

hs�� � � �

hs�	 � � �

hs�
 � � �

hs�� � � �

hs�� � � �

hs�� � � �

hs�� � � �

hs�	 � � �

hs�
 � � �

hs�� � � �

Problems n m n�m

hs�� � � �

hs�� � � �

hs�� � � �

hs�� � � �

hs�	 � � �

hs�
 � � �

hs���lnp � � �

hydcar� �	 �	 �

hydcar�� 		 		 �

hypcir � � �

maratos � � �

methanb	 �� �� �

methanl	 �� �� �

mwright � � �

orthregb �� � ��

powellbs � � �

powellsq � � �

recipe � � �

trigger � � �

zangwil� � � �

Table �
�� Description of the cute problems

At �rst glance� the �rst two pro�les show that the � codes are comparable in e��
ciency� the curves are very close to each others and there is no real winner
 A closer
look� however� reveals some slight di�erences
 Observe �rst that TSQP has the largest
number of wins �values at abscissa 
� with respect to the number of gradient calls �it is
equalled by Knitro for the number of function calls�
 On the other hand� TSQP has more
failures �see the values taken at the largest abscissa�� � �on hatfldf� himmelbd� and
powellsq� instead of � for Knitro �on hatfldf and himmelbd� and TSQP �on himmelbd

and hs���
 In the three cases where TSQP fails� n � m �i
e
� there is no optimization�
and non�convergence arises because the restoration step becomes too large
 TSQP has
also some di�culties on byrdsphr �minimization of a linear function on the intersection
of two spheres�� since at the starting point the Jacobian of the constraints is nearly
singular and� again� large restoration steps are generated during the �rst iterations
 For
the while TSQP has not the possibility to manage such cases with e�ciency


Let us now consider the performance pro�les on the number of Hessian�vector prod�
ucts �third picture in �gure �
��
 Clearly� Knitro is the most e�cient code with respect
to this criterion
 We don�t have any clear explanation why there is such an important
di�erence between Knitro and its cousin ETR
 We should also note that TSQP�prec and
TSQP behave approximately the same
 To this respect� observe that the dimension n�m
of the constraint manifold is usually very small for the selected problems �	 �� except
on � problems for which the value is � or ���
 Therefore the number of CG iterations is
never very large and we believe that this is the reason why TSQP�prec cannot bene�t
from its tangent BFGS preconditioning
 We shall see that the situation is quite the
opposite for the industrial problems considered in the next section� the number of con�
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straints is small with respect to the number of variables and TSQP�prec performs much
better that TSQP


To conclude� one can say from �gure �
� that for these small�size academic problems�
TSQP is quite competitive with ETR and Knitro� only slightly less robust
 Future research
is needed to improve the behavior of the code on problems with singular or almost
singular Jacobian matrices


��� Tests on a few industrial applications

In this section� we present numerical experiments with ETR� TSQP� and TSQP�prec on a
few real�life test�problems� provided by the lens manufacturing company Essilor
 The
comparison does not include Knitro� since for unclari�ed reasons it was not possible to
link this code with a simulator that uses  Matlab engines!


The experiment is limited to � nonlinear least�squares problems� taken with their
names from the benchmark made up by Jonsson ����
 The problem dimensions are given
in table �
�� n is the number of variables� m is the number of equality constraints� nr

Problems n m nr ��

T� ��� � ���� ���� ��


T� ��� � ���
 
�
� ��


T� ��
 � �
� ���� ���

T� ��
 � ��� ���� ���

T� ��� � ���� 	��� ���

Table �
�� Description of the Essilor problems

is the number of residuals� and �� is the �� condition number of the Hessian of f at
the solution
 One of the noticeable features of these problems is their ill�conditioning�
which varies between ��
 and ���


The positive thresholds used in the stopping tests are set in the three codes to
�l � �c � ���	
 None of the codes fails to reached these thresholds in a reasonable
amount of iterations


The performance pro�les of the solvers are given in �gure �
�
 The most spectacular
change with respect to the results obtained on the cute collection is the much better
performance of TSQP�prec
 In terms of Hessian�vector products or CPU time� the
solver is always the best �its performance pro�le is the vertical line at abscissa 
� which
is hidden by the vertical axis�
 As shown by the largest abscissa in the last picture� this
technique can decrease the computing time by a factor of 	

 This is essentially due
to the fact that for these problems� the computing time is directly proportional to the
number of Hessian�vector products �the last two pictures show very similar curves�
 It
is therefore important to limit this number
 This is precisely the role of the tangent
BFGS preconditioning� which turns out to play a decisive role here
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	 Conclusion

This paper has presented an elementary truncated SQP approach for solving equality
constrained optimization problems
 Nonconvexity is detected by conjugate gradient
iterations on the linear system formed with the reduced Hessian of the Lagrangian

The convergence of the approach is analyzed
 Furthermore� numerical experiment has
shown that its e�ciency is competitive with the trust region approach� except when
the problems present singularity in the Jacobian of the constraints
 When the solver
uses a tangent BFGS preconditioning� its remarkable e�ciency to solve some industrial
ill�conditioned problems has been demonstrated


The algorithm can only �nd stationary points� since it discards negative or quasi�
negative curvature directions
 For using these directions e�ciently� and therefore being
able to �nd points satisfying the second order conditions of optimality� it would be
necessary to study �rst the correspondence between negative curvature directions for
the tangent quadratic problem and negative curvature directions for the merit function

�� provided one can give a sense to this latter notion when 
� is nondi�erentiable
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