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Abstract

We address the feasibility of the pair of alternative conic systems of
constraints

Ax = 0, x ∈ C

and

−AT y ∈ C∗,

where A ∈ IRm×n, m < n, and C ⊆ IRn is a closed convex cone. We refor-
mulate this pair of conic systems as a primal-dual pair of conic programs.
Each of the conic programs corresponds to a natural relaxation of each of
the two conic systems.

When C is a self-scaled cone with a known self-scaled barrier, the conic
programming reformulation can be solved via interior-point methods. For
a well-posed instance A, a strict solution to one of the two original conic
systems can be obtained in O(

√
νC log(νC C(A)) interior-point iterations.

Here νC is the complexity parameter of the self-scaled barrier of C and
C(A) is Renegar’s condition number of A, that is, the reciprocal of the
relative distance from A to the set of ill-posed instances.
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1 Introduction

We study the conic feasibility problems

Ax = 0, x ∈ C (1)

and

−AT y ∈ C∗, (2)

where A ∈ IRm×n and C ⊆ IRn is a closed convex cone.
The conic systems (1), (2) are essentially alternative problems: (1) is well-

posed feasible (see the discussion below) if and only if (2) does not have nonzero
solutions.

We devise a primal-dual scheme that determines which one of these systems
is feasible and generates a strictly feasible solution, provided the data A is well-
posed. Our scheme does not use, nor does it assume any knowledge about the
problem other than the data instance A.

Some of our ideas are inspired by previous work by the third author and
Renegar [9], and by the third author and Cucker [1]. In the former, a purely
primal relaxation scheme for solving (1) was proposed and analyzed. In the
latter, the authors devised a primal-dual scheme for solving (1) or (2) for the
particular case when C = IRn+, using a finite precision machine.

This paper combines and extends both of these previous works. On the
one hand, unlike the primal approach used in [9], we reformulate the feasibility
problem as a primal-dual pair of conic programs. As a nice consequence of this
primal-dual approach, both (1) and (2) are treated in a unified manner, without
any a priori feasibility assumption of either system. On the other hand, we
extend some of the key ideas introduced in [1] to general cones. We must stress,
however, that the whole treatment in [1] cannot be obtained as a particular case
of the results in this paper. In particular, the more abstract context we address
prevents us from studying the finite precision issues at the level of detail done
in [1].

One of the most interesting features of our approach is that the amount of
work needed to obtain a feasible solution for either (1) or (2) depends naturally
on Renegar’s condition number of the data instanceA. This establishes a natural
parallel between the feasibility problem for conic systems and the solution of
linear systems of equations via iterative methods. In both cases the condition
number is a key parameter in the performance of the algorithm: the amount
of work necessary to solve a problem instance is proportional to the condition
number of the instance. This follows a natural paradigm in numerical analysis.

Several of our results are generalizations of results previously derived in [1]
and [9]. However, the proof techniques in this paper are new. They rely on
an implicitly-defined function framework developed in [7]. In our opinion, the
new approach is substantially more concise, insightful, and transparent than the
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previous approaches. To ease our presentation, we develop the main technical
ideas in the last two sections of the paper.

The paper has been organized as follows. The remainder of this introduction
reviews Renegar’s condition number and the closely related notion of distance
to ill-posedness. Section 2 develops our central ideas: First, we recast the pair
(1), (2) as the primal-dual pair of conic programs (9), (10). Second, assuming
C is a self-scaled cone, we establish a close connection between the central path
of the primal-dual pair (9), (10) and the pair of alternative conic systems (1),
(2) (see Propositions 2.3 and 2.4). In Section 3 we describe an interior-point
algorithm that computes a strict solution to whichever of (1), (2) is feasible,
provided the data A is well-posed. The algorithm finds such a solution within
O(
√
νC log(νC C(A)) interior-point iterations, where νC is the complexity pa-

rameter of barrier for the cone C, and C(A) is the condition number of the
data instance A. The proofs of the central results in Sections 2 and 3, namely
Propositions 2.3, 2.4, 3.4, and 3.5 are presented in Sections 4 and 5.

Let us review the basic definitions and properties of Renegar’s condition
number and distance to ill-posedness (see [6, 8] for a detailed discussion on
these concepts). We say that (1) is a well-posed feasible system if

{Ax : x ∈ C} = IRm. (3)

Let P be the set of m× n matrices A such that (3) holds. Notice that A ∈ P if
and only if the alternative system (2) does not have nonzero solutions.

We say that (2) is a well-posed feasible system if

{ATy : y ∈ IRm}+ C∗ = IRn. (4)

Let D be the set of m× n matrices A such that (4) holds. Notice that A ∈ D if
and only if the alternative system (1) does not have nonzero solutions.

Endow the space IRm×n with the operator norm. It can be shown that both
P and D are open subsets of IRm×n. The set IRm×n \ (P ∪ D) is the set of
ill-posed instances. It is easy to show that this set has Lebesgue measure equal
to zero. Furthermore, if m < n and C is a regular cone (i.e., both C and C∗

have nonempty interiors), then the closure of either P or D in IRm×n is the
complement of the other.

The distance to infeasibility of (1) is defined as

ρP (A) := inf{‖∆A‖ : A+ ∆A 6∈ P}.

Likewise, the distance to infeasibility of (2) is defined as

ρD(A) := inf{‖∆A‖ : A+ ∆A 6∈ D}.

The distance to ill-posedness of A is

ρ(A) := inf{‖∆A‖ : A+ ∆A 6∈ P ∪ D} = max{ρP (A), ρD(A)}.
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The data instance A is well-posed if ρ(A) > 0, i.e., if A ∈ P ∪ D. Renegar’s
condition number C(A) is defined as the reciprocal of the relative distance to
ill-posedness, i.e.,

C(A) :=
‖A‖
ρ(A)

.

Our treatment will crucially rely on the following characterizations of the
distance to infeasibility. For a detailed discussion on this and closely related
issues see [6, 8, 10].

Proposition 1.1 (Renegar) For any given A ∈ IRm×n,

ρP (A) = sup {δ : ‖v‖ ≤ δ ⇒ v ∈ {Ax : ‖x‖ ≤ 1, x ∈ C}} ,

and

ρD(A) = sup
{
δ : ‖u‖ ≤ δ ⇒ u ∈ {ATy : ‖y‖ ≤ 1}+ C∗

}
.

2 Reformulation

The following reformulation scheme is a generalization of the reformulations
proposed in [1] and [9]. Recast (1) as

min ‖x′′‖
s.t. Ax+ x′′ = 0

x ∈ C
‖x‖ ≤ 1,

(5)

and recast (2) as

min ‖y′‖
s.t. −ATy + y′ ∈ C∗

‖y‖ ≤ 1.
(6)

By introducing auxiliary variables, the problems (5) and (6) are equivalent
to the pair

min τ
s.t. Ax+ x′′ = 0

−x+ x′ = 0
t1 = 1
x ∈ C
‖x′‖ ≤ t1
‖x′′‖ ≤ τ,

(7)
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and

min η
s.t. −ATy + y′ ∈ C∗

‖y‖ ≤ 1
‖y′‖ ≤ η.

(8)

When cast appropriately, the pair (7), (8) is a primal-dual pair of conic
programs in a higher dimensional space: Let K := C × Kn+1 × Km+1, where
Kn+1, Km+1 are second-order cones in IRn+1, IRm+1 respectively. The problem
(7) can be written as

min 〈~c, ~x〉
s.t. A~x = ~b

~x ∈ K,
(9)

where ~x = (x, x′, t1, x′′, τ) ∈ IR(m+2n+2), and A ∈ IR(m+n+1)×(m+2n+2), ~c ∈
IR(m+2n+2), ~b ∈ IR(m+n+1) are as follows

A :=

 A 0 0 Im 0
−In In 0 0 0

0 0 1 0 0

 , ~b =

0
0
1

 , ~c =


0
0
0
0
1

 .
Now the problem (8) corresponds precisely to the dual of (9), namely

max 〈~b, ~y〉
s.t. AT~y + ~s = ~c

~s ∈ K∗.
(10)

where ~y = (y, y′,−η) ∈ IR(m+n+1).

It is obvious that at the optimal solutions to (9), (10) the variables x′′ and
y′ are zero. It is also intuitively clear that an interior-point algorithm applied
to (9), (10) would yield, in the limit, a strict solution for whichever of (1), (2)
that is strictly feasible. The main goal of this paper is to formalize and make
this idea more precise. Specifically, two of our key results, namely Propositions
2.3 and 2.4 below, establish a close connection between the central path of the
primal-dual pair (9), (10) and the pair (1), (2) when C is self-scaled.

For the remainder of the paper we shall assume that C is self-scaled cone with
self-scaled barrier fC . (See [2, 4, 5, 11] for a detailed discussion on self-scaled
cones.) It readily follows that the cone K is self-scaled as well with self-scaled
barrier

fK(x, x′, t1, x′′, τ) = fC(x)− ln(t21 − ‖x′‖2)− ln(τ2 − ‖x′′‖2).
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We also recall that as an immediate consequence of self-scaledness, both C and
K are self-dual, that is, C∗ = C and K∗ = K.

For a given barrier function f , we shall use g and H to denote the gradient
and Hessian of f respectively. We will add the subindex C or K when we refer
to the gradient and Hessian of fC or fK . We shall also let νf denote the barrier
parameter of f . In such case we shall say that f is a νf -barrier function. We
shall also let Df denote the domain of f . For the particular functions fC and
fK we shall abbreviate νfC as νC , and νfK as νK . By construction, we have
νK = νC + 4.

Our development relies on the following key properties of barrier and self-
scaled barrier functions. (For a detailed discussion on these properties see [3, 4,
5, 11].)

Proposition 2.1 Let f be a ν-barrier function and x ∈ Df . Then

{z : 〈z − x,H(x)(z − x)〉 < 1} ⊆ Df , (11)

{z ∈ Df : 〈z − x, g(x)〉 ≥ 0} ⊆ {z : 〈z − x,H(x)(z − x)〉 ≤ 4ν + 1}. (12)

If f is self-scaled then 4ν+1 can be replaced by ν in (12), and also for all x ∈ Df

and t > 0 the following identities hold

g(tx) =
1
t
g(x), H(tx) =

1
t2
H(x), (13)

−g(x) ∈ Df , H(−g(x)) = H(x)−1, (14)

and

‖H(x)−1‖ ≤ ‖x‖2. (15)

Some of our statements are phrased in terms of the local inner product and
local norm, which we now recall. Given a barrier function f and a point x ∈ Df ,
the local inner product 〈·, ·〉x induced by x is defined as

〈u, v〉x := 〈u,H(x)v〉.

The local inner norm ‖ · ‖x is defined as

‖v‖x := 〈v, v〉1/2x .

Notice that the identities (11) and (12) can be rephrased in terms of the local
norm induced by x.

Propositions 2.3 and 2.4 below formalize the intuitively clear fact that points
on the central path of (9), (10) eventually yield solutions for whichever of (1), (2)
that has strictly feasible solutions. First we recall the definition of the central
path in a form that is suitable for our purposes. (For details see [4, 5, 11].)
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Definition 2.2 The central path of (9), (10) is the set of solutions of the non-
linear system of equations

A~x = ~b
AT~y + ~s = ~c

~s+ µgK(~x) = 0,

with ~x, ~s ∈ int(K) for all values of µ > 0.

Proposition 2.3 Let (~x, ~y,~s) be on the central path of (9), (10) with ~cT~x = τ .
If

τ <
ρP (A)√

2νK
,

then x̄ := x+HC(x)−1AT (AHC(x)−1AT )−1x′′ satisfies

Ax̄ = 0, x̄ ∈ int(C), ‖x̄− x‖x ≤
√

2νKτ
ρP (A)

.

Proof. See Section 3.1. 2

Proposition 2.4 Let (~x, ~y,~s) be on the central path of (9), (10) with ~b
T
~y =

−η. If

η <
ρD(A)
νK

,

then y satisfies −AT y ∈ int(C).

Proof. See Section 3.1. 2

3 Solving the conic pair via a primal-dual algo-
rithm

The pair (9), (10) is amenable to the machinery of primal-dual interior-point
methods for self-scaled cones (cf. [4, 5, 11, 12]). There are a number of di-
fferent algorithms whose specific updates depend on the choice of a particular
neighborhood of the central path.

For our purposes, we would like to ensure that results of the same kind
as Propositions 2.3 and 2.4 hold for the iterates generated by the algorithm,
which will only be guaranteed to lie in a neighborhood of the central path. A
suitable choice of the neighborhood of the central path allows us both to obtain
such kind of results and to incorporate well-studied and understood primal-dual
interior-point algorithms. We shall apply a short-step primal-dual interior-point
method to (9), (10). The iterates of such method are guaranteed to lie in the
local neighborhood Nβ of the central path defined next.
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Definition 3.1 Let β ∈ (0, 1/2) be given. The central neighborhood Nβ of (9),
(10) is defined as the set of points (~x, ~y,~s) with ~x, ~s ∈ K such that the following
constraints hold

A~x = ~b
AT~y + ~s = ~c

‖~s+ µ(~x,~s)gK(~x)‖~s ≤ β,

where µ(~x,~s) := 〈~x,~s〉/νK .

Remark 3.2 Since K is self-scaled, by applying Proposition 2.1 it is easy to
see that

‖~s+ µ(~x,~s)gK(~x)‖~s = ‖~x+ µ(~x,~s)gK(~s)‖~x.

Hence either of these expressions can be used in the last inequality in Definition
3.1.

We can now state the main theorem of this paper.

Theorem 3.3 Assume A ∈ IRm×n with C(A) < ∞ is given. A suitable short-
step primal-dual interior-point algorithm applied to (9), (10) halts in at most
O(
√
νC log(νC C(A)) interior-point iterations, yielding a strict solution to either

(1) or (2).

The proof of this theorem follows from the results in Sections 3.1, 3.2, and
3.3 below. These sections are interesting on their own.

3.1 Properties of the central neighborhood

The following two facts are closely related to Propositions 2.3 and 2.4 but apply
to the larger set of points Nβ . Indeed, Propositions 2.3 and 2.4 can be obtained
from Propositions 3.4 and 3.5 respectively by letting β → 0.

Proposition 3.4 Let (~x, ~y,~s) ∈ Nβ with ~cT~x = τ . If

τ <
(1− 2β)ρP (A)√

2νK
,

then x̄ := x+HC(x)−1AT (AHC(x)−1AT )−1x′′ satisfies

Ax̄ = 0, x̄ ∈ int(C), ‖x̄− x‖x ≤
√

2νKτ
(1− 2β)ρP (A)

.

Proof. See Section 5. 2

Proposition 3.5 Let (~x, ~y,~s) ∈ Nβ with ~b
T
~y = −η. If

η <
(1− β)ρD(A)

νK
,

then y satisfies −AT y ∈ int(C).

Proof. See Section 5. 2
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3.2 Initial point

Let e be the unique point in C such that HC(e) = I. The existence of such point
follows from the axioms of self-scaled barriers (see, e.g., [2, 11]). Furthermore,
for the cones that most commonly arise in practice, that is, the nonnegative
orthant IRn+, the cone of symmetric positive semidefinite matrices Sn+, and the
second-order cone Kn+1, this point is readily available. In each of these cases
the point e is respectively[

1 . . . 1
]T
, I, and

[
0 . . . 0 1

]T
.

We shall assume that the point e for the cone C is available. Under this
reasonable assumption it is easy to construct an initial point in Nβ . We note
that gC(e) = −e and ‖e‖ =

√
νC . (See [4, 5, 11].)

Proposition 3.6 Let

α :=
1√

νC + 2
, and M :=

α‖Ae‖
β

.

The point (~x, ~y,~s), defined as follows, belongs to Nβ:

~x = (αe, αe, 1,−αAe, 2M)
~y = (0, Mα e,−

M
α2 )

~s = (Mα e,−
M
α e,

M
α2 , 0, 1)

Proof. By construction,

µ(~x,~s) =
〈~x,~s〉
νK

=
M( 1

α2 + 2)
νK

=
M(νC + 4)

νK
= M,

and

gK(~x) = (− 1
α
e,

1
α
e,− 1

α2
,−δαAe,−2δM),

where δ := 2
4M2−α2‖Ae‖2 = 2

M2(4−β2) .

Therefore,

‖µ(~x,~s)gK(~x) + ~s‖2~s = ‖(0, 0, 0,−MδαAe, 1− 2δM2)‖2~s
= 〈

[
−MδαAe
1− 2δM2

]
,HKm+1(0, 1)

[
−MδαAe
1− 2δM2

]
〉

= 〈
[
−MδαAe
1− 2δM2

]
, 2
[
I 0
0 1

] [
−MδαAe
1− 2δM2

]
〉

= 2(M2δ2α2‖Ae‖2 + (1− 2δM2)2)
= 2(β2M4δ2 + (1− 2δM2)2)
= 2( 4β2

(4−β2)2 + (1− 4
4−β2 )2)

= 2β2(4+β2)
(4−β2)2

≤ β2
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(The last inequality holds because β < 1/2.)
It thus follows that (~x, ~y,~s) ∈ Nβ because by construction A~x = ~b, AT~y +

~s = ~c, and ~x, ~s ∈ int(K). 2

3.3 The algorithm

We are now ready to describe our primal-dual algorithm. This is essentially
a path-following short-step algorithm like those described in [5, Sec. 6], [11,
Sec. 3.7], or [12, Sec. 3] enhanced with a specific starting point, and a stopping
criterion.

The crucial step at each main iteration is the update of the iterate (~x, ~y,~s).
This is performed by putting

(~x+, ~y+, ~s+) := (~x, ~y,~s) + (∆~x,∆~y,∆~s), (16)

where (∆~x,∆~y,∆~s) is the Nesterov-Todd direction, that is, the solution to

HK(w)∆~x + ∆~s = −(~s+ µ gK(~x))
A∆~x = 0

AT∆~y + ∆~s = 0,
(17)

where w is the scaling point of ~x,~s, namely, the unique point w ∈ K that
satisfies HK(w)~x = ~s.

Let β, δ ∈ (0, 1
2 ) be fixed constants such that

7(β2 + δ2)
1− β

≤
(

1− δ
√
νK

)
β,

2
√

2β
1− β

≤ 1.

Algorithm PD(A)

(i) Let

α :=
1√

νC + 2
; M :=

α‖Ae‖
β

;

and

~x = (αe, αe, 1,−αAe, 2M)
~y = (0, Mα e,

M
α2 )

~s = (Mα e,−
M
α e,

M
α2 , 0, 1).

(ii) If −ATy ∈ int(C) then HALT and
return y as a feasible solution for ATy ∈ int(C).

(iv) If x̄ := x + HC(x)−1AT (AHC(x)−1AT )−1x′′ ∈ int(C), then
HALT and
return x̄ as a feasible solution for Ax = 0, x ∈ int(C).
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(v) Set µ̄ :=
(

1− δ√
νK

)
µ(~x,~s).

(vi) Update (~x, ~y,~s) as in (16), (17) for µ = µ̄.

(vii) Go to (ii).

Proof of Theorem 3.3. Arguments that are now standard in interior-point theory
such as those in [11, Sec. 3.7] or [12, Sec. 3] ensure that the iterates generated
by Algorithm PD lie in Nβ and that µ(~x,~s) is reduced by (1 − δ√

νK
) at each

iteration.
In addition, because ~cT~x− ~b

T
~y = τ + η = νKµ(~x,~s), Propositions 3.4 and

3.5 ensure that the algorithm halts as soon as µ(~x,~s) surpasses the threshold
(1−2β)ρ(A)√

2ν2
K

(possibly sooner).

Since µ(~x,~s) is reduced by (1 − δ√
νK

) at each iteration, and at the initial

point µ(~x,~s) = α‖Ae‖
β = ‖Ae‖

β
√
νK−2

, the threshold (1−2β)ρ(A)√
2ν2
K

is surpassed within

O(
√
νK log(νK

√
νK ‖Ae‖/ρ(A))) = O(

√
νC log(νC C(A)))

iterations. 2

3.4 Numerical considerations

Theorem 3.3 establishes a nice parallel between systems of equations and conic
systems. In order to complete the parallel, we next address the computational
work incurred at each main iteration.

The core of the computational work at each main iteration of Algorithm PD is
the solution of (17). This system is typically solved via the Schur complement:
First, solve the reduced system

(AHK(w)−1AT)∆~y = −AHK(w)−1(~s+ µgK(~x)), (18)

and then set

∆~s = −A∆~y, ∆~x = HK(w)−1(~s+ gK(~x)−∆~s).

The critical step here is the solution of the reduced system (18). The condi-
tioning of this system has been previously studied in [7] for general self-scaled
programs. In particular, we have the following bound on κ(AHK(w)−1AT).

Proposition 3.7 Assume (~x, ~y,~s) ∈ Nβ. Let w be the scaling point of ~x,~s.
Then

κ(AHK(w)−1AT) = O

(
ν4
K‖A‖2

µ(~x,~s)2

)
.

Proof. See [7, Cor. 1]
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Corollary 3.8 In step (vi) of every iteration of Algorithm PD the reduced sys-
tem has condition number bounded by O(ν4

K C(A)2) = O(ν4
C C(A)2).

Theorem 3.3 and Corollary 3.8 together fully complete the parallel between
systems of equations and conic systems: They state that a strictly feasible
solution for either of the alternative systems (1) or (2) can be obtained (via
Algorithm PD) within an amount of computational work proportional to the
condition number C(A).

4 Proof of Propositions 2.3 and 2.4

4.1 Proof of Proposition 2.3

Elementary algebraic verifications show that the point x̄, as defined in the state-
ment of Proposition 2.3, satisfies Ax̄ = 0 and

‖x̄− x‖2x = x′′
T (AHC(x)−1AT )−1x′′

≤ ‖(AHC(x)−1AT )−1‖ ‖x′′‖2
≤ ‖(AHC(x)−1AT )−1‖ τ2.

(19)

By Proposition 2.1, to finish the proof it suffices to show that x̄ satisfies

‖x̄− x‖x ≤
√

2νKτ
ρP (A)

< 1. (20)

But by (19), the inequality (20) follows if we show that ‖(AHC(x)−1AT )−1‖ ≤
2ν2
K

ρP (A)2 as long as τ < ρP (A)√
2νK

. This in turn readily follows from Theorem 4.1
below, which we consider our second most important result.

Theorem 4.1 Let ~x be a point on the central path of (9) with ~cT~x = τ > 0.
Then

λmin(AHC(x)−1AT ) ≥
(
ρP (A) + τ

νK

)2

− τ2.

Theorem 4.1 is closely related to results previously derived in [9]. However,
the proof technique we used here, which we fully develop next, is new and in
our opinion, more transparent. The ideas introduced in Section 4.2 —though a
bit technical— provide deeper insight into the relaxation scheme (9), (10) and
its relation with the pair of conic systems (1), (2).

4.2 Proof of Theorem 4.1

To ease our exposition we have divided the core of the proof of Theorem 4.1
into Lemmas 4.4, 4.5, and 4.6 below. We shall rely on the following implicitly-
defined-function construction, which was introduced and studied by the third
author in [7].
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Let f : Df → IR with Df ⊆ IRn be a barrier function, and A : IRn → IRm

be a linear map such that A−1(Ax) is bounded for all x ∈ Df . Consider the
implicit function f̄ : ADf → IR defined by

f̄(y) = min f(x)
s.t. Ax = y.

(21)

The following result was proven in [7].

Proposition 4.2 Let f : Df → IR with Df ⊆ IRn be a barrier function, and
A : IRn → IRm be a linear map such that A−1(Ax) is bounded for all x ∈ Df .
Let f̄ be defined in terms of A, f as in (21). If f is a barrier then so is f̄ and
νf̄ ≤ νf . Furthermore, for any y ∈ Df̄ = ADf , the Hessian H̄ of f̄ satisfies

H̄(y)−1 = AH(x(y))−1AT ,

where x(y) is the minimizer of (21) for such y, and H is the Hessian of f .

Assume τ > 0 is given. Define f1 : Df1 ⊆ IRm+n+2 → IR implicitly as

f1(~w) = min fK(~x)

s.t.
[
A
~cT

]
~x =

[
~b
τ

]
+ ~w =


0
0
1
τ

+ ~w,
(22)

and define f2 : Df2 ⊆ IRm → IR as

f2(w) = f1(w, 0, 0, 0). (23)

By Proposition 4.2, f1 is a barrier function. It thus follows that f2 is a
barrier as well. Furthermore, νf2 ≤ νf1 ≤ νK .

Let us introduce some notation for the radius of the largest inscribed ball in
a set. This notation facilitates some of our statements.

Definition 4.3 Given S ⊆ IRn and x ∈ S, define

r
S
(x) := sup{δ : ‖w − x‖ ≤ δ ⇒ w ∈ S}.

For a given function f : Df ⊆ IRn → IRm write r
f

as a shorthand for r
Df

.

Notice that the inequalities (11) and (12) in Proposition 2.1 can be rephrased
as

‖H(x)‖1/2

4νf + 1
≤ 1
r
f
(x)
≤ ‖H(x)‖1/2.

13



In particular, the functions f1, f2 defined above satisfy

‖Hi(x)‖1/2

4νK + 1
≤ 1
r
fi

(x)
≤ ‖Hi(x)‖1/2, i = 1, 2.

However, the self-scaledness of fK yields the stronger property stated next. The
proof of the following lemma is essentially the same as that of [7, Prop. 2] and
hence omitted here.

Lemma 4.4 Let fK be a self-scaled barrier, and f1, f2 be defined as in (22),
(23). Then

‖Hi(x)‖1/2

νK
≤ 1
r
fi

(x)
≤ ‖Hi(x)‖1/2, i = 1, 2.

Lemma 4.5 Suppose τ > 0 is given. Let f2 be defined as in (23). Then

r
f2

(0) = ρP (A) + τ.

Proof. The domain Df2 can be written as

D̄f2 = {w ∈ IRm : ∃~x ∈ int(K)
[
A
~cT

]
~x =

[
wT 0 1 τ

]T}
= {w ∈ IRm : ∃x ∈ int(C), x′′ ∈ IRm s.t. Ax+ x′′ = w, ‖x‖ < 1, ‖x′′‖ < τ}
= {Ax : x ∈ int(C), ‖x‖ < 1}+ {x′′ ∈ IRm : ‖x′′‖ < τ}.

Hence

r
f2

(0) = r
S
(0) + τ,

where S := {Ax : x ∈ C, ‖x‖ ≤ 1}. But by Proposition 1.1, ρP (A) = r
S
(0) so

r
f2

(0) = ρP (A) + τ.

2

In order to simplify notation, throughout the rest of the paper we let Q
denote the m × (2m + n + 2) projection matrix

[
Im 0 0 0

]
, i.e., Q is the

projection of the first m coordinates. We also let A1 denote
[
A 0 0 Im 0

]
,

i.e., the first block of rows of A. Notice that Q
[
A
~cT

]
= A1.

Lemma 4.6 Suppose τ > 0 is given. Let f1, f2 be defined as in (22) and (23).
Then

λmin(QH1(0)−1QT) ≥ 1
‖H2(0)‖

.

14



Proof. Let B1 = {~w ∈ IRm+n+2 : 〈~w,H1(0)~w〉 ≤ 1}, and B2 = {w ∈ IRm :
〈w,H2(0)w〉 ≤ 1}. Notice that Bi = {Hi(0)−1/2u : ‖u‖ ≤ 1}, i = 1, 2 so

σmin(H−1/2
i (0)) = r

Bi
(0), i = 1, 2.

We claim B2 ⊆ Q(B1). To see this, assume w ∈ B2 is given. Then w = QQTw
and 〈w,H2(0)w〉 ≤ 1. Hence

wTQH1(0)QTw = wTH2(0)w ≤ 1.

Thus QTw ∈ B1 and in consequence w = QQTw ∈ Q(B1), which proves the
claim.

Since B2 ⊆ Q(B1), we have(
λmin(QH1(0)−1QT)

)1/2 = σmin(QH1(0)−1/2)
= r

Q(B1)(0)
≥ r

B2
(0)

= σmin(H2(0)−1/2)
= λmin(H2(0)−1)1/2

= 1
‖H2(0)‖1/2 .

Thus

λmin(QH1(0)−1QT) ≥ 1
‖H2(0)‖

.

2

Proof of Theorem 4.1. Consider τ = ~cT~x fixed and let f1 and f2 be defined as
in (22) and (23). By Proposition 4.2

H1(0)−1 =
[
A
~cT

]
HK(~x)−1

[
AT ~c

]
,

and by Lemmas 4.4 and 4.5

‖H2(0)‖1/2 ≤ νK
r
f2

(0)
=

νK
ρP (A) + τ

.

Lemma 4.6 thus yields(
ρP (A)+τ

νK

)2

≤ λmin(QH1(0)−1QT )

= λmin

(
Q

[
A
~cT

]
H(~x)−1

[
A c

]T
QT

)
= λmin(A1H(~x)−1AT

1 ).

But H−1 =

H−1
C 0 0
0 H−1

Kn+1
0

0 0 H−1
Km+1

 so

A1H(~x)−1AT
1 = AHC(x)−1AT +

[
Im 0

]
HKm+1(x′′, τ)−1

[
Im
0

]
.
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Therefore,

λmin(AHC(x)−1AT) ≥ λmin(A1H(~x)−1AT
1 )−

∥∥∥∥[Im 0
]
HKm+1(x′′, τ)−1

[
Im
0

]∥∥∥∥
≥

(
ρP (A)+τ

νK

)2

−
∥∥∥∥[Im 0

]
HKm+1(x′′, τ)−1

[
Im
0

]∥∥∥∥ .
To finish just notice that the Hessian HKm+1 of the second-order cone barrier
satisfies [

Im 0
]
HKm+1(x′′, τ)−1

[
Im
0

]
=
τ2 − ‖x′′‖2

2
Im + x′′(x′′)T

So ∥∥∥∥[Im 0
]
HKm+1(x′′, τ)−1

[
Im
0

]∥∥∥∥ ≤ τ2 + ‖x′′‖2

2
≤ τ2.

2

4.3 Proof of Proposition 2.4

The point ~x = (x, x′, t1, x′′, t2) satisfies

Ax+ x′′ = 0, 0 6= x ∈ C

with ‖x′′‖ ≤ ~cT~x = τ . Thus(
A+

x′′ xT

‖x‖2

)
x = 0, 0 6= x ∈ C.

Hence
(
A+ x′′ xT

‖x‖2

)
6∈ D, and consequently

ρD(A) ≤
∥∥∥∥x′′ xT

‖x‖2

∥∥∥∥ =
‖x′′‖
‖x‖

≤ τ

‖x‖
.

We thus have

‖x‖ ≤ τ

ρD(A)
.

Since (~x, ~y,~s) is on the central path, for some µ > 0 we have ~s = −µgK(~x) and
τ ≤ νKµ. In particular, s = −µgC(x). Thus, because fC is a self-scaled barrier,
Proposition 2.1 yields

‖HC(s)‖ =
‖HC(x)−1‖

µ2
≤ ‖x‖

2

µ2
≤ ν2

K

ρD(A)2
.

Proposition 2.1 again implies that s + u ∈ C for all ‖u‖ < ρD(A)
νK

. In parti-
cular,

−ATy = s+ y′ ∈ C∗,

because ‖y′‖ ≤ −~b
T
~y = η < ρD(A)

νK
.
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5 Proof of Propositions 3.4 and 3.5

The proofs of Propositions 3.4 and 3.5 are appropriate modifications of the
proofs of Propositions 2.3 and 2.4. We shall rely on the following key properties
of barrier functions (cf. [3, 10]).

Proposition 5.1 Let f be a νf -barrier function and x, x′ ∈ Df , with ‖x −
x′‖x < 1. Then for every nonzero vector v

1− ‖x− x′‖x ≤
‖v‖x
‖v‖x′

≤ 1
1− ‖x− x′‖x

. (24)

We will use the following immediate consequences of Proposition 5.1.

Lemma 5.2 Let f be a νf -barrier function and x, x′ ∈ Df ⊆ IRk, with ‖x −
x′‖x ≤ β < 1. Then for all v

vTH(x)−1v ≥ (1− β)2vTH(x′)−1v, (25)

and for all Q ∈ IRp×k

λmin(QH(x)−1QT) ≥ (1− β)2λmin(QH(x′)−1QT). (26)

5.1 Proof of Proposition 3.4

As in the proof of Theorem 2.3, elementary algebraic verifications show that the
point x̄, as defined in the statement of Theorem 2.3, satisfies Ax̄ = 0 and

‖x̄− x‖2x ≤ ‖(AHC(x)−1AT )−1‖ τ2. (27)

By Proposition 2.1, to finish the proof it suffices to show that x̄ satisfies

‖x̄− x‖x ≤
√

2νKτ
(1− 2β)ρP (A)

< 1. (28)

But by (27), the inequality (28) follows if we show that ‖(AHC(x)−1AT )−1‖ ≤
2ν2
K

(1−2β)2ρP (A)2 as long as τ < (1−2β)ρP (A)√
2νK

. This in turn readily follows from
Theorem 5.3 below, a natural modification of Theorem 4.1.

Theorem 5.3 Let (~x, ~y,~s) ∈ Nβ with ~cT~x = τ > 0. Then

λmin(AHC(x)−1AT ) ≥
(

(1− 2β)(ρP (A) + τ)
νK

)2

− τ2.
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5.2 Proof of Theorem 5.3

For a given τ > 0, let f1 and f2 be defined as in (22) and (23). As before, f1

and f2 are barrier functions, and Lemmas 4.4, 4.5, and 4.6 hold.

Now given (~x,~s, ~y) ∈ Nβ , let

x̃ := −µ(~x,~s)gK(~s),
b̃ := Ax̃, and

w̃ :=
[
Ax̃
~cTx̃

]
−
[
A~x
~cT~x

]
=
[
b̃

~cTx̃

]
−
[
~b
τ

]
.

(29)

It is easy to see that (x̃, ~s, ~y) is on the central path of the primal-dual pair:

min 〈~c, ~x〉 max 〈b̃, ~y〉
s.t. A~x = b̃ s.t. AT~y + ~s = ~c

~x ∈ K ~s ∈ K.
(30)

In particular, the point x̃ is the minimizer of (22) for w = w̃. Furthermore, for
τ = ~cT~x, the point w̃ is near the point 0 ∈ Df1 as the following technical lemma
states.

Lemma 5.4 Given (~x, ~y,~s) ∈ Nβ, fix τ = ~cT~x and let w̃ be defined as in (29).
Then w̃ ∈ Df1 and

‖w̃‖w̃ = (w̃TH1(w̃)w̃)1/2 ≤ β

1− β
.

Proof. See Section 5.4. 2

Proof of Theorem 5.3. Consider τ = ~cT~x fixed and let f1 and f2 be defined as
in (22) and (23). Let w̃ be defined as in (29). Since x̃ is the minimizer of (22)
for w = w̃, Proposition 4.2 yields

H1(w̃)−1 =
[
A
~cT

]
H(x̃)−1

[
AT ~c

]
. (31)

On the other hand, since (~x, ~y,~s) ∈ Nβ , ‖~x− x̃‖~x = ‖~x+ µ(~x,~s)gK(~s)‖~x ≤ β.
Therefore, by Lemma 5.2,

λmin(A1H(~x)−1AT
1 ) = λmin(Q

[
A
~cT

]
H(~x)−1

[
AT ~c

]
QT)

≥ (1− β)2λmin(Q
[
A
~cT

]
H(x̃)−1

[
AT ~c

]
QT)

= (1− β)2λmin(QH1(w̃)−1QT)

where Q denotes the projection matrix
[
Im 0 0 0

]
and A1 denotes the first

block of rows of A, i.e.,
[
A 0 0 Im 0

]
.
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But ‖w̃‖w̃ ≤ β
1−β by Lemma 5.4, so applying Lemma 5.2 again we get

λmin(A1H(~x)−1AT
1 ) ≥ (1− 2β)2λmin(QH1(0)−1QT). (32)

Again as in the proof of Theorem 4.1, Lemmas 4.4, 4.5, and 4.6 yield

λmin(QH1(0)−1QT) ≥ 1
‖H2(0)‖

≥
(
ρP (A) + τ

νK

)2

. (33)

Combining (32) and (33) we get

λmin(A1H(~x)−1AT
1 ) ≥

(
(1− 2β)(ρP (A) + τ)

νK

)2

.

To finish, just proceed as at the end of the proof of Theorem 4.1, i.e.,

λmin(AHC(x)−1AT ) ≥ λmin(A1H(~x)−1AT
1 )−

∥∥∥∥[Im, 0]HKm+1(x′′, τ)−1

[
Im
0

]∥∥∥∥
≥

(
(1−2β)(ρP (A)+τ)

νK

)2

− τ2.

2

5.3 Proof of Proposition 3.5

Proceeding exactly as in the first part of the proof of Proposition 2.4, we get

‖x‖ ≤ τ

ρD(A)
≤ νKµ(~x,~s)

ρD(A)
.

Let s̃ := −µ(~x,~s)gC(x). Because fC is a self-scaled barrier, Proposition 2.1
yields

‖HC(s̃)‖ =
‖HC(x)−1‖
µ(~x,~s)2

≤ ‖x‖2

µ(~x,~s)2
≤ ν2

K

ρD(A)2
.

But ‖s − s̃‖s ≤ ‖~s + µ(~x,~s)gK(~x)‖~s ≤ β, because (~x, ~y,~s) ∈ Nβ . Thus by
Proposition 5.1,

‖HC(s)‖ ≤ ‖HC(s̃)‖
(1− β)2

≤ ν2
K

(1− β)2ρD(A)2
.

Proposition 2.1 implies that s+u ∈ C for all ‖u‖ < (1−β)ρD(A)
νK

. In particular,

−ATy = s+ y′ ∈ C∗,

because ‖y′‖ ≤ −~b
T
~y = η < (1−β)ρD(A)

νK
.
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5.4 Proof of Lemma 5.4

Lemma 5.4 readily follows from the following more general result concerning
implicitly-defined functions.

Proposition 5.5 Let f̄ be defined in terms of A, f as in (21). Let y ∈ Df̄ and
x(y) be the minimizer of (21) for such y. Then every x ∈ Df satisfies

‖Ax− y‖y ≤ ‖x− x(y)‖x(y), (34)

where ‖ · ‖y is the local norm induced by H̄(y).

Proof. To simplify the notation, let us abbreviate H̄(y) as H̄ and H(x(y)) as
H. By Proposition 4.2 and Schwarz inequality,

‖Ax− y‖2y = ‖Ax−Ax(y)‖2y
= 〈A(x− x(y)) , H̄A(x− x(y)) 〉
= 〈(x− x(y)),HH−1AT(AH−1AT)−1A(x− x(y))〉
= 〈(x− x(y)),H−1AT(AH−1AT)−1A(x− x(y))〉x(y)

≤ ‖x− x(y)‖x(y)‖H−1AT(AH−1AT)−1A(x− x(y))‖x(y).

(35)

But it is easy to see that H(x(y))−1AT(AH(x(y))−1AT)−1A(x− x(y)) is the
solution to

min ‖v‖x(y)

s.t. Av = A(x− x(y)).

Consequently,

‖H−1AT(AH−1AT)−1A(x− x(y))‖x(y) ≤ ‖x− x(y)‖x(y). (36)

So we get (34) by putting (35) and (36) together. 2
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