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Abstract

This paper presents smoothing heuristics for an NP-hard combinatorial
problem based on Lagrangian relaxation. We formulate the Lagrangian dual
for this nonconvex quadratic problem and propose eigenvalue nonsmooth un-
constrained optimization to solve the dual problem with bundle or subgradient
methods. Derived heuristics are considered to obtain good primal solutions
through pathfollowing methods using a projected gradient algorithm. Starting
points are drawn using several sampling techniques that use randomization and
eigenvectors.

The proposed method turns out to be competitive with the most recent ones.
The idea presented here is generic and can be generalized, to all problems where
convex Lagrangian relaxation can be applied. Furthermore, to the best of our
knowledge, this is the first time that a Lagrangian heuristic is combined with
pathfollowing techniques.
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1 Introduction

Let G = (N, E) be an undirected weighted graph consisting of the set of nodes N
and the set of arcs or edges E. Let a;; be the cost of edge ij, and assume G complete,
otherwise set a;; = 0 for every edge ¢j not in E. The Maximum Cut problem consists
of finding a subset of the nodes, S C N that maximizes the cut function

cut(S E Qsj,

ij€d(S)

where the incidence function §(S) = {ij € E such that i € S and j ¢ S}, is defined
to be the set of arcs that cross the boundary of S.

Let the vector z, with z; € {—1,1}, represent whether 7 € S. In this way, ij € 6(5),
i.e. nodes 7 and j are on different sides of the cut, if and only if z;2; < 0. We can
write the maximum cut problem as a quadratic nonconvex problem,

min zT Az
(MC-Q) S.t. Xz=c¢e

where X = Diag(z) is the matrix with the vector z in its diagonal and zeros elsewhere,
and e € IR" is the vector of ones. We can observe that Xz = e if and only if
xz € {-1,1}" and

l‘TA$=ZaZ] Za” Za”-—ZZa”—e Ae—4Za”

mi':ij>l0 mzia]:j<10 ’] . ZJ <10 UEJ )
Therefore, the maximum cut(S) can be produced by minimizing 27 Az, then adding
the constant e’ Ae, and finally dividing by 4.

Regardless that problem (MC-Q) was proved to be NP-hard [9], some interesting
heuristics to obtain good solutions have been proposed. Following, we present the
most known and recent ones.

Let Z = 0 be a semidefinite positive matrix in IR™™, diag(Z) be the vector repre-
sentatlon of the diagonal of the matrix Z, and A e B = trace(AB) = }_.. a;;bi;, be
the Hadamark product. Problem (MC-Q) can be also written as

min AeZ
s.t.  diag(Z) =
(MC-SDP) 7 — 22T
Z =0,



by noting that the constraint Z = zz’ implies that diag(Z) = Xz, and that
trace(AZ) = trace(Azz”) = 27 Az. By removing the rank-1 constraint, we have
the semidefinite relaxation problem

min AeZ
(SDP) s.t. diag(Z) =e
7 = 0.

Goemans and Williamson [10] used the solution of (SDP) to generate random feasible
points Z. Assuming that Z* is a (SDP) optimal solution, which is not necessarily rank-
1, their strategy consists of finding a factorization Z* = VTV, where V can be the
Choleski factorization. A feasible solution Z = sign(V7u) can be produced using
the random vector u ~ U[B(0,1)], uniformly distributed over the zero centered n
dimensional ball of radius one. For the case of non-negative edges weight, a;; > 0,
they proved a bound on the expected value of the randomly generated solutions that
is

E(cut(z)) > .878 val(MC-Q),

where val(MC-Q) is the optimal value of problem (MC-Q), and cut(%) is cut(S) for
the set S defined by z.

Later Bertsimas and Ye [4] proved that it is possible to use the SDP optimal solution,
Z*, as covariance matrix to generate a vector x ~ N (0, Z*). This randomly generated
vector can be used to produce a feasible one, & = sign(z), leading to the same results.

Unfortunately, solving problem (SDP) by means of a primal-dual interior point algo-
rithm can require quite a long time if the problem contains thousands of variables.
Besides, the sparsity of the matrix is lost when the problem is solved by that method.
Several SDP methods exploiting sparsity have been proposed, such as the purely dual
interior point algorithm [2], nonlinear programming approach [6], and the spectral
bundle method [15]. Burer et. al. [5] have devised a rank-2 relaxation of problem
(MC-Q). In their heuristic, they relax the binary vector into a vector of angles, and
work with an angular representation of the cut. They maximize an unconstrained
sigmoidal function to obtain heuristic points, that later are perturbed to improve the
results of the algorithm. Their approach is similar to the Lorena [3] algorithm.

The Max-Cut problem can also be formulated as an unconstrained quadratic binary
problem, (UQB) [14, 19]. Metaheuristics for solving UQB are proposed and studied

for cases containing up to 2500 variables [1].

In this paper, we propose a pathfollowing heuristic, which is also called homotopy,



deformation, continuation, or smoothing heuristic. The heuristic is based on a para-
metric optimization problem defined as a convex combination between a Lagrangian
relaxation and the original problem. Starting from the Lagrangian relaxation, a path-
following method is applied to obtain good solutions while gradually transforming the
relaxed problem into the original problem formulated with an exact penalty function.

Paths of this parametric optimization problem are traced using a projected gradient
method and the final points are rounded. To follow this idea, starting points for the
procedure are needed. Hence, We present different sampling techniques to generate
the initial points.

This method aims to avoid regions with less interesting local optima, and direct
towards regions where the global optimum is likely to be. Such kind of heuristics
have been applied to energy optimization problems, where the relaxation is obtained
using Gaussian transformations. Scheltstraete et al. [21] provide an overview on this
kind of heuristics.

Feltenmark and Kiwiel [8] proposed a Lagrangian heuristic which can be applied to
very general optimization problems. In that paper, they observed that higher dual
objective accuracy need not necessarily imply better quality of the heuristic primal
solution. Our results from the sampling spaces also pose questions regarding the im-
portance of solving the dual problem until optimality. We obtain good solutions with
our heuristic by using feasible dual points that are not necessary close to optimality.
In many cases, eigenvalue corrected dual points already yield good results.

To the best of our knowledge, it is the first time that a Lagrangian heuristic is
combined with smoothing techniques. Since the approach is generic we believe that it
can be generalized to any optimization problems where convex Lagrangian relaxation
can be applied.

The paper is organized in six sections. The next section introduces the Lagrangian
convexification of problem (MC-Q) and explains the dual formulation. Section 3 de-
fines the pathfollowing heuristic and describe its parameters, and section 4 explains
the sampling methods for generating starting points for the algorithm. Finally, sec-
tions 5 presents the results and our conclusions are presented in section 6.



2 Lagrangian Convexification

In this section we describe how relaxations of problem (MC-Q) can be obtained using
duality theory. We first formulate the Lagrangian dual, then transform it to its
eigenvalue formulation, and describe how it can be optimized using bundle or other
subgradient methods for nonsmooth optimization.

2.1 Lagrangian dual

The Lagrangian function of problem (MC-Q) can be written as
L(z;p) = —e"p+ o' (A+ M)z,
where M = Diag(u), u € IR"™ is a vector of Lagrangian multipliers. The dual function,

D(p) = inf L(z;p),

reR™

can be clearly written in close form as

—eTp itA+M >0
D(“)_{—oo if A+ M 3 0. (1)
Finally, the Lagrangian dual problem of (MC-Q) is

(D) uselg)n D(u)-

The close form (1) shows that for each 1 € dom D the Lagrangian L(-; 1) is a convex
underestimator of the objective function over [—e, e]. Note also that (D) is equivalent
to the semidefinite program

max —elp
(D-SDP) st. A+ M =0,

which is the dual of (SDP). The related duality gap is zero since the Slater condition
holds [14].

Remark 1 It is interesting to note that problem (D-SDP) can be also formulated as
finding the minimum sum of elements to set in the diagonal of A such that it becomes
positive semidefinite, miny | u; such that A+ M = 0.



Lemma 1 The optimum of problem (D-SDP) is attained when the smallest eigen-
value of A+ M 1is zero.

Proof. Let us assume that A+ M > 0. This means that all its eigenvalues are positive.
Let w > 0 be the smallest of the eigenvalues of A 4+ M. We can define M* = M —wl
with A+ M* = A+ M — wI = 0. Hence, el * = e’y — nw < ey, showing that
could not have been the optimum. O

2.2 Eigenvalue formulation

Let us now formulate the dual problem (D) as an eigenvalue optimization problem.
Consider the sphere
S={z e R"||z]* =n},

which clearly is the only sphere that contains the feasible set, {—1,1}" C S.

Lemma 2 Let A\\(A + M) denote the smallest eigenvalue of A+ M. Then, the
following equality holds
M (A+ M) = min 2" (A + M)z,

llz]|l=1

Proof. Let A be the diagonal matrix of eigenvalues of A + M, let U be the base of
eigenvectors, in columnwise matrix form, and let £ = Uz, be the spectral representa-
tion of z, i.e. the writing of x in the eigenvector space. Then, the variable objective
part of the Lagrangian, 27 (A + M)z = z"UTAUz = £'AE = Y \i&?, is minimized
when & = 1 and & = 0 for ¢ # 1, given that )\; is the smallest eigenvalue, and
II€]l = ||z|| since the matrix U is orthonormal. O
We define the dual function with respect to S,

Ds(p) = melélL (z; ) = =T+ nA (A + M), (2)
and the corresponding dual problem is therefore

(Ds) sup Dy(u) = sup —€"ju-+ni(4+ M),
pelR™ peIR™

We can state the following relationships between solutions of (D) and (Dg).
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Proposition 1
(i) It holds that D(u — A (A + M)e) = Dg(p).
(ii) The optimum values of (D) and (Dg) are the same.
(ii1) If p is a solution of (Ds) then pu* = p— M (A+ M)e is a solution of (D).

Proof.

(i) Given w = A\ (A + M), the matrix A + M — wl is clearly positive semidefinite.
From the close form (1) of the dual function, it follows D(u — we) = —e” (1 — we) =
—el'p+nw = Dg(p).

(ii) From Lemma 1, a solution p of (D) fulfils A; (A+ /) = 0. Hence, val(D) = val(Dg)
follows from (i).

(iii) follows from (i) and (ii). O

Remark 2 The transformation i = u— A (A~+ M)e maps an arbitrary p € IR"™ onto
dom D, the domain of D. Thus, the Lagrangian L (x; i) is a conver underestimating
function.

2.3 Supergradient formula

A supergradient of a non-necessarily differentiable concave function D: R™ — IR, is
a vector g € IR™, satisfying

D(p)+g" (A —p) = D(N)

for all A\, u € IR™. The previous definition is widely known in its reverse form for con-
vex functions and subgradients. A supergradient of a dual function can be computed
by evaluating the constraint functions at a Lagrangian solution point. The following
Lemma holds [16]:

Lemma 3 Let L(x;p) = f(x) + uTg be a continuous Lagrangian function related to
an objective function f: IR® — IR and a constraint function h: IR™ — IR™. Let
X C IR be a compact set. Then the dual function D(u) is concave and g(u) = h(z,)
is a supergradient of D(p) at p € dom (D), where x,, is a Lagrangian solution of
D(u), i.e.

z, € Argel;lin L(z; p).



The previous result can be applied to solve the unconstrained problem (Dg) using
subgradient optimization techniques.

Proposition 2 For a given dual point u € IR™, let v € IR"™ be a minimum eigenvector
of A+M , with ||v|| = 1, and let x,, = n'/?v be a solution of the Lagrangian problem (2).
Then g € IR", defined by g = X,x, — e, is a supergradient of Dg(p) at pu.

Proof. The statement follows directly from Lemma 3. O



3 Pathfollowing Heuristics

A pathfollowing method works by first solving a simple problem and then deforming
this problem into the complicated original one. During this deformation or homotopy
some (or all) paths from the solution of the simple problem to the solutions of the
original problem are followed. Based on this idea, we present now a heuristic for
problem (MC-Q).

3.1 Homotopy

Let us define the box constrained quadratic penalty parametric problem,

min 7 Az + y(n — ||z]|?)
(MC-P,) s.t. z € [—e,¢],

which is clearly equivalent to (MC-Q) for v sufficiently large.

By setting y(¢) = (1 —¢)~', we ensure that 7 is large enough when ¢ is sufficiently
close to 1. Therefore, P(z;t) = 2" Az + (1 — ¢t)~'(n — ||z||*) is an exact penalty
function for x € [—e, e] in the unit box. Let L(x;u) = —eTu + 27 (A + M)x be the
Lagrangian function regarding the binary constraints. We can now define a homotopy
function with parameter ¢, between the penalty objective function of problem (MC-
P,), P(z;t), and the Lagrangian L (z; i), to be

H(z;p,t) = tP(z;t) + (1—t) (; 1)
= tl—-t)y'n—ep+a’(A-tQ-t)' T+ (1 —-t)M)z.  (3)

The formulation (3) shows that the function H is quadratic on z. Finally, we consider
the following parametric optimization problem associated to the homotopy function,

(P,) min H(z; p1,1).

z€[—e,e]
Assuming that g € dom D, the function H(-; u,0) = L(-; pt) is a convex underestima-
tor of (MC-Q) and (Py) is a convex optimization problem. On the other hand, when

t tends to 1, H(-;-,t) tends to P(-;t), which becomes concave for ¢ close to 1. The
latter motivates the following Lemma.



Lemma 4
(i) There exists t° € (0,1) such that val(MC-Q) = val(P;) for all t € [t°,1).
(ii) The function v(t) = val(P;) is continuous on the interval [0,t°].

Proof. (i) It is clear that there exist t° € (0,1) such that H(-; u,t) is concave for ¢ €
[t9,1). To see that, consider the Hessian of the homotopy, from the formulation (3),
V2H = A —tyI + (1 —t)M. Since 7 — oo when ¢ — 1, the matrix V?H is negative
definite for some t° < 1. Furthermore, H(z; u,t) = 2T Az for all x € {—1,1}", for all
u € IR", and t € IR, which proves the statement.

(ii) This fact is clear from the continuity of P and L since v is a projection of IR"
onto [0, 1). O

Remark 3 Note that it might be possible that the path x(t) of the parametric opti-
mization problem (Py) related to a solution z* of (MC-Q) is discontinuous, in other
words there might be jumps [13].

Remark 4 Dentcheva et al. [7] and Guddat et al. [12] pointed out general disadvan-
tages of this formulations, i. e. the one-parameter optimization is not defined for
t =1 and the objective function could be only once continuously differentiable. How-
ever, for the Maz-Cut problem the penalty objective function used is quadratic, thus
infinitely many times differentiable since no inequality constraints were used. On the
other side, from Lemma 4, the path need not to be traced until t = 1, disregarding
that undefined point.

3.2 Pathfollowing Algorithm

The solution of the parametric optimization problem (P;) is as difficult as solving
(MC-Q). Therefore, we trace approximately a path of (P;) using a truncated projected
gradient algorithm for approximating a solution of minge[_c ¢ H (% 4, t).

Let IIj_. () be the box projector operator

-1 if T < —1
H[_e,e](x)i = Z; if -1 S Z; S 1

Figure 1 presents Algorithm pathfollowing that traces a single path towards a local
optima. The Algorithm depends highly on the initial points, which are provided by
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sampling techniques explained in section 4, and certain parameters explained in the
following subsection.

Algorithm & = pathfollowing(z,u)

set k:=0;
t() = 0;
z0 ;= x;

do get tpy1 > tg;
set y¥ = z*;
for 7:=0 to m—1 do .
- i VHW )
it =TI, <yj_ﬁJ S by :
el IVH (75 1, t)]

set k:=k+1;
ij — ym.
until stopping criteria fulfilled or k = M;
return 7 = sign(z¥).

Figure 1: Algorithm pathfollowing traces a path from a starting primal point z
to a feasible point #. The parameters are discussed in subsection 3.3. The inner
loop solves approximately z*¥ = argminge_, o H(z; 1, 1) by making m steps (minor
iterations) of a projected gradient algorithm.

3.3 Parameters

Algorithm pathfollowing assumes that the following parameters are provided.

major iterations. The parameter M controls the maximum number the outer loop
is performed.

minor iterations. The parameter m controls the number of iterations for the pro-
jected gradient algorithm in the inner loop.

steplength. The parameters 3/, for j = 1,...,m, determine the steplength of the
projected gradient algorithm. It is possible to autotune 37 to guarantee descent step
using bisection rule, or to use a fixed value f7 = .

11



homotopy sequence. The parameters t; < --- < t; < --+ < 13, determine the
values at which the function H(x; u, 1) is optimized. It is possible to generate ty,
using a geometric sequence, i.e. ty = 1 — p* with p € (0,1), or using a uniform
sequence, i.e. ¢ = k/(M +1).

3.4 Stopping Criteria

A consequence of Lemma 4 is the following proposition.

Proposition 3 If m is large enough, Algorithm pathfollowing can be stopped if
tr, > t° without changing the final result, where t° is defined in the proof of Lemma 4 (7).

Proof. If ¢, > t° from Lemma 4, then H(-; u,t;) is concave. Clearly, in this case, the
projected gradient algorithm converges in finitely many steps to a vertex. g

Let z* be the global optimum of problem (MC-Q). We define the region of attraction
to be the set of points z such that sign(z) = sign(z*). With the previous proposition,
it is not needed to follow the path until the end, since after ¢, > t° with m large
enough, z* is in a region of attraction and its projection will not change for larger k.
Therefore, we can use sign(z*) = sign(z*~!) as stopping criteria for the outer loop
of the algorithm. However, this does not guarantee that ¢, > t°. A more careful
approach is to use sign(z*) = sign(z*~!) = - - - = sign(z*~P), with p > 1.
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4 Sampling

Algorithm pathfollowing requires initial dual and primal points. Since the algorithm
is a heuristic, better results are not necessarily achieved by better dual points and
their corresponding Lagrangian solutions. Therefore, we devised several techniques
for generating sample points in the primal and dual space. The following subsections
describe how a single dual vector y and its corresponding primal point = are generated
in each sampling method. We define two kinds of sampling methods, the first over
the primal space using random techniques on different spaces, and the second over
the dual space, using a sequence from an optimization algorithm. The sampling is
repeated up to complete the defined sample size.

A sample of size p to start Algorithm pathfollowing can be represented as a set
of pairs of primal and dual points, S = {(z%, u*) with 4 = 1,...,p}. The primal
sampling sets are those whose dual points, y; = p, are the same through the sample.
Respectively, the dual sampling sets are those whose dual points vary through the
sample or some dual method was used to obtain them. We start describing first
sampling on the primal space, and we follow with the sampling in the dual space.

4.1 Random primal

A starting primal point is chosen with uniform distribution over the ball B(0,n'/?).
Then, Algorithm pathfollowing is applied with = —A;(A)e. This is the simplest
of all the sampling, since it does not compute the primal from dual information.

The random primal sample is therefore,
SRP = {(‘rzhu') 1= 1, 2 xi ~ U[B(Oﬂnl/Q)]’ n= _)‘1("4)6},

where z¢ ~ U[S], means that the sample point z* is independently drawn with uniform
distribution over the set S, i.e. the probability density function is the same at any
point in the set, for all y,z € S, we have f,i(y) = fzi(2), and for all i # j, the joint
probability density function equals the product of the probability density functions,

fzi,zj (ya Z) = foi (y)fzf (Z)
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4.2 Preswitching

This is also a primal sampling, since no dual sequence is used, i.e. we do not attempt
to solve the dual when generating this sample. We use the eigenvector corresponding
to the smallest eigenvalue of A, v;(A) = v1(A+ M), where u = —X;(A)e, is the map
into the semidefinite cone.

We define a threshold € for all components of the primal point. If z; < €, we multiply
its value by -1 with a probability one half. This is done to explore the opposite
direction when a component of the primal starting point is close to zero.

The preswitching sample is then,

Se={(",p)ri=1,...,p, &' = pxe(vi(4)), p=—Ai(A)e},

where p = n'/?/||vi(A)||, and x.(v) is a random vector defined as

o xz; if |z;] > €
Xe(x)] - { U;T if |.’EJ‘ <€’

and u; are independent identically distributed Bernoulli random variables, which take
values in {—1, 1} with probability one half each.

4.3 Eigenspace sampling

If the duality gap is zero, an optimum primal solution lies in the kernel of the
eigenspace of the minimum eigenvalue. Motivated by this fact, we generate ran-
dom points in the space spanned by the eigenvectors that correspond to a certain
number of smallest eigenvalues.

In particular, we define

Sp=A{("p):i=1,....p, 2" =n'y/Iyll, p=—Ai(A)e},
where .
y' = Zakvk(A + M),
k=1

and ar ~ N(0,1), independent normally distributed, and v;(-) is the eigenvector
corresponding to the i-th lowest eigenvalue. The resulting random linear combination
of eigenvectors, y* is projected onto B(0,n!/2), the ball that contains the [—e, e] box.

14



This sampling can be combined to any sampling on the dual space by having different
dual points pf for i = 1,...,p, or just by selecting a single different dual point. We
explain this in section 4.6 on the following page.

4.4 Random duals

This and the following, are sampling using different dual points.

To check the importance of solving the dual problem to generate good heuristic primal
solutions, we generated independent random points normally distributed in the dual
space, v* ~ N(0,01), independent identically distributed. Then, we constructed the
sample correcting the dual points as explained in Remark 2,

SRD = {(‘/EZHU’Z) 1= 17 Ry L xi = pivl(A + MZ)? /J’Z = Vi - )\1(A+NZ)€},

where p' = n'/2/||v;(A + M?)||, and N = Diag(v). We map the dual points onto
the semidefinite cone by subtracting the lowest eigenvalue times the vector of ones,
pt = vt — M\ (A + N')e, to ensure the convexity of the Lagrangian.

Another possible way to guarantee the convexity of L(z;u), is to use Gershgorin
sufficient condition of semidefinite positiveness, A + M 3= 0 implies

>y ]
17
since a;; is zero in the Max-Cut case. However, we believe eigenvalue convexification
is better. On the other side, the latter method is faster.

4.5 Dual sequence

A nonsmooth optimization method is applied on the unconstrained dual problem
(Ds). This can range from simple subgradient methods, using steepest descent or
conjugate subgradients, to proximal bundle method. Let {¢’}, for j = 0,1,..., be
a sequence that converges towards the optimum dual value p*. The dual sequence
sample can be described as

SSD = {(:rzaul) S 1a - D, xi = pivl(A + MZ)? :uz € {Vj}jz(),l,...}a

where p' = n'/2/||v;(A + M?)||. Each sample dual y¢ is an iterate of the dual opti-
mization method towards obtaining the optimum dual p*. We pick a sample point

every K iterations of the dual, i.e. u* = X,

15



4.6 Eigenspace after dual termination

In this last sampling, we produce starting primal points in the eigenspace of the same
dual point. But we generate the dual point by optimizing the dual problem until a
convergence criterion is fulfilled, ||u* — u*|| < €. Since p* is a priori not known, the
algorithm stops if the improvement in the last r iterations was less than a fraction
of the improvement made in the starting r iterations. In particular, ||u*f — pF~7|| <

Ol = u||-
The sample can be defined as
Sep ={(z",p) :i=1,...,p, 2’ = p'y’, p=p* — M(A+ M*)e},
where p' = n'/2/||y||, v* = 3_5_, axvr(A + M*), and p* an optimum dual, or in fact,
sufficiently close to it. The primal points are sampled from the space generated by

the eigenvectors corresponding to the smallest eigenvectors of A + M*, explained in
section 4.3 on page 14.
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5 Numerical Results

Algorithm pathfollowing was coded in C++ and compiled with g++, the GNU com-
piler. Supergradients for the dual function explained in section 2 were computed
according to Lemma 2. For the computation of the minimum eigenvalue and corre-
sponding eigenvector we used the Lanczos method ARPACK++ [11]. For solving the dual
problem, we used Kiwiel’s proximal bundle algorithm NOA 3.0 [17, 18]. Pseudoran-
dom numbers were generated using RANLIB library routines to simulate the proposed
distributions.

The algorithm was tested using a set of examples from the 7th DIMACS Imple-
mentation Challenge [20], and using several instances created with rudy, a machine
independent graph generator written by G. Rinaldi, which is standard for maximum
cut problem [15].

The tests were run on a machine that has two 700MHz Pentium III processors and
1Gb RAM. The sampling size for all the sample sets was set to 10, and the best result
over each sample type was reported.

Table 1 and Table 2 show the results for the different sampling techniques. The
first reports the computing time and the second, the value in percentage refereed to
the most elaborated sample Sgp, eigenspace after dual termination, for which the
absolute result is reported. For the reported runs, we used a fixed number of major
iterations M, a fixed steplength 3, and a uniform sequence t, explained in section 3.3
on page 11.

Other combinations of the parameters described in section 3.3 on page 11 were tried.
In particular, we experimented with modifications of the steplength update rule to
perform line search, the sequence of values for ¢ (a geometric sequence for t, = 1 — p*
was also tested), and the outer loop stopping rule explained in section 3.4 on page 12.
However, we did not observed significant differences in the results. One exception
was the use of simplest stopping rule criterion. In that particular case, for few primal
sample examples, the algorithm stopped before achieving as good results as reported.

Previous evidence with other Lagrangian heuristics for the unit commitment problem
suggests that higher dual objective accuracy need not necessarily imply better quality
of the heuristic primal solution [8]. To evaluate the importance of the information
provided by the dual for the heuristic, we plot comparatively the dual sequence and it
corresponding heuristic primal solution sequence for some graph examples in Figure 2.

We observe that meanwhile the dual improves its value, reducing the duality gap, the
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example size primal sampling dual sampling

name n m SRP SP SE SRD SSD SED
g3 800 19176 15 15 17 19 1:20 32
gb 800 19176 14 14 16 16 49 1:13
gl3 800 1600 4 5 6 7 17 12:46
gl4 800 4694 5 5 6 6 20 2:30
gl9 800 4661 5 5 6 6 15 1:11
g23 2000 19990 | 24 24 29 32 1:59 2:50
g31 2000 19990 | 22 22 28 25 1:45 11:40
g33 2000 4000 15 15 20 30 2:47 3:27:25(%)
g38 2000 11779 17 18 21 19 1:28 9:02
g39 2000 11778 18 17 20 19 1:56 5:13
gd4 1000 9990 10 10 13 17 46 1:04
g50 3000 6000 | 25 24 36 | 1:05 1:32 95
g52 1000 5916 T 7 8 8 42 3:14

Table 1: Comparison of computing time. Primal samples: Sgp random primal,
Sp preswitching, Sg eigenspace; dual samples: Sgrp random dual, Ssp dual sequence,
and Sgp eigenspace after dual stop. The columns report the computing time in
hh:mm:ss, hh hours, mm minutes, and ss seconds. mm reported when total sec-
onds were more than 60, and similarly with Ah. The run was performed with fixed
steplength 5 = 5, minor iterations n = 10, major iteration horizon M = 20, uniform
update on ¢, i.e. t values: 1/(M+1),...,M/(M +1). (1) The excessive running time
was due to the stopping criterion explained in section 3.4 on page 12.

heuristic primal sequence is not monotonically decreasing. Meaning that dual points
closer to the optimum do not necessarily provide better heuristic primal points.

Table 3 shows a comparison with rank 2 and Goemans and Williamson technique
using SeDuMi to solve the semidefinite formulation. MATLAB SeDuMi 1.03 [22]
for SDP optimization tests were run on a machine with two 1GHz intel Pentium III
(Coppermine) and 1Gb RAM. The numbers from rank 2 were extracted from the
paper [5] from the table without the use of the random perturbation. There the
results were obtained from a sample of size 1. In that paper, they report better
results. However, we were not able to reproduce those results, since we did not know
the information regarding the random perturbation parameters.
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Figure 2: Plots of sequence of the values of dual points and their correspondent primal
heuristic solution produced by Algorithm pathfollowing from rudy graphs g3, gl4,
and g22.
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example | primal sampling dual sampling dual G-W
name SRP SP SE SRD SSD SED bound E(Cut)
g3 99 99 99 1 99 99 11608 | 12084 10610
g6 99 100 100 | 100 100 2135 2656
gl3 100 100 100 | 100 99 268 647
gld 99 99 91 99 99 3024 | 3192 2803
gl9 98 98 98 | 99 102 868 1082
g23 99 99 99 | 100 99 13234 | 14146
g31 100 100 100 | 100 100 3170 | 4117
g33 99 99 100 | 99 98 1342 1544
g38 99 99 9| 99 99 7512 8015 7037
g39 98 99 98 | 99 100 2258 | 2877
gd4 99 99 99 | 100 100 6601 7028 6170
g50 98 100 99 | 99 100 5830 | 5988 9257
g52 100 99 100 | 100 100 3779 | 4009 3520

Table 2: Comparison of solution quality. The first column shows the name of
the problem. The following five columns are divided in primal samples (Sgp random
primal, Sp preswitching, Sg eigenspace) and dual samples (Sgp random dual, Ssp
dual sequence, and Sgp eigenspace after dual stop). The first five columns show the
best case in percentage of the best value from the last sampling technique Sgp, in
the last column whose result is reported in absolute value. The last two columns
provide information about the dual bound and the expected cut using Goemans and
Williamson heuristic. The expected cut was computed only for those graphs with
non-negative edge weights. The run was performed with the same parameters as the

previous table.
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example size SRrP SeDuMi rank2

name n m | ss result hh:mm:ss result ss.ddd  result
torusg3-8 512 1536 | 2 407 16:13 396 2.4% 403
gll 800 1600 | 4 550 53:12 530 .055 524
gl2 800 1600 | 3 542 54:30 530 .063 512
gl3 800 1600 | 4 570 52:15 556 .055 536
gld 800 4694 | 4 3006 55:41 2980 .09 3016
glh 800 4661 | 5 3002 1:10:29 2970 .09 3011
220 800 4672 | 4 920 1:00:12 862 113 901
g22 2000 19990 | 21 13193 14:46:44 12953 363 13148
g24 2000 19990 | 25 13165 16:26:03 12963 297 13195
g31 2000 19990 | 20 3193 N/A N/A 332 3146
g32 2000 4000 | 14 1346 14:25:52 1304 176 1306
g34 2000 4000 | 14 1334 13:45:59 1288 A17 0 1276

Table 3: Comparison with other methods. Comparison of time and result among
(i) random primal sampling Sgp with sample size = 10 and Algorithm pathfollowing
with, steplength 5 = 5, fixed minor iterations n = 10 uniform update on ¢ with major
iteration horizon M = 20, ¢ values: 1, (M —1)/M, (M —2)/M,...,1/M, 0; (ii) SeDuMi
1.03 interior point plus Goemans and Williamson heuristic sample size 1000; and (iii)
rank 2 heuristic, sample size equals to 1, () with the exception of the first example,
torusg3-8, with sample size 100, where the average time was reported (total time
was therefore multiplied by 100) and no perturbation used. The time is presented in
ss seconds, hh:mm:ss hours:minutes:seconds, or ss.ddd seconds.fraction expressed in
decimal format. The results were rounded to the closest integer to ease the reading.
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6 Conclusion

We presented a new heuristic for Max Cut, combining Lagrangian relaxation tech-
niques with pathfollowing methods. The results we obtained are compared with pre-
vious results obtained by Semidefinite Programming using interior point algorithms,
like SeDuMi, and special case algorithms like rank2. Apparently, the new method
performs competitively with techniques previously mentioned.

The experienced running time is in the examples tested better than the one from
interior point algorithm. However is not as good as the one from special purpose
algorithm such rank 2 from Burer [5].

The idea presented here is generic and can be generalized, to all problems, where
convex Lagrangian relaxation can be applied. The second author shows [19] that
convex Lagrangian relaxations of general mixed integer quadratic programs can be
obtained by solving an eigenvalue optimization problem. In order to apply Algorithm
pathfollowing to this case the inner minimization and rounding has to be replaced
by appropriate descent methods. This is currently under investigation.

Furthermore, there are several possibilities to accelerate the proposed method. First,
decomposition techniques can be applied to solve the dual [19]. Second, Algorithm
pathfollowing could be modified to trace the paths of all sample points simulta-
neously and delete candidates with high function values in an early stage of the
pathfollowing. This approach is also well suited for parallelization.

It would be interesting to find out for which optimization problems the dual helps
the algorithm to find better heuristic solutions. Similarly as discussed by Burer et
al. [5], we found out that in the case of Max-Cut it might not be needed to solve
the dual problem to improve the quality of heuristic solutions. It seems that the
structure of the convex underestimators are not changed significantly by solving the
dual. However, Max-Cut can be considered as a highly symmetric concave opti-
mization problem with simple box-constraints. The situation could change for other
optimization problems with more complicated constraints.
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