
THE INVERSE OPTIMAL VALUE PROBLEM∗

SHABBIR AHMED† AND YONGPEI GUAN

Abstract. This paper considers the following inverse optimization problem:

given a linear program, a desired optimal objective value, and a set of feasible
cost coefficients, determine a cost-coefficient vector such that the correspond-
ing optimal objective value of the linear program is closest to the given value.

The above problem, referred here as the inverse optimal value problem, is sig-
nificantly different from standard inverse optimization problems that involve
determining a cost coefficient vector for a linear program such that a pre-
specified solution vector is optimal. In this paper, we show that the inverse

optimal value problem is NP-hard in general. We identify conditions under
which the problem reduces to a concave maximization or a concave minimiza-
tion problem. We provide sufficient conditions under which the associated
concave minimization problem and, correspondingly, the inverse optimal value

problem is polynomially solvable. For the case when the set of feasible cost co-
efficients is polyhedral, we describe an algorithm for the inverse optimal value
problem based on solving linear and bilinear programming problems. Some

preliminary computational experience is reported.

Keywords. Inverse optimization, Complexity, Linear programming, Bilinear

programming.

1. Introduction

Inverse optimization consists of inferring the parameters – such as objective func-
tion and constraint coefficients – of an optimization problem from a pre-specified
optimal solution to the problem. A standard inverse optimization problem that
has often been studied is as follows: given an optimization problem with a linear
objective P : minx{cT x | x ∈ X} and a desired optimal solution x? ∈ X, find a
cost vector c? such that x? is an optimal solution of P . Typically, c? is required to
satisfy some additional conditions, for example, given a preferred cost coefficient
vector ĉ, the deviation ||c?− ĉ||p is to be minimum under some `p-norm. The above
class of problems were introduced by Burton and Toint [7, 8] in the context of iden-
tifying edge lengths to induce a set of pre-specified paths to be the set of shortest
paths in a graph. The authors proposed a convex quadratic programming approach
for a model in which the deviation is measured in the `2-norm. When the under-
lying optimization problem P is a general linear program, Zhang and Liu [18, 19]
discussed linear programming approaches for the `1 and `∞ case. Recently, Ahuja
and Orlin [1] proved that if the underlying optimization problem P is polynomi-
ally solvable, then the standard inverse optimization problem under the `1 or `∞
norm is also polynomially solvable. For a comprehensive survey of the literature on
inverse optimization, the reader is referred to Heuberger [10].

∗ This research has been supported in part by the National Science Foundation under CAREER
Award DMII-0133943.

† Corresponding author, E-mail: sahmed@isye.gatech.edu.

1

2 S. AHMED AND Y. GUAN

In this paper, we consider the following generalization of the above standard
inverse optimization problem: given the optimization problem P and a desired
optimal objective value z?, determine a cost-coefficient vector c? such that the
corresponding optimal objective value of P is closest to z?. Note that here the
optimal objective value rather than the optimal solution is specified. We refer to
this problem as the inverse optimal value problem to distinguish it from standard
inverse optimization problems.

Unlike standard inverse optimization, the inverse optimal value problem has re-
ceived little attention in the literature. One of the earliest works that allude to this
class of problems is a minimax (center) location model due to Berman et al. [5].
Here the authors considered a problem of determining edge lengths in a graph
such that the induced minimax distance from a given vertex to all other vertices is
within prescribed bounds. The authors showed that the problem is NP-complete
for general graphs and described a mixed-integer programming formulation. For
tree graphs, the authors described a linear programming formulation. Zhang et
al. [20] suggested a strongly polynomial algorithm for the above inverse location
problem for tree graphs. Burton et al. [6] considered a generalization of the stan-
dard inverse optimization problems described in [7, 8]. Here, instead of exactly
specifying the shortest paths, desired upper bounds on the shortest path lengths
are specified. The goal is to identify edge lengths in the graph such that the induced
shortest path lengths satisfy the pre-specified upper bounds. The authors proved
that obtaining a global solution to this problem is NP-complete, and provided an
algorithm for obtaining local solutions. Fekete et al. [9] discussed a similar problem
of determining edge lengths such that these lengths exactly induce pre-specified
shortest path lengths between vertex pairs. The authors proved that the problem
is NP-complete, and identified some polynomially solvable cases. Paleologo and
Takriti [13] discussed an application of an inverse shortest path length problem
similar to that in [9] to determine arbitrage-free prices in a bandwidth network.
They suggested a mixed-integer programming formulation for the problem. To our
knowledge, apart from the above mentioned context of shortest paths on graphs,
the inverse optimal value problem in a general setting has not been addressed pre-
viously.

In this paper, we address a general inverse optimal value problem where the
underlying optimization problem is a linear program, and set of cost coefficients is
restricted to a convex compact set. We show that the general problem is NP-hard.
Under very general assumptions, we provide structural characterization under which
the problem reduces to a concave maximization or a concave minimization problem.
We provide sufficient conditions under which the associated concave minimization
problem and, correspondingly, the inverse optimal value problem is polynomially
solvable. For the case when the set of feasible cost coefficients is polyhedral, we
describe an algorithm for the problem based on solving linear and bilinear program-
ming problems. Finally, we report on some preliminary computational experience.

2. Problem Statement, Notation, and Assumptions

In this section, we formally state the inverse optimal value problem under study,
introduce some notation, and state the key assumptions used throughout the paper.

THE INVERSE COST COEFFICIENT PROBLEM 3

Consider the optimal value function of linear program in terms of its cost coef-
ficient vector

(1) Q(c) := min
x
{cT x | Ax = b, x ≥ 0},

where x ∈ Rn. Given a convex set C ⊆ Rn of the objective cost coefficients and
a real number z?, this paper is concerned with the inverse optimization problem
of finding a cost coefficient vector from the set C such that the optimal objective
value of the linear program (1) is “close” to z?. The problem can be formulated as

(2) min
c
{f(c) | c ∈ C},

where f(c) := |Q(c) − z?| if Q(c) ∈ R and f(c) := +∞ if Q(c) ∈ {−∞,+∞}. We
refer to (2) as the inverse optimal value problem. Note that an instance of (2) is
given by specifying the linear programming value function Q, the set of feasible
cost vectors C, and the desired optimal objective value z?. We shall denote such
an instance by P (Q,C, z?).

Let us define the sets Cz? := {c | Q(c) ≥ z?} and C∞ := {c | Q(c) > −∞}.
We shall frequently refer to the set C := C ∩ Cz? . Given compact sets C and C,
let cL be a point such that cL

j = min{cj | c ∈ C} for all j = 1, . . . , n, and cL be
a point such that cL

j = min{cj | c ∈ C} for all j = 1, . . . , n. Similarly, we let cU

be a point such that cU
j := max{cj | c ∈ C} for all j = 1, . . . , n. Given a point

c ∈ C, we let [cL, c] denote the line-segment joining cL to c. We denote the “lower
boundary” of C as ∂LC :=

{
c ∈ C | [cL, c] ∩ C = {c}

}
. It is easily verified that

∂LC ⊆ ∂C, where ∂C denotes the relative boundary of C. We let Ω(C) denote the
set of extreme points of the convex set C. Similar definitions hold for the set C.
Finally, we define the notion of non-decreasing functions. Given two vectors a and
b in Rn, we write a < b if aj′ < bj′ for some j′ and aj ≤ bj for all j = 1, . . . , n. A
function g : Rn 7→ [−∞,+∞] is non-decreasing if for a, b ∈ Rn such that a < b, we
have g(a) ≤ g(b).

Throughout the rest of this paper, we make the following assumptions:

(A1) The feasible region of the linear program {x | Ax = b, x ≥ 0} 6= ∅.
(A2) The set of cost coefficient vectors C is non-empty, compact, and convex.
(A3) C ∩ C∞ 6= ∅.

By assumption (A1), we have that Q : Rn 7→ [−∞,+∞). Using strong duality, we
can then write

(3) Q(c) = max
π
{πT b | πT A ≤ c},

and also Cz? = {c | ∃ π s.t. πT A ≤ c, πT b ≥ z?} and C∞ = {c | ∃ π s.t. πT A ≤ c}.
The following properties are easily verified.

Proposition 2.1. (i) Q(·) is upper-semi-continuous (u.s.c.) over Rn. (ii) Q(·) is
piece-wise linear and concave over C∞. (iii) The sets Cz? and C∞ are closed and
convex.

Furthermore, the non-negativity restriction in the linear program (1) implies that

Proposition 2.2. Q(·) is non-decreasing over Rn.

Finally, since f(·) is continuous over the non-empty compact set C ∩ C∞, we have
that

4 S. AHMED AND Y. GUAN

Proposition 2.3. The inverse optimal value problem (2) has a finite optimal so-
lution.

3. Complexity

In this section, we prove that the inverse optimal value problem (2) is NP-hard.
Our complexity proof relies on establishing equivalence between the inverse optimal
value problem and the binary integer feasibility problem. Given an integer matrix
A ∈ Zm×n, and an integer vector b ∈ Zm, the binary integer feasibility problem
can be stated as follows

Is there a vector x ∈ {0, 1}n such that Ax ≤ b?
An instance of the binary integer feasibility problem is specified by the matrix-
vector pair (A, b). We shall denote such an instance by B(A, b).

Lemma 3.1. Given an instance B(A, b), we can construct an instance P (Q̂, Ĉ, ẑ∗)
of the inverse optimal value problem, such that B(A, b) has an answer “yes” if and
only if the optimal objective value of P (Q̂, Ĉ, ẑ∗) is zero.

Proof. Given an instance B(A, b) with A ∈ Rm×n and b ∈ Rm, let us define the
compact polyhedral set

Ĉ :=
{

(c1, c2, c3)T ∈ R3n | c1 ∈ Rn, c2 ∈ Rn, c3 ∈ Rn,

Ac1 ≤ b, c1 = c2, c3 = e,

0 ≤ c1 ≤ e, 0 ≤ c2 ≤ e
}

,

and the linear programming value function Q̂ : R3n 7→ R as:

Q̂(c) := min cT
1 u− cT

2 v + cT
3 v

s.t. u + v ≥ e, u ∈ Rn
+, v ∈ Rn

+,

where e ∈ Rn is a vector of ones. Finally, letting ẑ∗ = 0, we have an instance
P (Q̂, Ĉ, ẑ∗) of the inverse optimal value problem.

Suppose B(A, b) has an answer “yes,” i.e. there exists x̂ ∈ {0, 1}n such that Ax̂ ≤ b.
Consider a cost vector ĉ = (c1, c2, c3)T such that c1 = c2 = x̂ and c3 = e. Clearly
ĉ ∈ Ĉ. Now, note that

Q̂(ĉ) :=
∑n

j=1

(
min x̂juj + (1− x̂j)vj

s.t. uj + vj ≥ 1, uj , vj ≥ 0
)
.

Since x̂j ∈ {0, 1}, we have x̂j = 0 implies uj = 1 and vj = 0, and x̂j = 1 implies
uj = 0 and vj = 1. Thus Q(ĉ) = 0 = ẑ∗ and the optimal objective function in
P (Q̂, Ĉ, ẑ∗) is zero.

Now suppose the optimal objective value in P (Q̂, Ĉ, ẑ∗) is zero, i.e. there exists
c ∈ Ĉ such that Q̂(c) = 0. Let c := (ĉ, ĉ, e)T , where ĉ ∈ Rn. Note that

Q̂(c) =
n∑

j=1

Q̂j(ĉ),

THE INVERSE COST COEFFICIENT PROBLEM 5

where

Q̂j(ĉ) = min ĉjuj + (1− ĉj)vj

s.t. uj + vj ≥ 1, uj , vj ≥ 0.

Since 0 ≤ ĉj ≤ 1, the optimal value of the above linear program will satisfy
Qj(ĉ) = min{ĉj , 1 − ĉj} for all j. Furthermore, Q̂(c) = 0 implies Q̂j(ĉ) = 0 for all
j. It then follows that ĉj ∈ {0, 1} for all j. Then, from the fact that (ĉ, ĉ, e)T ∈ Ĉ,
we have that the binary vector x = ĉ provides an affirmative answer for B(A, b). 2

Theorem 3.1. The inverse optimal value problem is NP-hard.

Proof. Lemma 3.1 shows that we can provide an answer to any binary integer fea-
sibility question by constructing and solving an equivalent instance of the inverse
optimal value problem. The claim follows from the fact that the binary integer fea-
sibility problem is NP-complete, and that the construction in Lemma 3.1 is clearly
polynomial. 2

4. Structural results

In this section, we describe some structural conditions to reduce the inverse
optimal value problem to well-known optimization problems. Our analysis centers
on whether the set C is empty or non-empty.

Proposition 4.1. Suppose C = ∅. Let c? be an optimal solution of

(4) max{Q(c) | c ∈ C},

then c? is an optimal solution of the inverse optimal value problem (2).

Proof: Since Q(c) is u.s.c. over the non-empty, convex, and compact feasible region
C, problem (4) has a well-defined optimal solution. Since C = ∅, it follows that
Q(c) < z? for all c ∈ C. Problem (2) then reduces to (4). 2

Using the dual representation (3) of Q(c), we can state problem (4) in the above
proposition as:

(5)
maxc,π bT π,
s.t. c ∈ C,

πT A− c ≤ 0.

The above problem involves maximizing a linear function over a convex set for
which a variety of efficient algorithms exists. If C is polyhedral, problem (5) is
simply a linear program.

Proposition 4.2. Suppose C 6= ∅. Let c? be an optimal solution to

(6) min{Q(c) | c ∈ C},

then c? is an optimal solution of the inverse optimal value problem (2).

6 S. AHMED AND Y. GUAN

Proof: We first argue that there exists a solution c? to the inverse optimal value
problem (2) such that c? ∈ C. Suppose not. Then there exists c? ∈ C\C such
that f(c?) ≤ f(c) for all c ∈ C. Note that c? ∈ C∞, otherwise it is not an optimal
solution. Since c? 6∈ Cz? , we have Q(c?) < z?. Now, consider a point c′ ∈ C. Note
that Q(c′) ≥ z? > Q(c?). Define cλ := λc? + (1 − λ)c′ for any λ ∈ (0, 1). Since
both c? and c′ are in the convex set C ∩C∞, so is cλ for any λ ∈ (0, 1). Since Q(·)
is concave over C ∩ C∞, we have Q(cλ) ≥ λQ(c?) + (1 − λ)Q(c′) > Q(c?) for any
λ ∈ (0, 1). From the continuity of Q(·), we can choose λ sufficiently small such that
Q(cλ) ≤ z?. Thus f(cλ) = z? −Q(cλ) < z? −Q(c?) = f(c?). Therefore c? cannot
be an optimal solution. Thus, if C 6= ∅ there exists an optimal solution c? to (2)
such that c? ∈ C. Note that Q(c) ≥ z? for all c ∈ C, thus problem (2) reduces to
problem (6), and the claim follows. 2

Problem (6) in the above proposition amounts to minimizing a concave function over
a convex set. Using the primal representation of Q(c) and the dual representation of
C, it can be easily verified that problem (6) is equivalent to the following problem:

(7)

minc,x,π cT x,
s.t. c ∈ C,

πT A− c ≤ 0, πT b ≥ z?

Ax = b, x ≥ 0.

The above problem involves minimizing a bilinear objective function over a convex
constraint set. When the constraint set is polyhedral, this class of non-convex
programs are known as bilinear programs (cf. [2, 11]). Since the variables c and
x are not coupled through any constraints, such bilinear problems are referred to
as uncoupled or disjoint. A wide variety of optimization techniques have been
proposed for solving disjoint bilinear programming problems. In Section 6, we use
one such technique in the context of the inverse optimal value problem.

We conclude this section by exploiting the monotonicity property of Q(c) to
show that, in case C 6= ∅, there exists a global solution to the inverse optimal value
problem that is an extreme point on the “lower boundary” of C. In Section 5, this
characterization will suggest sufficient conditions under which the inverse optimal
value problem is polynomially solvable.

Lemma 4.1. Given any point c? ∈ C, there exists c′ ∈ [cL, c?] such that c′ ∈ ∂LC.

Proof: The claim holds trivially if c? = cL. Let us assume cL < c?. Consider the
following optimization problem

(8) min{λ | cL + λ(c? − cL) ∈ C, 0 ≤ λ ≤ 1},

and let λ′ be its optimal solution. Let us define c′ = cL + λ′(c? − cL). Suppose
c′ 6∈ ∂LC, then there exists c′′ 6= c′ such that c′′ ∈ [cL, c′]∩C. Since [cL, c′] ⊆ [cL, c?],
this implies that there exists λ′′ 6= λ′ such that c′′ = cL + λ′′(c? − cL) ∈ C. Note
that c′′ < c′, thus cL

j + λ′′(c?
j − cL

j) ≤ cL
j + λ′(c?

j − cL
j) for all j = 1, . . . , n. Recall

that cL < c?, thus there exists j′ such that cL
j′ < c?

j′ . Since λ′′ 6= λ′, this then
implies λ′′ < λ′. Therefore λ′ cannot be an optimal solution of (8). 2

Proposition 4.3. If C 6= ∅, then there exists an optimal solution c? of the inverse
optimal value problem (2) such that c? ∈ ∂LC ∩ Ω(C).

THE INVERSE COST COEFFICIENT PROBLEM 7

Proof: We first argue that the set ∂LC∩Ω(C) is non-empty. Let S = argmin{eT c | c ∈
C}. We claim that S ⊆ ∂LC. Suppose not. Consider c′ ∈ S \ ∂LC. Since c′ ∈ C,
by Lemma 4.1, there exists c′′ ∈ ∂LC such that c′′ < c′, thus eT c′′ < eT c′, and c′

cannot be in S. Since S ∩ Ω(C) 6= ∅, we have ∂LC ∩ Ω(C) 6= ∅.
Now note that by Proposition 4.2, problem (2) is equivalent to problem (6).

Consider an optimal solution c? to problem (6) such that c? 6∈ ∂LC ∩ Ω(C). By
Lemma 4.1, there exists c′ < c? such that c′ ∈ ∂LC. By the non-decreasing property
of Q(·), we have Q(c′) ≤ Q(c?), therefore c′ is also an optimal solution. By con-
vexity of C, we can write c′ =

∑
i∈I λici + (1−

∑
i λi)c0 where I is an appropriate

index set, ci ∈ Ω(C) and λi ≥ 0 for i ∈ I, and c0 ∈ ∂LC ∩ Ω(C). Using concavity
of Q we have that Q(c′) ≥

∑
i λiQ(ci) + (1−

∑
i λi)Q(c0). Since Q(c′) ≤ Q(ci) for

all i ∈ I, we have that Q(c0) ≤ Q(c′), thus c0 ∈ ∂LC ∩ Ω(C) is also an optimal
solution for the problem. 2

5. Conditions for polynomial solvability

From the analysis of the previous section, it is clear that the difficulty in solving
the inverse optimal value problem arises in case C 6= ∅. In this case, we are required
to solve the concave minimization problem (6). Recall, that Proposition 4.3 suggests
that there exists a global optimal solution to problem (6) that lies on an extreme
point on the “lower boundary” of C. If we have that cL ∈ C then it is easily verified
that ∂LC ∩Ω(C) = {cL}. Consequently, cL is an optimal solution of (6), and hence
of the inverse optimal value problem (2). A more general condition guaranteeing
easy solvability of these problems is established next.

Proposition 5.1. Suppose C 6= ∅ and cL ∈ C. Let c? be an optimal solution to
the following problem

(9) min{eT c | c ∈ C}.

Then c? is an optimal solution to problem (6) and, hence, is an optimal solution to
the inverse optimal value problem (2).

Proof: Suppose not. Then there exists c′ ∈ C such that Q(c′) < Q(c?). This
implies Q(c?) > z?. Define cλ = cL + λ(c? − cL). Since cL, c? ∈ C, so is cλ for
all λ ∈ (0, 1). By the continuity of Q(·) at c?, we can choose λ sufficiently close
to one, such that cλ 6= c? and Q(cλ) ≥ z?. Thus cλ ∈ C. Clearly cλ < c?, thus
eT cλ < eT c?. Therefore c? cannot be an optimal solution to (9). 2

Problem (9) above is equivalent to

(10)
minc,π eT c,
s.t. c ∈ C,

πT A− c ≤ 0, πT b ≥ z?,

and is a convex program with a linear objective, and can be solved quite efficiently.
In particular, when C is polyhedral, problem (10) is simply a linear program.

Theorem 5.1. If cL ∈ C, and the convex programs (4) and (9) can be solved
in polynomial time, then the inverse cost coefficient problem (2) can be solved in
polynomial time.

8 S. AHMED AND Y. GUAN

Proof: If (9) can be solved in polynomial time, then we can verify whether the con-
vex set C = ∅ in polynomial time. If C = ∅, Proposition 4.1 implies that an optimal
solution to (2) can be found in polynomial time by solving the convex program (4).
If C 6= ∅, then by Proposition 5.1, an optimal solution can be found in polynomial
time by solving the convex program (9). 2

Corollary 5.1.1. If cL ∈ C, then the inverse optimal value problem is polynomially
solvable.

Proof: It is easily verified that cL ∈ C implies that cL ∈ C. 2

We conclude this section by commenting on a particularly easy case of the inverse
optimal value problem. Consider the case when both cL ∈ C and cU ∈ C. This is
the case, for example when C is only defined by simple upper and lower bounds.

Proposition 5.2. Suppose cL ∈ C and cU ∈ C. Then the following are true

(1) If Q(cL) ≥ z? then cL is an optimal solution of the inverse optimal value
problem.

(2) If Q(cU) ≤ z? then cU is an optimal solution of the inverse optimal value
problem.

(3) If Q(cL) < z? < Q(cU) then there exists an optimal solution c? ∈ [cL, cU]
of the inverse optimal value problem, and Q(c?) = z?.

A proof of the above result is trivial and is omitted. The above result suggests that
if cL ∈ C and cU ∈ C, then solving the inverse optimal value problem reduces to
at most a line search on [cL, cU] to find c? such that Q(c?) = z?. This line search
can be efficiently executed through parametric linear programming as outlined in
the next section.

6. Solving the polyhedral case

The analysis in the Section 4 suggests that we can solve the inverse optimal
value problem by first checking whether C = ∅, and then solving the corresponding
convex problem (5) or the non-convex problem (7). Furthermore, in case C 6= ∅, we
can refine this scheme by verifying the condition cL ∈ C, and accordingly solving
the convex program (9). In this section, we develop linear programming based
procedures to identify and deal with each of the above situations when the set C
is polyhedral. In addition to assumptions (A1)-(A3), we shall assume henceforth
that

(A4) The set C is polyhedral, i.e. C = {c | Bc ≤ d}.
(A5) C ⊆ C∞.

Assumption (A5) guarantees that the underlying linear program is bounded for all
cost vectors in C. This assumption allows substantial simplification in solving the
non-convex program (7) as detailed later in this section. Note that the assumption
is trivially satisfied when the feasible region {x | Ax = b, x ≥ 0} of the underlying
LP is bounded.

THE INVERSE COST COEFFICIENT PROBLEM 9

The Solution Strategy

The first step in our solution procedure is to check if the polyhedral set C = ∅.
This can be accomplished by solving problem (10) which, under assumption (A4),
reduces to the linear program:

(11)
minc,π eT c,
s.t. Bc ≤ d,

πT A− c ≤ 0, πT b ≥ z?.

If the above LP is infeasible, we conclude C = ∅. Otherwise, C 6= ∅, and we denote
an optimal solution of (11) by c0.

If C = ∅, we obtain an optimal solution of the inverse optimal value problem
by computing an optimal solution of problem (5) which, under assumption (A4),
reduces to the linear program:

(12)
maxc,π bT π,
s.t. Bc ≤ d,

πT A− c ≤ 0.

Consider now the case C 6= ∅. We first compute the vector cL by solving the
linear program

(13)
cL
j = minc,π eT

j c,
s.t. Bc ≤ d,

πT A− c ≤ 0, πT b ≥ z?.

for each j = 1, . . . , n. Above, ej is the j-th unit vector. If cL ∈ C, then we conclude
that c0 (the optimal solution of problem (11)) is an optimal solution for the inverse
optimal value problem.

If cL 6∈ C, then we need to solve the non-convex program (7), which under
assumption (A4), reduces to the disjoint bilinear program:

(14)

minc,x,π cT x,
s.t. Bc ≤ d,

πT A− c ≤ 0, πT b ≥ z?

Ax = b, x ≥ 0.

Note that the above problem is stated in terms of the variables c, x, and π. Assump-
tion (A5) allows for substantial simplification of (14). Recall that problem (14) is
equivalent to min{Q(c) | c ∈ C}. Instead, let us consider the problem

(15) min{Q(c) | c ∈ C}.

Assumption (A5) guarantees that Q(c) is concave over C, hence problem (15) is
well-defined. We can now re-state this problem as

(16)
minc,x cT x,
s.t. Bc ≤ d,

Ax = b, x ≥ 0.

Problem (16) avoids inclusion of the π variables in the bilinear formulation and is
significantly easier to solve than (14). Note, however, that a solution of (16) is no
longer guaranteed to satisfy Q(c) ≥ z?, and is, therefore, not necessarily an optimal
solution of the inverse optimal value problem. Let (c′, x′) be a global optimal
solution of problem (16). If c′T x′ ≥ z?, then clearly c′ ∈ C and is, therefore, a global

10 S. AHMED AND Y. GUAN

optimal solution of the inverse optimal value problem. Otherwise if c′T x′ < z?, then
we have Q(c′) < z? ≤ Q(c0), where c0 is an optimal solution of problem (11). By
the continuity of Q(c) we know that there exists c? ∈ [c′, c0] such that Q(c?) = z?,
hence c? is an optimal solution of the inverse optimal value problem. Such a c? is
easily computed by parametric linear programming as follows. Let x0 be an optimal
basic solution of the LP corresponding to Q(c0). Starting from basis of x0, solve
the parametric linear program

(17) F (λ) = min{(c0 + λ∆)T x | Ax = b, x ≥ 0},
with ∆ = c′−c0, for λ ∈ [0, 1] to find λ? such that F (λ?) = z?. Then c? = c0 +λ?∆
is an optimal solution to the inverse optimal value problem.

Algorithm 1 summarizes the above mentioned solution strategy for solving the
inverse optimal value problem when the set C is polyhedral.

Algorithm 1 Solution strategy for the inverse optimal value problem (2)

solve the linear program (11).
if problem (11) is infeasible, i.e., C = ∅ then

solve the linear program (12), and let c? be its optimal solution.
else {problem (11) is feasible, i.e., C 6= ∅}

let c0 be an optimal solution of (11).
compute cL by solving the linear programs (13) for j = 1, . . . , n.
if cL ∈ C then

set c? ← c0.
else {cL 6∈ C}

solve the bilinear program (16) and let (c′, x′) be an optimal solution.
if c′T x′ ≥ z? then

set c? ← c′.
else {c′T x′ < z?}

solve the parametric linear program (17) to find c? ∈ [c′, c0] such that
Q(c?) = z?.

end if
end if

end if
return c? as the optimal solution.

Disjoint Bilinear Programming

A key step in the solution strategy outlined above is solving the disjoint bilinear
program (16). A wide variety of solution strategies have been proposed in the
literature – see, for example, [2, 3, 11, 14, 15, 16, 17] and references therein. In this
paper we use a particularly simple linear programming based strategy proposed
by Bennett and Mangasarian [4]. This scheme starts out with an initial feasible
solution to the disjoint bilinear program, and iterates by solving two linear programs
– one in terms of the x variables and the other in terms of the c variables– to improve
the bilinear objective cT x. The procedure is summarized in Algorithm 2. Note that
“arg vertex partial min” denotes an extreme point solution whose objective value
is no bigger than that corresponding to the previous iterate. The following result
establishes the convergence of the algorithm.

THE INVERSE COST COEFFICIENT PROBLEM 11

Algorithm 2 Solving the disjoint bilinear program (16)

start with an initial feasible solution (x0, c0).
set i = 0.
while there is an improvement do

compute (xi+1, ci+1) from (xi, ci) such that
xi+1 ∈ arg vertex partial minx{ciT x | Ax = b, x ≥ 0},
ci+1 ∈ arg vertex partial minc{xi+1T

c | Bc ≤ d},
and ci+1T

xi+1 < ciT xi.
set i← i + 1.

end while
return ci as the solution.

Proposition 6.1. Algorithm 2 terminates in a finite number of steps at either a
global solution of (16) or a solution (xi+1, ci) satisfying the necessary optimality
condition: ciT (x − xi+1) + xi+1T (c − ci) ≥ 0 for all x ∈ {x | Ax = b, x ≥ 0} and
all c ∈ {c | Bc ≤ d}.

Proof: See [4]. 2

Although Algorithm 2 is not guaranteed to terminate at a global solution, our
computational results in Section 7 indicate that its performance is quite satisfactory
in the context of the inverse optimal value problem.

Remarks on the Proposed Strategy

Unless available a priori, computing cL in Algorithm 1 by solving the n linear
programs (13) can be quite expensive. The following result establishes that this
expensive step can be avoided.

Proposition 6.2. If cL ∈ C and Algorithm 2 is initialized with the solution (x0, c0)
where c0 is an optimal solution of problem (11) and x0 ∈ argminx{c0T

x | Ax =
b, x ≥ 0}, then Algorithm 2 will terminate with a solution c′ such that Q(c′) =
Q(c0) or Q(c′) < z?.

Proof: Clearly Algorithm 2 will terminate with a solution c′ ∈ C satisfying Q(c′) ≤
Q(c0). Let us suppose that z? ≤ Q(c′) < Q(c0). This implies that c′ ∈ C. Since
cL ∈ C, by Proposition 5.1 we have that c0 is a global optimal solution of prob-
lem (6), i.e., Q(c0) ≤ Q(c′). Hence we have a contradiction. 2

By the above result, we can modify Algorithm 1, to avoid computing cL and check-
ing cL ∈ C, as follows. If problem (11) is feasible, i.e., C 6= ∅, we invoke Algorithm 2
for solving the bilinear program (16) with c0, the optimal solution of problem (11),
as the initial solution. If indeed cL ∈ C, then we know that c0 is a global solution
of (2). If Algorithm 2 terminates with a solution c′ such that Q(c′) = Q(c0) then
we have an alternate global optimal solution c′ to problem (2). If Algorithm 2
terminates with a solution c′ such that Q(c′) < z? then we can recover a global
optimal solution by the parametric program (17) as outlined in Algorithm 1.

Also note that it is not always necessary to execute Algorithm 2, the bilinear
programming subroutine in Algorithm 1, to termination. If at any point in this

12 S. AHMED AND Y. GUAN

subroutine we obtain a solution (x, c) satisfying cT x ≤ z?, we can terminate and
return to Algorithm 1.

Finally, as mentioned before, if cL 6∈ C, Algorithm 1, with Algorithm 2 as the
bilinear programming routine, is not guaranteed to provide a global solution of
problem (2). However our computational results in the next section indicate quite
satisfactory performance.

7. Computational Results

The proposed solution strategy was implemented in C++ using the CPLEX7.0
linear programming library routines. All computations were carried out on a Pen-
tium II 450MHz processor PC with 256 MB RAM running Windows 2000. The
proposed strategy was tested on several instances of the inverse optimal value prob-
lem wherein the underlying linear programs were either generated randomly or
taken from the NETLIB [12] standard test set. Next, we describe the details of the
computational experiments for each of these two cases.

Randomly generated LPs

Here we describe experiments with instances of the inverse optimal value problem
for randomly generated linear programs of the form min{cT x | x ∈ X}. The feasible
region of the LP is restricted to a polytope of the form X = {x | Ax ≤ b, 0 ≤ x ≤
xU} to guarantee boundedness. We considered several different problem sizes in
terms of the number of columns n and the number of rows m in A. In each case,
we chose xU = 100e, where e ∈ Rn is a vector of ones. The elements of A and b are
uniformly generated in the interval [−50, 50]. Only feasible instances of the LPs are
considered. Furthermore, we also ensure that 0 6∈ X to avoid generating redundant
instances. The set of cost coefficients C is also restricted to be a polytope of the
form C = {c | Bc ≤ d, cL ≤ c ≤ cU}. The number of rows and columns in B are
the same as that in A. We chose cL = −100e and cU = 100e, and the elements
of B and d are uniformly generated in the interval [−50, 50]. Only feasible cost
coefficient sets are considered.

First, we consider instances of the inverse optimal value problem satisfying C =
∅. Such instances are generated by setting z? = min{c?T x | x ∈ X} where c? =
cU + εe, with ε being a small positive scalar. This guarantees that Q(c) < z? for
all c ∈ C, and therefore C = ∅. Recall that in this case, the algorithmic procedure
is guaranteed to find a global optimal solution, and reduces to solving two linear
programs – first problem (11) is solved to check C = ∅, and then problem (12)
produces an optimal solution to the inverse optimal value problem. Table 1 presents
the computational times for various problem sizes. For each problem size, we report
the minimum, average, and maximum CPU time over 20 feasible instances.

Next we consider problem instance where C 6= ∅ but C ⊂ C. Such an instance
is generated by setting z? = min{c?T x | x ∈ X} where c? is a vector in C. In
this case, the algorithm first solves problem (11) to determine that C 6= ∅, then
it computes cL to check if cL ∈ C, and finally invokes the bilinear programming
algorithm if cL 6∈ C. Using Proposition 6.2 we also consider the improved version
of the algorithm where we avoid computing cL by initializing the bilinear algorithm
with the solution of problem (11). Tables 2 and 3 present the computational results
for various problem sizes. Here T1 is the time required by the original algorithm, T2

is the time to compute cL, and T3 is time required by the improved algorithm. Once

THE INVERSE COST COEFFICIENT PROBLEM 13

again the minimum, average, and maximum time over 20 instances are reported.
The CPU advantage in avoiding the cL computation is clear from these results.
Although the bilinear algorithm is not guaranteed to converge to a global optimal
solution, in our experiments the algorithm converged to the known global solution
c? for each generated instance. Thus, the proposed algorithm was able to solve to
global optimality 100 × 100 instances of the inverse optimal value problem in less
than 8 seconds.

Finally, we consider instances where C 6= ∅ and C = C. Such instances are
generated by setting z? = min{c?T x | x ∈ X} where c? = cL − εe. In this case
global optimal solutions are not known. We compare the performance of the pro-
posed algorithm to a straight forward mixed-integer programming (MIP) model for
computing a global optimal solution to the inverse optimal value problem. The
MIP formulation is described in the Appendix. Similar MIP reformulations are
suggested in [5, 13]. Tables 4 and 5 presents the computational results. The first
two columns of the tables indicate the problem size considered. We considered
problem sizes of up to 28 columns and 16 rows, since the MIP approach required
an excessive amount of computational time for larger instances. For each problem
size, we generated 10 instances. Column 4 of each table presents the minimum,
average, and maximum objective function optimality gap of the proposed strategy
with respect to the MIP solution. Columns labeled T1, T2, and T3 present the
minimum, average and maximum time required by the original algorithm, to com-
pute cL, and the improved algorithm, respectively. The column labeled Tm reports
the minimum, average, and maximum time required to solve the MIP formulation
using the CPLEX7.0 MIP solver. Finally, the last column indicates the average
number of iterations required by the bilinear algorithm. The computational results
indicate that the proposed algorithm is significantly faster than the MIP approach.
Although the optimality gap can be as high as 29%, the proposed approach appears
to perform quite satisfactorily returning solutions to within 12% of optimality on
average.

Standard LPs

In this section, we consider instances of the inverse optimal value problem gen-
erated from five standard LP test problems from the NETLIB repository [12]. The
specifications of these test problems are presented in Table 6. For each LP test
problem, let c? be its cost-coefficient data. We then generate an instance of the
inverse optimal value problem such that c? is its global optimal solution as fol-
lows. The set of cost coefficients C is restricted to be a polytope of the form
C = {c | Bc ≤ d, c? − 1000e ≤ c ≤ c? + 1000e}. The number of columns in B are
the same as that in LP test problem. The number of rows are varied to generate
problems of different size. The elements of B and d are uniformly generated in the
interval [−50, 50]. To ensure that c? ∈ C, if we find that the ith constraint satisfies
Bic

? ≥ di, then we replace the constraint with −Bic ≤ −di. Only feasible instances
of C are considered. We set z? equal to the optimal value of the test LP.

First we attempt to solve these five problems using the MIP approach described
in the Appendix. Table 7 presents the computational times for the case when the
set C is defined by just 10 constraints. Clearly the MIP approach is impractical.
Next, we test the proposed algorithm for the five problems with the number of rows
defining C to vary from 10 to 100. Table 8 presents the computational results. For

14 S. AHMED AND Y. GUAN

each test problem, we present the minimum, average, and maximum computational
time over 10 instances. The percent of problems for which the proposed strategy
converged to the global optimal solution c? is also presented. The proposed strategy
was able to solve each of the problem instances to global optimality in less than 3
minutes.

THE INVERSE COST COEFFICIENT PROBLEM 15

Table 1. Computational time experiment result for the case C̄ = ∅

Columns
Rows CPU s 10 20 30 40 50 60 70 80 90 100
10 Min 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1

Ave 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2
Max 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.2

20 Min 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3
Ave 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.4 0.4
Max 0.5 0.1 0.1 0.1 0.2 0.2 0.3 0.4 0.5 0.6

30 Min 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.4 0.5 0.6
Ave 0.1 0.1 0.1 0.2 0.2 0.3 0.4 0.6 0.6 0.7
Max 0.1 0.2 0.3 0.2 0.3 0.4 0.6 0.7 0.9 0.9

40 Min 0.1 0.1 0.1 0.2 0.2 0.3 0.4 0.5 0.7 1.0
Ave 0.1 0.1 0.2 0.2 0.3 0.4 0.6 0.7 0.9 1.2
Max 0.4 0.2 0.3 0.3 0.3 0.5 0.7 0.9 1.1 1.5

50 Min 0.1 0.1 0.2 0.2 0.3 0.4 0.5 0.7 0.9 1.2
Ave 0.1 0.1 0.2 0.2 0.3 0.5 0.6 0.8 1.2 1.5
Max 0.2 0.2 0.3 0.3 0.5 0.5 0.7 1.0 1.4 1.7

60 Min 0.1 0.1 0.2 0.3 0.3 0.4 0.7 0.8 1.0 1.2
Ave 0.1 0.2 0.2 0.3 0.4 0.5 0.8 1.0 1.3 1.6
Max 0.3 0.6 0.5 0.4 0.4 0.7 0.9 1.1 1.7 2.1

70 Min 0.1 0.1 0.2 0.3 0.4 0.4 0.5 1.1 1.1 1.4
Ave 0.1 0.2 0.2 0.3 0.4 0.5 0.9 1.2 1.4 1.7
Max 0.5 0.3 0.4 0.5 0.7 0.9 1.8 1.3 1.6 2.0

80 Min 0.1 0.2 0.2 0.3 0.4 0.5 0.6 0.7 1.2 1.8
Ave 0.1 0.2 0.3 0.4 0.5 0.6 0.9 1.2 1.5 2.1
Max 0.2 0.5 1.0 0.8 1.0 0.8 1.1 1.4 2.1 2.3

90 Min 0.1 0.2 0.2 0.3 0.5 0.5 0.7 0.8 0.9 2.1
Ave 0.1 0.2 0.3 0.4 0.5 0.7 0.9 1.3 1.5 2.4
Max 0.5 0.3 0.4 0.7 0.7 1.0 1.4 2.5 1.7 2.8

100 Min 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1.0 2.9
Ave 0.1 0.2 0.3 0.4 0.6 0.8 1.0 1.3 1.8 2.9
Max 0.3 0.3 0.5 0.7 1.1 1.1 1.2 1.4 2.3 2.9

16 S. AHMED AND Y. GUAN

Table 2. Computational experiment result for the case ∅ ⊂ C̄ ⊂ C

Columns
10 20 30 40 50

Rows T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
Min 0.3 0.1 0.2 0.5 0.3 0.2 1.0 0.7 0.2 1.2 0.9 0.3 1.6 1.3 0.3

10 Ave 0.4 0.2 0.2 0.7 0.4 0.3 1.4 1.1 0.3 1.7 1.3 0.3 2.4 2.0 0.4
Max 0.6 0.4 0.4 1.1 0.8 0.4 2.8 2.5 0.6 2.2 1.8 0.7 3.6 3.3 0.5

Min 0.8 0.3 0.5 1.4 0.9 0.5 2.1 1.5 0.6 2.9 2.2 0.7 4.3 3.5 0.8
20 Ave 0.9 0.4 0.6 1.8 1.2 0.6 2.8 2 0.7 3.7 2.9 0.8 5.2 4.4 0.8

Max 1.2 0.6 0.7 2.2 1.6 0.9 3.6 2.7 1.0 4.9 4.0 1.0 6.6 5.8 1.0

Min 1.0 0.4 0.5 1.6 1.0 0.5 2.5 1.7 0.7 3.7 2.8 0.8 5.0 4.0 0.9
30 Ave 1.1 0.5 0.6 2.1 1.4 0.7 3.1 2.3 0.8 4.4 3.5 0.9 6.0 4.9 1.1

Max 1.5 0.9 0.8 2.7 1.7 1.0 4.2 3.4 1.0 5.1 4.2 1.7 6.8 5.7 1.7

Min 1.0 0.4 0.5 2.0 1.3 0.7 3.0 2.1 0.8 4.0 3.0 0.9 5.7 4.6 1.1
40 Ave 1.1 0.5 0.6 2.3 1.6 0.7 3.9 3.1 0.9 5.5 4.5 1.0 7.0 5.8 1.2

Max 1.5 0.8 0.8 2.7 2.0 0.9 4.7 3.9 1.2 7.3 6.3 1.3 9.4 8.2 1.6

Min 1.0 0.5 0.5 2.2 1.5 0.7 4.0 2.9 0.9 4.4 3.3 1.0 6.1 4.5 1.2
50 Ave 1.2 0.6 0.6 2.5 1.8 0.8 4.6 3.6 1.0 6.9 5.7 1.2 9.3 7.9 1.5

Max 1.5 0.9 0.8 3.1 2.0 1.1 5.6 4.6 1.2 10.0 8.9 1.6 14.0 12.0 2.0

Min 1.0 0.5 0.6 2.3 1.5 0.7 4.6 3.6 1.0 5.4 4.1 1.2 7.3 5.6 1.5
60 Ave 1.3 0.6 0.7 2.7 1.9 0.8 5.3 4.1 1.1 9.0 7.6 1.3 12.0 10.4 1.9

Max 1.7 1.0 0.8 3.3 2.5 0.9 6.4 5.2 1.8 11.0 9.3 1.6 16.0 14.0 2.5

Min 1.1 0.5 0.6 2.3 1.5 0.8 5.2 4.0 1.1 9.0 7.3 1.3 12.0 10.1 1.7
70 Ave 1.3 0.6 0.7 2.8 1.9 1.0 5.8 4.5 1.2 10.0 8.4 1.7 16.0 14.2 1.9

Max 1.7 1.1 1.1 3.5 2.3 1.5 6.8 5.4 1.5 12.0 9.5 2.5 19.0 17.3 2.5

Min 1.2 0.5 0.6 2.4 1.5 0.9 5.3 4.1 1.1 10.0 8.7 1.4 12.0 9.5 1.9
80 Ave 1.4 0.6 0.7 3.0 2.1 1.0 6.3 5.0 1.4 12.0 9.8 1.9 18.0 15.9 2.3

Max 1.8 0.8 1.1 3.5 2.6 1.1 7.1 5.9 1.8 13.0 11.0 2.7 20.0 17.4 3.1

Min 1.2 0.5 0.7 2.8 1.7 0.9 5.9 4.7 1.2 11.0 9.3 1.6 18.0 16.0 2.0
90 Ave 1.5 0.7 0.8 3.2 2.2 1.0 6.7 5.3 1.4 12.0 11.0 1.8 21.0 18.5 2.3

Max 2.0 1.1 1.0 4.6 3.1 1.6 8.3 6.4 1.9 14.0 12.0 2.2 23.0 21.2 3.3

Min 1.2 0.5 0.7 2.9 1.8 1.0 6.3 4.9 1.2 12.0 10.0 1.8 21.0 19.2 2.2
100 Ave 1.4 0.7 0.8 3.4 2.3 1.1 7.2 5.6 1.6 14.0 12.0 2.1 23.0 20.5 2.6

Max 1.9 1.1 1.0 4.1 3.0 1.4 8.1 6.6 2.1 16.0 14.0 2.8 26.0 23.0 3.5

THE INVERSE COST COEFFICIENT PROBLEM 17

Table 3. Computational experiment result for the case ∅ ⊂ C̄ ⊂ C(con.)

Columns
60 70 80 90 100

Rows T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
Min 2.7 2.4 0.4 2.8 2.4 0.4 4.6 4.1 0.5 5.6 5.0 0.5 5.1 4.4 0.5

10 Ave 3.7 3.3 0.4 3.8 3.4 0.5 5.9 5.3 0.6 7.2 6.6 0.6 6.5 5.7 0.7
Max 4.9 4.5 0.7 5.3 4.9 0.6 7.9 7.2 0.8 9.0 8.5 0.8 8.5 7.5 1.1

Min 5.2 4.4 0.8 6.5 5.3 0.9 9.0 7.9 1.0 10.4 8.9 1.1 8.2 7.2 0.9
20 Ave 6.3 5.4 1.0 7.7 6.6 1.1 11.0 9.4 1.1 11.7 10.4 1.3 10.5 9.4 1.1

Max 7.4 6.3 1.3 9.2 7.8 1.4 12.0 11.0 1.8 13.1 11.6 2.0 13.5 12.6 1.6

Min 6.7 5.6 1.0 8.6 7.4 1.2 11.0 9.8 1.3 12.8 11.4 1.4 12.6 11.1 1.2
30 Ave 7.9 6.7 1.2 10.2 8.9 1.3 14.0 12.4 1.6 15.5 13.8 1.7 14.8 13.3 1.4

Max 9.5 7.9 1.7 11.7 10.4 1.7 17.0 15.3 2.4 18.3 16.4 2.7 16.6 15.2 2.1

Min 7.9 6.3 1.2 10.8 9.1 1.4 13.0 11.1 1.7 16.2 14.4 1.7 16.5 14.8 1.6
40 Ave 9.6 8.2 1.4 12.9 11.2 1.7 17.0 14.9 2.1 19.9 17.7 2.2 20.0 18.0 2.0

Max 11.7 10.1 1.8 17.5 15.3 2.7 21.0 18.1 2.8 24.8 22.0 2.8 24.8 22.3 2.8

Min 8.3 6.5 1.4 11.0 9.4 1.6 15.0 12.7 1.9 21.0 18.7 2.3 21.9 18.8 2.1
50 Ave 11.1 9.3 1.8 14.8 12.8 2.0 20.0 17.5 2.4 26.0 23.3 2.7 26.3 23.6 2.6

Max 14.8 13.2 2.6 19.1 17.3 3.5 26.0 23.4 3.3 31.5 29.2 4.1 32.3 29.7 4.2

Min 10.1 8.1 1.7 12.3 10.4 1.9 18.0 15.3 2.4 21.8 18.9 2.6 24.6 21.5 2.5
60 Ave 16.0 13.9 2.1 17.8 15.5 2.3 23.0 20.1 2.8 31.6 28.2 3.3 31.6 28.5 3.1

Max 24.7 22.8 3.2 33.0 30.3 3.2 30.0 27.6 3.6 37.9 34.7 4.5 37.9 34.9 4.6

Min 10.5 8.6 1.8 12.6 10.2 2.1 18.0 14.9 2.6 25.8 22.5 3.0 21.2 18.6 2.6
70 Ave 20.1 17.8 2.3 21.5 18.9 2.6 27.0 23.9 3.3 33.9 30.4 3.5 35.4 32.0 3.4

Max 27.8 25.1 2.9 36.5 33.6 3.4 52.0 49.1 4.4 44.3 39.0 5.3 43.8 40.1 4.4

Min 13.0 10.4 2.2 16.8 14.2 2.4 18.0 15.0 2.9 27.7 23.3 3.1 26.5 22.6 3.5
80 Ave 26.3 23.6 2.7 32.3 29.3 3.0 34.0 30.6 3.5 41.8 37.5 4.3 41.7 37.5 4.2

Max 32.3 28.8 3.6 46.0 43.4 3.6 61.0 57.1 4.5 54.3 48.5 5.8 56.3 52.1 5.7

Min 13.4 10.8 2.4 18.1 15.3 2.8 25.0 21.3 3.3 28.4 23.5 3.4 29.5 25.7 3.8
90 Ave 30.5 27.5 3.0 40.2 36.6 3.6 54.0 50.3 4.0 47.8 43.4 4.4 52.9 48.5 4.4

Max 35.8 33.3 4.5 50.3 46.4 4.8 79.0 74.8 5.2 97.6 93.8 5.5 119.0 114.0 5.2

Min 33.1 29.6 2.8 26.9 23.3 3.4 26.0 22.2 4.0 27.1 22.0 3.7 27.8 23.8 3.8
100 Ave 36.5 33.3 3.3 52.2 48.1 4.1 67.0 62.3 4.9 62.2 57.5 4.7 53.2 48.2 5.0

Max 39.8 36.0 4.5 60.3 56.2 6.0 84.0 78.6 7.1 113.1 108.0 6.3 116.0 111.0 7.3

18 S. AHMED AND Y. GUAN

Table 4. Computational experiment result for the case C̄ = C

Columns Rows gap % T1 T2 T3 Tm Iteration
Min 0.0 0.10 0.00 0.10 0.00

4 4 Ave 0.0 0.20 0.00 0.10 0.00 3
Max 0.0 0.20 0.00 0.10 0.10

Min 0.0 0.20 0.10 0.10 0.00
8 4 Ave 3.0 0.20 0.10 0.10 0.10 7

Max 23.0 0.30 0.10 0.20 0.10

Min 0.0 0.20 0.10 0.10 0.10
12 4 Ave 8.0 0.30 0.20 0.10 0.20 8

Max 23.0 0.40 0.30 0.20 0.40

Min 0.0 0.40 0.10 0.10 0.10
12 8 Ave 5.0 0.40 0.20 0.30 0.10 6

Max 29.0 0.50 0.30 0.40 0.10

Min 0.0 0.30 0.20 0.10 0.10
16 4 Ave 0.0 0.40 0.20 0.20 1.90 9

Max 0.0 0.50 0.30 0.30 4.50

Min 0.0 0.40 0.20 0.20 0.10
16 8 Ave 1.0 0.50 0.30 0.20 0.30 5

Max 3.0 0.70 0.40 0.30 0.50

Min 0.0 0.30 0.20 0.10 0.90
20 4 Ave 0.0 0.30 0.20 0.10 11.30 6

Max 0.0 0.40 0.30 0.10 25.10

Min 0.0 0.40 0.20 0.10 0.20
20 8 Ave 12.0 0.40 0.20 0.20 1.90 8

Max 20.0 0.50 0.30 0.20 4.80

THE INVERSE COST COEFFICIENT PROBLEM 19

Table 5. Computational experiment result for the case C̄ = C (cont.)

Columns Rows gap % T1 T2 T3 Tm Iterations
Min 0.0 0.40 0.20 0.20 0.20

20 12 Ave 9.0 0.50 0.30 0.20 0.40 5
Max 25.0 0.60 0.30 0.30 0.60

Min 0.0 0.30 0.30 0.10 45.40
24 4 Ave 0.0 0.40 0.30 0.10 115.70 7

Max 0.0 0.50 0.30 0.20 167.10

Min 0.0 0.30 0.20 0.10 0.90
24 8 Ave 1.0 0.40 0.30 0.20 33.80 10

Max 5.0 0.60 0.30 0.30 124.40

Min 0.0 0.40 0.30 0.20 0.30
24 12 Ave 5.0 0.50 0.30 0.20 5.50 6

Max 24.0 0.80 0.40 0.50 17.20

Min 0.0 0.40 0.30 0.10 38.30
28 4 Ave 0.0 0.50 0.30 0.20 577.20 7

Max 0.0 0.60 0.40 0.30 1032.50

Min 0.0 0.40 0.30 0.10 2.30
28 8 Ave 0.0 0.50 0.30 0.20 237.70 10

Max 0.0 0.60 0.40 0.30 1055.30

Min 0.0 0.40 0.30 0.10 0.90
28 12 Ave 0.0 0.50 0.40 0.20 44.40 9

Max 0.0 0.70 0.40 0.30 169.60

Min 0.0 0.50 0.30 0.20 0.60
28 16 Ave 6.0 0.60 0.40 0.20 4.00 5

Max 19.0 0.80 0.50 0.40 5.70

20 S. AHMED AND Y. GUAN

Table 6. Standard linear programming problems

Samples Rows of X Columns Nonzero
Brandy 221 249 2150
Degen2 445 534 4449

Bnl1 644 1175 6129
25fv47 822 1571 11127
Ganges 1310 1681 7021

Table 7. The MIP approach

Samples Rows of C MIP time
Brandy 10 3569 secs
Degen2 10 74825 secs

Bnl1 10 > 24 hrs
25fv47 10 > 24 hrs
Ganges 10 > 24 hrs

Table 8. Standard test problems

Brandy Degen2 Bnl1 25fv47 Ganges

Rows Time %† Time % Time % Time % Time %
10 Min 1.4 6.4 13.4 34.5 42.0

Ave 1.5 100 6.9 100 14.5 100 37.1 100 46.0 100
Max 1.8 7.7 16.7 40.5 48.6

20 Min 1.7 7.4 14.9 38.0 51.4
Ave 1.9 100 7.8 100 17.1 100 41.6 100 53.4 100
Max 2.1 8.4 19.3 48.0 56.9

30 Min 1.9 8.3 17.4 42.8 59.3
Ave 2.3 100 8.6 100 18.9 100 48.0 100 62.2 100
Max 3.0 8.9 20.6 53.5 66.8

40 Min 2.3 9.3 19.7 46.7 65.3
Ave 2.6 100 10.6 100 21.3 100 51.8 100 72.5 100
Max 3.0 12.7 22.8 58.5 85.6

50 Min 2.4 10.3 20.7 50.9 73.2
Ave 2.6 100 11.0 100 22.6 100 56.0 100 83.3 100
Max 3.0 12.3 24.0 63.1 92.0

60 Min 2.6 11.4 23.9 52.0 85.1
Ave 3.1 100 12.2 100 26.3 100 60.5 100 98.6 100
Max 4.9 13.5 28.1 69.8 105.6

70 Min 2.9 12.2 26.8 59.4 95.5
Ave 3.7 100 13.4 100 28.6 100 65.9 100 107.8 100
Max 4.6 14.2 31.8 72.6 129.7

80 Min 3.3 13.7 30.5 65.0 109.0
Ave 3.8 100 14.4 100 32.4 100 69.1 100 118.0 100
Max 4.3 15.9 34.8 73.1 128.5

90 Min 3.5 14.8 34.2 67.5 114.4
Ave 3.8 100 15.7 100 36.6 100 73.4 100 134.4 100
Max 4.4 16.3 41.2 78.2 153.1

100 Min 4.0 15.1 34.6 70.0 137.7
Ave 4.8 100 16.7 100 38.2 100 77.6 100 147.0 100
Max 5.9 18.7 40.1 85.5 161.9

† Percentage of samples that converged to global optimal solutions.

THE INVERSE COST COEFFICIENT PROBLEM 21

Appendix: A mixed-integer programming formulation

It is easily verified that an instance of the inverse optimal value problem (2) can
be restated as the following mixed-integer program

min
u+,u−,c,x,y

u+ + u−,

s.t. u+ − u− = πT b− z?,

c ∈ C,

Ax = b,

0 ≤ x ≤My,

M(y − e) ≤ πT A− c ≤ 0,

y ∈ {0, 1}n,

where M is a sufficiently large number and e ∈ Rn is a vector of ones. The auxiliary
variables u+ and u− are used to model the absolute value function, and the binary
variables y along with the big-M are used to model the complementary slackness
condition between the primal and dual representations of Q(c).

References

[1] R. K. Ahuja and J. B. Orlin. Inverse optimization. Operations Research, 49:771–783, 2001.
[2] F. A. Al-Khayyal. Generalized bilinear programming. Part I: Models, applications and linear

programming relaxation. European Journal of Operational Research, 60:306–314, 1992.

[3] C. Audet, P. Hansen, B. Jaumard, and G. Savard. A symmetrical linear maxmin approach
to disjoint bilinear programming. Mathematical Programming, 85:573–572, 1999.

[4] K. P. Bennett and O. L. Mangasarian. Bilinear separation of two sets in n-space. Computa-

tional Optimization and Applications, 2:207–227, 1993.
[5] O. Berman, D. I. Ingco, and A. Odoni. Improving the location of minimax facilities through

network modification. Networks, 24:31–41, 1994.

[6] D. Burton, W. R. Pulleyblank, and Ph. L. Toint. The inverse shortest paths problem with
upper bounds on shortest path costs. In Network Optimization, Pardalos et al. (eds.), Springer

Verlag, Lecture Notes in Economics and Mathematical Systems, 450:156–171, 1997.

[7] D. Burton and Ph. L. Toint. On an instance of the inverse shortest paths problem. Mathe-
matical Programming, 53:45–61, 1992.

[8] D. Burton and Ph. L. Toint. On the use of an inverse shortest paths algorithm for recovering

linearly correlated costs. Mathematical Programming, 63:1–22, 1994.
[9] S. P. Fekete, W. Hochstättler, S. Kromberg, and C. Moll. The complexity of an inverse

shortest paths problem. In Contemporary Trends in Discrete Mathematics: From DIMACS
and DIMATIA to the Future, Graham et. al. (eds), DIMACS: Series in Discrete Mathematics

and Theoretical Computer Science, 49:113–128, 1999.

[10] C. Heuberger. Inverse optimization: A survey on problems, methods, and results. To appear
in Journal of Combinatorial Optimization, 2002.

[11] H. Konno. A cutting plane algorithm for solving bilinear programs. Mathematical Program-

ming, 11:14–27, 1976.
[12] NETLIB. LP Test Problems. www-fp.mcs.anl.gov/otc/Guide/TestProblems/LPtest/.

[13] G. Paleologo and S. Takriti. Bandwidth trading: A new market looking for help from the OR

community. AIRO News, VI(3):1–4, 2001.
[14] H. D. Sherali and C. M. Shetty. A finitely convergent algorithm for bilinear programming

problem using polar cuts and disjunctive face cuts. Mathematical Programming, 19:14–31,

1980.
[15] T. V. Thieu. A note on the solution of bilinear problems by reduction to concave minimization.

Mathematical Programming, 41:249–260, 1988.
[16] H. Vaish and C. M. Shetty. A cutting plane algorithm for the bilinear programming problem.

Naval Research Logistics Quarterly, 24:83–94, 1977.

22 S. AHMED AND Y. GUAN

[17] D. J. White. A linear programming approach to solving bilinear programs. Mathematical

Programming, 56:45–50, 1992.

[18] J. Zhang and Z. Liu. Calculating some inverse linear programming problems. Journal of
Computational and Applied Mathematics, 72:261–273, 1996.

[19] J. Zhang and Z. Liu. A further study on inverse linear programming problems. Journal of

Computational and Applied Mathematics, 106:345–359, 1999.
[20] J. Zhang, Z. Liu, and Z. Ma. Some reverse location problems. European Journal of Operational

Research, 124:77–88, 2000.

School of Industrial & Systems Engineering, Georgia Institute of Technology, 765
Ferst Drive, Atlanta, GA 30332.

