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Abstract

The standard Schur complement equation based implementation of interior-point
methods for second order cone programming may encounter stability problems in the
computation of search directions, and as a consequence, accurate approximate optimal
solutions are sometimes not attainable. Based on the eigenvalue decomposition of the
(1, 1) block of the augmented equation, a reduced augmented equation approach is
proposed to ameliorate the stability problems. Numerical experiments show that the
new approach can achieve much more accurate approximate optimal solutions than the
Schur complement equation based approach.
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1 Introduction

A second order cone programming (SOCP) problem is a linear optimization problem over a
cross product of second order convex cones. In [15], an extended list of application problems
are shown to be SOCP problems. In particular, linear programming (LP) problem, and
convex quadratically constrained quadratic programming (QCQP) are both subclasses of
SOCP. SOCP itself is a subclass of semidefinite programming (SDP). SOCP has since found
many more applications, notably in the area of filter design [5, 21] and in limit analysis of
collapses of solid bodies [6]. For a comprehensive introduction to SOCP, we refer the reader
to the paper by Alizadeh and Goldfarb [1].
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In theory, SOCP problems can be solved as SDP problems. However it is far more
efficient computationally to solve SOCP problems directly. Global polynomial convergence
results of interior-point methods (IPMs) for SOCP have been well established; see [16] and
the references therein. But there are few research works published on the implementation
of IPMs for solving SOCP, or on methods for solving an SOCP efficiently and stably to
obtain highly accurate approximate optimal solutions. The main objective of this paper is
to propose a method that can solve an SOCP to high accuracy, but with comparable, or
moderately higher cost than the standard IPMs employing the Schur complement equation
(SCE) approach.

Given a column vector xi, we will write the vector as xi = [x0
i ; x̄i] with x0

i being the first
component and x̄i being the vector consisting of the remaining components. Given square
matrices P,Q, the notation [P ; Q] means that Q is appended to the last row of P ; and
diag(P,Q) denotes the block diagonal matrix with P,Q as its diagonal blocks. Throughout
this paper, ‖ · ‖ denotes the matrix 2-norm or vector 2-norm, unless otherwise specified. For
a given matrix M , we let λmax(M) and λmin(M) be the largest and smallest eigenvalues of
M in magnitude, respectively. The condition number of a matrix M (not necessarily square)
is the number κ(M) = σmax(M)/σmin(M), where σmax(M) and σmin(M) are the largest and
smallest singular values of M , respectively. We use O(µ) to denote a quantity that can be
bounded by a constant times µ, and Θ(µ) to denote that there exist two positive constants
c1, c2 such that c1µ ≤ Θ(µ) ≤ c2µ.

We consider the following standard primal and dual SOCP problems:

(P) min cT
1 x1 + cT

2 x2 + · · · + cT
NxN

s.t. A1x1 + A2x2 + · · · + ANxN = b

xi º 0,

(D) max bT y

s.t. AT
i y + zi = ci, i = 1, . . . , N

zi º 0,

(1)

where Ai ∈ IRm×ni , ci, xi, zi ∈ IRni , i = 1, . . . , N , and y ∈ IRm. The constraint xi º 0 is a
second order cone constraint defined by x0

i ≥ ‖x̄i‖. In particular, if the cone dimension ni is
1, then the constraint xi º 0 is simply the standard non-negativity constraint xi ≥ 0, and
such a variable is called a linear variable.

For convenience, we define

A = [A1 A2 · · · AN ] , c = [c1 ; c2 ; · · · ; cN ] ,

x = [x1 ; x2 ; · · · ; xN ] , z = [z1 ; z2 ; · · · ; zN ] , n =
∑N

i=1 ni.

Throughout this paper, the notation x º 0 (x Â 0) is used to mean that each xi is in (the
interior of) the ith second order cone.
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The perturbed KKT conditions of the primal-dual systems (1) are:

Ax = b (primal feasibility)

AT y + z = c (dual feasibility)

xi ◦ zi = νei, i = 1, . . . , N, (perturbed complementary)

xi, zi º 0,

(2)

where ei is the first unit vector in IRni and ν is a positive parameter that is to be driven to
0 explicitly. Here

xi ◦ zi = [xT
i zi ; x0

i z̄i + z0
i x̄i].

In this paper, we will assume that A has full row rank, and that (P) and (D) in (1) are
strictly feasible. Under these assumptions, as ν varies, the solutions to the perturbed KKT
conditions (2) form a path (known as the central path) in the interior of the primal-dual
feasible region, and as ν gradually reduces to 0, the path converges to an optimal solution
of the primal and dual SOCP problems.

At each iteration of an IPM, the Newton equation associated with (2) needs to be solved.
By performing block eliminations, one can either solve a system of linear equations of size m+
n or one of size m. These linear systems are known as the augmented and Schur complement
equations (SCE), respectively. Currently, most implementations of IPMs [3, 22, 26] are based
on solving the SCE since it has the obvious advantage of being smaller in size as well as being
symmetric positive definite. However, as we shall see in section 3, the coefficient matrix in
the SCE can be severely ill-conditioned when ν is close to 0, and this imposes a limit on
how accurately one can solve an SOCP problem. In the case of LP, the ill-conditioning
of the augmented equation was analyzed by Wright [29, 30]. Under certain assumptions
including nondegeneracy, the computed search directions from the augmented equation in
LP are shown to be sufficiently accurate for the IPM to converge to high accuracy. The
structure of the ill-conditioning of the SCE arising from LP was analyzed in [14], and a
stablization method based on performing Gaussian elimination with a certain pivoting order
was proposed to transform the SCE into a better conditioned linear system of equations.

However, the ill-conditioning of the augmented equation and SCE in nonlinear conic
programming seems to be much more complicated than that of LP. The potential numerical
difficulties posed by the ill-conditioned SCE in SOCP were recognized by developers of solvers
for SOCP such as [3, 4], [24], and [26]. It was also recognized by Goldfarb and Scheinberg [10]
and that motivated them to propose and analyze a product-form Cholesky factorization for
the Schur complement matrix (the sum of a sparse symmetric positive definite matrix and a
possibly dense low rank matrix) in order to compute a stable Cholesky factor. Subsequently,
Sturm [24] implemented the product-form Cholesky factorization in his code SEDUMI to
solve the SCE arising at each iteration of a homogeneous self-dual (HSD) IPM. In addi-
tion, SEDUMI also employed sophisticated techniques to minimize numerical cancellations
when computing the SCE and its factorization [24]. These sophisticated techniques typically
greatly improve the stability of the SCE approach, but as we will see in Section 4, for certain
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extreme cases, they do not entirely ameliorate the numerical difficulties resulting from the
inherently ill-conditioned SCE.

The IPM code SEDUMI differs from standard infeasible interior-point methods in that
it solves the homogeneous self-dual (HSD) embedding model. A natural question to ask is
whether SEDUMI’s unusually good performance arises from the inherent structure of the
HSD model itself or from the sophisticated numerical techniques it uses in solving the SCE
(or both). For a certain class of SOCPs with no strictly feasible primal/dual points, we
show numerically in Section 4 that SEDUMI’s superior performance can be explained by the
structure of the HSD model itself. For some SOCPs with strictly feasible points, we shall
also see in Section 4 that the sophisticated numerical techniques sometimes may offer only
limited improvement in the attainable accuracy when compared to simpler technique used
to solve the SCE.

Herein we propose a method to compute the search directions based on a reduced aug-
mented equation that is derived by applying block row operations to the augmented equa-
tion, together with appropriate partitioning of the eigen-space of its (1,1) block. The reduced
augmented equation is generally much smaller in size compared to the original augmented
equation, and numerical experiments show that it can generally be solved reasonably effi-
ciently by a judicious choice of symmetric indefinite system solvers together with a careful
construction of the reduced augmented matrix by properly preserving the sparsity in the
SOCP data. Our numerical results show that reduced augmented equation based IPMs are
computationally more expensive (but not by a large factor) than SCE based IPMs. However,
our reduced augmented equation based IPMs are superior to SCE based IPMs in that the
former can usually compute approximate optimal solutions that are much more accurate
than the latter before numerical difficulties are encountered. For example, for the schedxxx

SOCP problems selected from the DIMACS library [18], our reduced augmented equation
based IPMs are able to compute approximate optimal solutions with accuracies of 10−9 or
better, while the SCE based IPMs (SDPT3 version 3.1 and SEDUMI) can only compute
solutions with accuracies of 10−3 or 10−4 in some cases.

The paper is organized as follows. In the next section, we introduce the augmented and
Schur complement equations from which the search direction in each IPM iteration may be
computed. In section 3, we present an analysis of the conditioning and the growth in the
norm of the Schur complement matrix and relate that to the deterioration of the primal
infeasibility as the interior-point iterates approach optimality. In section 4, we present
numerical results obtained from two different SCE-based primal-dual IPMs. In section 5,
we derive a reduced augmented equation based on the augmented equation and a certain
partitioning of the eigenvalues of its (1,1) block. In section 6, we analyze the conditioning
of the reduced augmented matrix. In section 7, we discuss major computational issues for
the efficient solution of the reduced augmented equation. Numerical results for an IPM with
search directions computed from the reduced augmented equation are presented in section
8. We present our conclusion in section 9.
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2 The augmented and Schur complement equations

In this section, we present the linear systems that need to be solved to compute the search
direction in each IPM iteration.

For xi, we define

aw(xi) =




x0
i x1

i · · · xni

i

x1
i x0

i

...
. . .

xni

i x0
i




=


 x0

i x̄T
i

x̄i x0
i I


 , γ(xi) =

√
(x0

i )
2 − ‖x̄i‖2. (3)

For a given ν, the perturbed KKT conditions (2) in matrix form are:

Ax = b

AT y + z = c (4)

aw(x) aw(z)e0 = νe0,

where e0 = [e1 ; e2 ; · · · ; eN ]. The matrix aw(x) = diag(aw(x1), · · · ,aw(xN)) is a block
diagonal matrix with aw(x1), · · · ,aw(xN) as its diagonal blocks. The matrix aw(z) is
defined similarly.

For reasons of computational efficiency that we will explain later, in most IPM imple-
mentations for SOCP, a block diagonal scaling matrix is usually applied to the perturbed
complementarity equation in (4). In this paper, we apply the Nesterov-Todd (NT) scaling
matrix [26] to produce the following equation:

aw(Fx) aw(F−1z)e0 = νe0, (5)

where F = diag(F1, · · · , FN) is chosen such that

Fx = F−1z =: v. (6)

For details on the conditions that F must satisfy and other scaling matrices, we refer the
reader to [16].

Let

fi =




f 0
i

f̄i


 :=

1√
2
(
γ(xi)γ(zi) + xT

i zi

)




1

ωi

z0
i + ωix

0
i

1

ωi

z̄i − ωix̄i


 ,

where ωi =
√

γ(zi)/γ(xi). (Note that γ(fi) = 1.) The precise form of Fi is given by

Fi = ωi




f 0
i f̄T

i

f̄i I +
f̄if̄

T
i

1 + f 0
i


 . (7)
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Let µ = xT z/N be the normalized complementarity gap. The Newton equation associated
with the perturbed KKT conditions (4) with NT scaling is given by




A 0 0

0 AT I

V F 0 V F−1







∆x

∆y

∆z


 =




rp

rd

rc


 , (8)

where

V = aw(v), rp = b − Ax, rd = c − z − AT y, rc = σµe0 − V v.

Note that we have chosen ν to be ν = σµ for some parameter σ ∈ (0, 1).
The solution (∆x, ∆y, ∆z) of the Newton equation (8) is referred to as the search direc-

tion. In each iteration of an IPM, solving (8) for the search direction is computationally the
most expensive step. Observe that by eliminating ∆z, the Newton equation (8) reduces to
the so-called augmented equation:


 −F 2 AT

A 0





 ∆x

∆y


 =


 rx

rp


 , (9)

where rx = rd − FV −1rc.
The augmented equation can further be reduced in size by eliminating ∆x in (9) to

produce the SCE:

AF−2AT
︸ ︷︷ ︸

M

∆y = ry := rp + AF−2rx = rp + AF−2rd − AF−1V −1rc. (10)

The coefficient matrix M = AF−2AT in (10) is known as the Schur complement matrix. It is
symmetric and is positive definite as long as x, z Â 0. The search direction corresponding to
(8) always exists as long as x, z Â 0. Note that if the scaling matrix F is not applied to the
perturbed complementarity equation in (4), the corresponding Schur complement matrix
would be Aaw(z)−1

aw(x) AT , which is a nonsymmetric matrix. It is well known that
solving a linear system involving such a sparse nonsymmetric matrix is usually much more
expensive than one involving a sparse symmetric positive definite matrix. Furthermore, the
nonsymmetric coefficient matix is not guaranteed to be nonsingular even when x, z Â 0. This
explains why a suitable scaling matrix is usually applied to the perturbed complementarity
equation in (4) before computing the search direction.

In its simplest form, most current implementations of IPMs compute the search direction
(∆x, ∆y, ∆z) based on the SCE (10) via the following procedure.

Simplified SCE approach:

(i) Compute the Schur complement matrix M and the vector ry;
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(ii) Compute the Cholesky or sparse Cholesky factor of M ;

(iii) Compute ∆y by solving 2 triangular linear systems involving the Cholesky factor;

(iv) Compute ∆z from the equation ∆z = rd − AT ∆y;

(v) Compute ∆x from the equation ∆x = F−2(AT ∆y − rx).

We should note that various heuristics to improve the numerical stability of the above simpli-
fied SCE approach are usually incorporated in the actual implementations. We will describe
in section 4 variants of the simplified SCE approach implemented in two publicly available
SOCP solvers, SDPT3, version 3.1 [27] and SEDUMI, version 1.05 [23].

The advantage of using the SCE is that it is usually a much smaller system compared to
the augmented equation (9) or the Newton equation (8). Furthermore, the Schur complement
matrix has the highly desirable property of being symmetric positive definite. In contrast, the
coefficient matrix in (9) is symmetric but indefinite while that of (8) is nonsymmetric. The
SCE is preferred also because it can be solved very efficiently via Cholesky or sparse Cholesky
factorization of M , and there are highly efficient and machine optimized (yet user friendly)
sparse Cholesky codes readily available, even in the public domain, the prime example being
the sparse Cholesky codes of Ng and Peyton [17].

3 Conditioning of M and the deterioration of primal

infeasibility

Despite the advantages of the SCE approach described in the last section, the SCE is how-
ever, generally severely ill-conditioned when the iterates (x, y, z) approach optimality, and
this typically causes numerical difficulties. The most common numerical difficulty one may
encounter in practice is that the Schur complement matrix M is numerically indefinite, al-
though in exact arithmetic M is positive definite. Furthermore, the computed solution ∆y
from (10) may also be very inaccurate in that the residual norm ‖ry −M∆y‖ is much larger
than the machine epsilon, and this typically causes the IPM to stall.

In this section, we will analyze the relationship between the norm ‖M‖, the residual
norm ‖ry − M∆y‖ of the computed solution ∆y, and the primal infeasibility ‖rp‖, as the
interior-point iterates approach optimality.

3.1 Eigenvalue decomposition of F
2

To analyze the norm ‖M‖ and the conditioning of M , we need to know the eigenvalue
decomposition of F 2.

Recall that F = diag(F1, · · · , FN). Thus to find the eigenvalue decomposition of F 2, it
suffices to find the eigenvalue decomposition of F 2

i , where Fi is the matrix in (7). By noting
that for cones of dimensions ni ≥ 2, F 2

i can be written in the form

F 2
i = ω2

i

(
I + 2(fif

T
i − eie

T
i )

)
,
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the eigenvalue decomposition of F 2
i can readily be found. (The case where ni = 1 is easy,

and F 2
i = zi/xi.) Without going through the algebraic details, the eigenvalue decomposition

of F 2
i is

F 2
i = QiΛiQ

T
i , (11)

where

Λi = ω2
i diag

(
(f 0

i − ‖f̄i‖)2, (f 0
i + ‖f̄i‖)2, 1, · · · , 1

)
, (12)

Qi =




− 1√
2

+
1√
2

0 · · · 0

1√
2

gi
1√
2

gi q3
i · · · qni

i


 , (13)

with

gi := [g0
i ; ḡi] = f̄i/‖f̄i‖ ∈ IRni−1. (14)

Notice that the first eigenvalue is the smallest and the second is the largest since γ(fi) = 1.
The set {q3

i , · · · , qni

i } is an orthonormal basis of the subspace {u ∈ IRni−1 : uT gi = 0}.
To construct such an orthonormal basis, one may first construct the (ni − 1) × (ni − 1)
Householder matrix Hi [11] associated with the vector gi, then the last ni − 2 columns of Hi

is such an orthonormal basis. The precise form of Hi will be given later in section 6.

3.2 Analysis on ‖M‖ and the conditioning of M

Here we will analyze how fast the norm ‖M‖ and the condition number of M grow when µ ↓ 0,
i.e., when the interior-point iterates approach an optimal solution (x∗, y∗, z∗). To simplify
the analysis, we will analyze ‖M‖ and the conditioning of M under the assumption that
strict complementarity holds at the optimal solution. Unless otherwise stated, we assume
that ni ≥ 2 in this subsection.

Referring to (2), strict complementarity [2] means for each ith pair of optimal primal and
dual solutions, x∗

i and z∗i , we have γ(x∗
i ) + ‖z∗i ‖ and γ(z∗i ) + ‖x∗

i ‖ both positive. In other
words, (a) either γ(x∗

i ) = 0 or z∗i = 0, but not both; and (b) either γ(z∗i ) = 0 or x∗
i = 0, but

not both. Thus, strict complementarity fails if for some i, either z∗i is at the origin and x∗
i is

on the boundary of the cone, or x∗
i is at the origin and z∗i is on the boundary of the cone.

Under the assumption that strict complementarity holds at the optimal solution, we have
the following three types of eigenvalue structures for F 2

i when xi ◦ zi = µei and µ is small,
following the classification in [10]. Note that xT

i zi = µ.

Type 1 solution: x∗
i Â 0, z∗i = 0. In this case, γ(xi) = Θ(1), γ(zi) = Θ(µ), and ωi = Θ(

√
µ).

Also, f 0
i , ‖f̄i‖ = Θ(1), implying that all the eigenvalues of F 2

i are Θ(µ).
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Type 2 solution: x∗
i = 0, z∗i Â 0. In this case, γ(xi) = Θ(µ), γ(zi) = Θ(1), and ωi =

Θ(1/
√

µ). Also, f 0
i , ‖f̄i‖ = Θ(1), implying that all the eigenvalues of F 2

i are Θ(1/µ).

Type 3 solution: γ(x∗
i ) = 0, γ(z∗i ) = 0, x∗

i , z
∗
i 6= 0. In this case, γ(xi), γ(zi) = Θ(

√
µ), and

ωi = Θ(1). This implies that f 0
i , ‖f̄i‖ = Θ(1/

√
µ). Thus the largest eigenvalue of F 2

i

is Θ(1/µ) and by the fact that γ(fi) = 1, the smallest eigenvalue of F 2
i is Θ(µ). The

rest of the eigenvalues are Θ(1).

Let D be the diagonal matrix consisting of the eigenvalues of F 2 sorted in ascending order.
Then we have F 2 = QDQT , where the columns of Q are the sorted eigenvectors of F 2. Let D
be partition into D = diag(D1, D2, D3) such that diag(D1) consists of all the small eigenval-
ues of F 2 of order Θ(µ), and diag(D2), diag(D3) consist of the remaining eigenvalues of order
Θ(1) and Θ(1/µ), respectively. We also partition the matrix Q as Q = [Q(1) , Q(2) , Q(3)].
Then Ã := AQ is partitioned as Ã = [Ã1 , Ã2 , Ã3] = [AQ(1) , AQ(2) , AQ(3)]. With the
above partitions, we can express M as

M =
3∑

i=1

ÃiD
−1
i ÃT

i = Ã1D
−1
1 ÃT

1 + O(1). (15)

Lemma 3.1 If there are Type 1 or Type 3 solutions, then ‖M‖ = Θ(1/µ)‖A‖2. In addition,
if Ã1 does not have full row rank, then ‖M−1‖ ≥ Θ(1)/σ2

min(A), where σmin(A) is the smallest
singular value of A.

Proof. From (15), we have ‖M‖ = Θ(1/µ)‖Ã1‖2. Since ‖Ã1‖ ≤ ‖A‖‖Q(1)‖ = ‖A‖, the
required result follows. If Ã1 does not have full row rank, then the component matrix
Ã1D

−1
1 ÃT

1 of M is singular, and thus the smallest eigenvalue of M , λmin(M), is of the order
at most Θ(1)σ2

min(A), which implies that ‖M−1‖ = 1/λmin(M) ≥ Θ(1)/σ2
min(A).

Remark 3.1 (a) Lemma 3.1 implies that the growth in ‖M‖ is caused by F 2 having small
eigenvalues of the order Θ(µ).

(b) If F 2 has eigenvalues of the order Θ(µ) and Ã1 does not have full row rank, then κ(M) ≥
Θ(1/µ)κ(A)2. On the other hand, if Ã1 has full row rank (which implies that the number of
eigenvalues of F 2 of order Θ(µ) is at least m), then κ(M) = Θ(1)κ(A)2.

(c) If there are only Type 2 solutions (thus x∗ = 0 and z Â 0), then ‖M‖ = Θ(µ)‖A‖2. In
this case, we also have κ(M) = Θ(1)κ(A)2.

Based on the results in [2], we have the following theorem concerning the rank of Ã1 and
Ã2. We refer the reader to [2] for the definitions of primal and dual degeneracies.

Theorem 3.1 Suppose that (x∗, y∗, z∗) satisfies strict complementarity. If the primal opti-

mal solution x∗ is primal nondegenerate, then
[
Ã1 , Ã2

]
has full row rank when µ is small. If

the dual optimal solution (y∗, z∗) is dual nondegenerate, then Ã1 has full column rank when
µ is small.
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Proof. The result follows from Theorems 20 and 21 in [1].

Remark 3.2 From Remark 3.1, we see that if Ã1 does not have full row rank or if (x∗, y∗, z∗)
does not consist exclusively of Type 2 solutions, then M is ill-conditioned in that κ(M) ≥
Θ(1/µ)κ(A)2. Thus even if (x∗, y∗, z∗) satisfies strict complementarity, and is primal and
dual nondegenerate, the associated Schur complement matrix M does not necessarily have
bounded condition number when µ ↓ 0, unless Ã1 has full row rank. In fact, κ(M) may grow
at least proportional to Θ(1/µ)κ(A)2. In contrast, for a linear programming problem (for
which all the cones have dimensions ni = 1), primal and dual nondegeneracy imply that Ã1

has both full column and row rank, and thus its associated Schur complement matrix M has
bounded condition number when µ ↓ 0.

3.3 Analysis of the deterioration of primal infeasibility

Although Cholesky factorization is stable for any symmetric positive definite matrix, the
conditioning of the matrix may still affect the accuracy of the computed solution of the
SCE. It is a common phenomenon that for SOCP, the accuracy of the computed search
direction deteriorates as µ decreases due to an increasingly ill-conditioned M . As a result of
this loss of accuracy in the computed solution, the primal infeasibility ‖rp‖ typically increases
or stagnates when the IPM iterates approach optimality.

With the analysis of ‖M‖ given in the last subsection, we will now analyze why the
primal infeasibility may deteriorate or stagnate as interior-point iterations progress.

Lemma 3.2 Suppose at the kth iteration, the residual vector in solving the SCE (10) is

ξ = ry − M∆y.

Assuming that ∆x is computed exactly via the equation ∆x = F−2(AT ∆y − rx), then the
primal infeasibility for the next iterate x+ = x + α∆x, α ∈ [0, 1], is given by

r+
p := b − Ax+ = (1 − α)rp + αξ.

Proof. We have

r+
p = (1 − α)rp − α(rp − A∆x).

Now A∆x = AF−2(AT ∆y − rx) = M∆y − ry + rp, thus rp −A∆x = ry −M∆y = ξ and the
lemma is proved.

Remark 3.3 (a) In Lemma 3.2, we assume for simplicity that the component direction ∆x is
computed exactly. In finite precision arithmetic, errors will be introduced in the computation
of ∆x and that will also worsen the primal infeasibility r+

p of the next iterate in addition to
‖ξ‖.
(b) Observe that if the SCE is solved exactly, i.e., ξ = 0, then ‖r+

p ‖ = (1 − α)‖rp‖, and the
primal infeasibility should decrease monotoinically.
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Lemma 3.2 implies that if the SCE is not solved to sufficient accuracy, then the inaccu-
rate residual vector ξ may worsen the primal infeasibility of the next iterate. By standard
perturbation error analysis, the worst-case residual norm of ‖ξ‖ can be shown to be propor-
tional to ‖M‖‖∆y‖ times the machine epsilon u. The precise statement is given in the next
lemma.

Lemma 3.3 Let u be the machine epsilon. Given a symmetric positive definite matrix
B ∈ IRn×n with (n + 1)2u ≤ 1/3, if Cholesky factorization is applied to B to solve the
linear system Bx = b and produced a computed solution x̂, then (B + ∆B)x̂ = b, for some
∆B with ‖∆B‖ satisfying the following inequality:

‖∆Bx̂‖ ≤ 3(n + 1)2u‖B‖‖x̂‖.

Thus

‖b − Bx̂‖ = ‖∆Bx̂‖ ≤ O(n2)u‖B‖‖x̂‖.

Proof. By Theorem 10.3 and 10.4, and their extensions in [13], ‖∆B‖ ≤ 2nγn+1(1 −
nγn+1)

−1‖B‖, where γn+1 = (n+1)u
1−(n+1)u

. It is easy to show that nγn+1 ≤ 1/3 and that

2nγn+1(1 − nγn+1)
−1 ≤ 3(n + 1)2u, and the required result follows.

Remark 3.4 Lemma 3.3 implies that if ‖B‖ is large, then in the worst case scenario, the
residual norm ‖b − Bx̂‖ is expected to be proportionately large.

By Lemma 3.2 and the application of Lemma 3.3 to the SCE, we expect in the worst case
that the primal infeasibility ‖rp‖ to grow at some level that is proportional to ‖M‖‖∆y‖u.
We end this section by presenting a numerical example to illustrate the relation between ‖rp‖
and ‖M‖‖∆y‖u in the last few iterations of an SCE based IPM when solving the random
SOCP problem rand200 800 1 (described in section 4).

The IPM we use is the primal-dual path-following method with Mehrotra predictor-
corrector implemented in the Matlab software SDPT3, version 3.1 [27]. But we should
mention that to be consistent with the analysis presented in this section, the search directions
are computed based on the simplifed SCE approach presented in section 2, not the more
sophisticated variant implemented in SDPT3.

Table 1 shows the norms ‖M‖, ‖M−1‖, ‖ry −M∆y‖ when solving the SCE (10). For this
problem, ‖M‖ and (hence κ(M)) grows like Θ(1/µ) because its optimal solutions x∗

i , z
∗
i are

all of Type 3. The fifth and sixth columns in the table show that the residual norm in solving
the SCE and ‖rp‖ deteriorate as ‖M‖ increases. This is consistent with the conclusions of
Lemmas 3.2 and 3.3. The last column further shows that ‖rp‖ increases proportionately to
‖M‖‖∆y‖u, where the machine epsilon u is approximately 2.2 × 10−16.

Figure 1 illustrates the phenomenon graphically for the SOCP problems rand200 800 1

and sched 50 50 orig. The curves plotted correspond to the relative duality gap (relgap),
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and the relative primal and dual infeasibility (p-inf and d-inf), defined by

relgap =
|cT x − bT y|

1 + (|cT x| + |bT y|)/2 , p-inf =
‖rp‖

1 + ‖b‖ , d-inf =
‖rd‖

1 + ‖c‖ . (16)
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Figure 1: Convergence history of the SOCPs problems rand200 800 1 and sched 50 50 orig

when solved by the SCE based IPM in SDPT3, version 3.1. Notice that the relative primal
infeasibility p-inf deteriorates as interior-point iterates approach optimality, while relgap

may stagnate.

4 Computational results of two SCE based IPMs on

solving some SOCP problems

Here we present numerical results for the SCE based IPMs implemented in the public domain
solvers, SDPT3, version 3.1 [27], and SEDUMI, version 1.05 [23]. In this paper, all the
numerical results are obtained from a Pentium IV 2.4GHz PC with 1G RAM running a
Linux operating system.

Before we analyze the performance of the SCE based IPMs implemented in SDPT3 and
SEDUMI, we must describe the methods employed to solve the SCE in both solvers. The
IPM in SDPT3 is an infeasible path-following method that attempts to solve the central
path equation based on (2), even if it does not exist. It solves the resulting SCE in each
IPM iteration as follows. First it computes the Cholesky or sparse Cholesky factor of the
Schur complement matrix M . Then the computed Cholesky factor is used to construct a
preconditioner within a preconditioned symmetric quasi-minimal residual (PSQMR) Krylov
subspace iterative solver employed to solve the SCE for ∆y. The computations of ∆z and
∆x are the same as in the simplified SCE approach presented in section 2.
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Table 1: The norm of the Schur complement matrix and ‖rp‖ associated with the last few
IPM iterations for solving the SOCP problem rand 200 800 1.

Iter ‖M‖ ‖M−1‖ µ := xT z/N ‖∆y‖ ‖ry − M∆y‖ ‖rp‖
‖rp‖

‖M‖‖∆y‖u
6 4.0e+11 2.7e+02 5.1e-04 2.2e+00 4.2e-05 9.3e-05 4.8e-01

7 3.4e+11 3.8e+02 8.1e-05 3.9e-01 7.1e-06 1.4e-05 4.8e-01

8 1.4e+12 5.6e+02 7.8e-06 8.4e-02 4.2e-06 5.0e-06 1.9e-01

9 1.8e+13 4.9e+02 9.2e-07 2.0e-02 8.7e-06 7.1e-06 8.9e-02

10 2.9e+14 2.3e+02 1.2e-07 2.7e-03 2.5e-05 1.8e-05 1.0e-01

11 3.8e+15 4.0e+01 1.1e-08 5.1e-04 4.9e-05 6.1e-05 1.4e-01

12 1.9e+17 6.8e+00 1.2e-09 9.4e-05 2.2e-04 1.4e-04 3.5e-02

13 1.2e+18 3.8e+01 1.8e-10 2.5e-03 3.7e-02 9.0e-04 1.4e-03

SEDUMI is a very well implemented SCE based public domain solver for both SOCP
and SDP. The IPM in SEDUMI is not based on the central path for the original primal
and dual problems (1), but that of the homogeneous self-dual (HSD) model of Ye, Todd,
and Mizuno [31], by introducing 3 new auxiliary variables. The HSD model has the nice
theoretical property that a strictly feasible primal and dual point always exists even if the
original problems do not have one, and as a result the central path for the HSD model always
exists, which is not necessarily true for the original problems in (1). As a consequence of
this nice property, its solution set is always bounded. The same cannot be said for the
original problems. For a problem that models an unrestricted variable by the difference of 2
nonnegative variables, the solution set for the original primal SOCP (P) is unbounded, and
the feasible region of (D) has an empty interior, implying that the primal-dual central path
does not exist. The HSD model, on the other hand, does not suffer from these defects. Thus
the IPM in SEDUMI will not feel the effect of the unbounded solution set and nonexistence
of the central path in the original problems in (1), but the effect of the unboundedness of
the solution set on the infeasible path-following IPM in SDPT3 can be substantial and it
often causes serious numerical difficulties.

The computation of the search direction in SEDUMI is based on the SCE associated
with the HSD model. But it employs sophisticated numerical techniques to minimize nu-
merical cancellations in its implementation of the SCE approach [24]. It computes the Schur
complement matrix in the scaled space (called v-space) framework, and transform back and
forth between quantities in the scaled and original spaces. It also employs a the product-
form Cholesky (PFC) factorization [10] to factorize the Schur complement matrix. If the
computed PFC factor is deemed sufficiently stable, SEDUMI will proceed to compute ∆y
by solving two triangular linear systems involving the PFC factor; otherwise, it will solve
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the SCE by using the preconditioned conjugate gradient iterative method with a precondi-
tioner constructed from the PFC factor. Note that the PFC factorization has been shown
in [10] to produce stable triangular factors for the Schur complement matrix if the iterates
are sufficiently close to the central path and strict complementarity holds at optimality. It is
important to note, however, that using a stable method to solve the SCE does not necessarily
imply that the computed direction (∆x, ∆y, ∆z) based on the SCE approach will produce a
small residual norm with respect to the original linear system (8); see Theorem 3.2 of [12]
for the case of SDP.

We tested the SCE based IPMs in SDPT3 and SEDUMI on the following set of SOCP
problems.

(a) The first set consists of 18 SOCPs collected by Pataki and Schmieta [18], which are
available at http://dimacs.rutgers.edu/Challenges/Seventh/Instances/

(b) The second set consists of 10 SOCPs from the FIR Filter Optimization Toolbox of
Scholnik and Coleman, available at http://www.csee.umbc.edu/~dschol2/opt.html

(c) The last set consists of 8 randomly generated SOCPs. The set of random problems
randxxx are generated to be feasible and dominated by Type 3 solutions. For each
problem, the constraint matrix A has the form V1ΣV T

2 , where V1, V2 are matrices whose
columns are orthonormal, and Σ is a diagonal matrix with random diagonal elements
drawn from the standard normal distribution, but a few of the diagonal elements are
set to 105 to make A moderately ill-conditioned.

The statistics for the test problems are shown in Table 2. In the table, column “S” indicates
the source of the problems: “D” stands for SOCP problems from the DIMACS library [18].
“F” stands for problems from the filter optimization toolbox [21]. “R” stands for randomly
generated problems.

In our experiments, we stop the IPM iteration in SDPT3 when any of the following
situations are encountered:

1. max(relgap, p-inf, d-inf) ≤ 10−10;

2. incurable numerical difficulties (such as the Schur complement matrix being numeri-
cally indefinite) occurs;

3. p-inf has deteriorated to the extent that p-inf > relgap.

SEDUMI also has a similar sets of stopping conditions but based on the variables of the HSD
model. In SEDUMI, the dual conic constraints are not strictly enforced, thus the measure
d-inf for SEDUMI is defined to be d-inf = max(‖rd‖, ‖z−‖), where ‖z−‖ measures how
much the dual conic constraints are violated.

We define

φ := log10(max{relgap, p-inf, d-inf}). (17)
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Table 3 shows the numerical results for SDPT3 and SEDUMI on 36 SOCP problems.
Observe that the accuracy exponent (φ) for many of the problems fall short of the targeted
exponent of −10. For the sched-xxx problems, the accuracy exponents attained are es-
pecially poor, only −3 or −4 in some cases. We should mention that the results shown
in Table 3 are not isolated to just the IPMs implemented in SDPT3 or SEDUMI, similar
results are also observed in the SCE based IPM implemented by Andersen et al. [3]. For
example, for the DIMACS SOCP problem sched 50 50 orig, the IPM in [3] reported the
values 0.9 and 0.002 for the maximum violation of certain primal bound constraints and the
dual constraints, respectively.

Table 2: Problem statistics of SOCP problems. An entry of the
form “793x3” in the ”SOC blk” column means that there are 793
3-dimensional second order cones. For the numbers in the ”LIN
blk” column, they indicate the number of linear variables, or 1-
dimensional cones.

Problem S m SOC blk LIN blk

nb D 123 793x3 4

nb L1 D 915 793x3 797

nb L2 D 123 1x1677, 838x3 4

nb L2 bessel D 123 1x123, 838x3 4

nql30 D 3680 900x3 3602

nql60 D 14560 3600x3 14402

nql180 D 130080 32400x3 129602

qssp30 D 3691 1891x4 2

qssp60 D 14581 7381x4 2

qssp180 D 130141 65341x4 2

sched 50 50 orig D 2527 1x2474, 1x3 2502

sched 100 50 orig D 4844 1x4741, 1x3 5002

sched 100 100 orig D 8338 1x8235, 1x3 10002

sched 200 100 orig D 18087 1x17884, 1x3 20002

sched 50 50 scaled D 2526 1x2475 2502

sched 100 50 scaled D 4843 1x4742 5002

sched 100 100 scaled D 8337 1x8236 10002

sched 200 100 scaled D 18086 1x17885 20002

firL1Linfalph F 3074 5844x3 0

firL1Linfeps F 7088 4644x3 1

firL1 F 6223 5922x3 0

firL2a F 1002 1x1003 0

firL2L1alph F 5868 1x3845, 1922x3 1

firL2L1eps F 4124 1x203, 3922x3 0

firL2Linfalph F 203 1x203, 2942x3 0

firL2Linfeps F 6086 1x5885, 2942x3 0
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Table 2: Problem statistics of SOCP problems. An entry of the
form “793x3” in the ”SOC blk” column means that there are 793
3-dimensional second order cones. For the numbers in the ”LIN
blk” column, they indicate the number of linear variables, or 1-
dimensional cones.

Problem S m SOC blk LIN blk

firL2 F 102 1x103 0

firLinf F 402 3962x3 0

rand200 300 1 R 200 20x15 0

rand200 300 2 R 200 20x15 0

rand200 800 1 R 200 20x40 0

rand200 800 2 R 200 20x40 0

rand400 800 1 R 400 40x20 0

rand400 800 2 R 400 40x20 0

rand700 1e3 1 R 700 70x15 0

rand700 1e3 2 R 700 70x15 0

Table 3: Accuracy attained by 2 SCE based IPMs for solving SOCP
problems. The timings reported are in seconds. A number of the
form ”1.7-4” means 1.7 × 10−4.

SDPT3 SeDuMi

problem φ relgap p-inf d-inf Time φ relgap p-inf d-inf Time

nb -3.6 2.2-4 1.3-5 8.3 -9 8.3 -11.3 6.5-13 4.8-12 2.8-15 13.7

nb-L1 -5.0 5.8-6 1.0-5 9.6-11 14.3 -12.2 6.2-13 1.2-14 1.5-14 14.6

nb-L2 -5.5 5.1-8 3.1-6 8.9-12 12.7 -9.3 5.4-10 3.1-12 9.7-12 29.2

nb-L2-bessel -6.4 3.1-7 4.3-7 8.8-11 7.3 -10.5 3.3-11 8.0-14 1.7-13 20.3

nql30 -6.3 4.9-7 7.8-8 2.2-12 5.0 -10.2 6.8-11 3.4-11 3.4-11 2.9

nql60 -6.5 3.4-7 1.3-7 2.8-12 22.2 -10.0 1.0-10 1.1-11 1.1-11 12.7

nql180 -5.3 4.9-6 8.5-7 5.7-12 265.0 -9.2 5.8-10 1.9-11 1.9-11 229.0

qssp30 -8.7 2.0 -9 2.3-10 2.2-14 5.0 -11.1 7.1-13 4.8-12 7.5-12 5.1

qssp60 -7.9 1.4-8 1.7 -9 3.4-15 25.7 -10.6 3.3-12 1.7-11 2.7-11 28.8

qssp180 -7.6 2.8-8 4.8-10 1.7-14 449.8 -11.2 7.0-12 1.2-12 1.8-12 666.5

sched-50-50-ori -4.3 2.7-6 4.8-5 1.2-8 5.7 -7.0 1.0-12 1.0-7 4.0-14 7.4

sched-100-50-or -3.8 3.6-5 1.6-4 9.9-10 13.0 -6.0 2.9-13 1.0-6 1.4-12 16.2

sched-100-100-o -2.8 3.5-4 1.6-3 6.0-6 22.8 -3.3 6.6-11 4.6-4 4.1-11 33.0

sched-200-100-o -5.2 5.5-6 5.8-6 1.5-8 82.1 -3.9 4.8-12 1.2-4 2.3-11 67.5

sched-50-50-sca -6.2 3.7 -9 6.3-7 4.4-15 5.6 -8.2 1.0-13 7.0 -9 1.1-14 9.2

sched-100-50-sc -6.1 8.8-7 4.3 -9 6.8-14 11.7 -8.9 1.1-11 1.3 -9 1.2-11 23.7

sched-100-100-s -6.2 2.1-7 5.7-7 3.5-14 21.1 -7.1 3.2-12 7.8-8 5.3-15 36.3
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Table 3: Accuracy attained by 2 SCE based IPMs for solving SOCP
problems. The timings reported are in seconds. A number of the
form ”1.7-4” means 1.7 × 10−4.

SDPT3 SeDuMi

problem φ relgap p-inf d-inf Time φ relgap p-inf d-inf Time

sched-200-100-s -5.8 3.2-8 1.7-6 1.4-13 59.9 -7.8 1.2-12 1.7-8 3.8-14 117.2

firL1Linfalph -9.9 7.1-11 1.3-10 1.0-15 252.5 -4.7 5.2-7 1.8-5 0.0-16 238.3

firL1Linfeps -10.2 5.8-11 5.3-11 6.5-16 231.7 -10.4 3.4-13 4.3-11 1.2-14 92.9

firL1 -10.1 2.3-11 7.3-11 1.0-15 641.8 -9.0 1.8-11 1.0 -9 8.1-12 528.2

firL2a -10.3 5.0-11 6.5-16 0.8-16 38.2 -12.6 7.8-15 2.7-13 4.5-15 22.5

firL2L1alph -10.1 7.9-11 5.6-12 7.4-16 118.7 -3.3 6.2-7 5.1-4 4.4-11 177.8

firL2L1eps -10.4 3.7-11 2.3-11 0.9-15 188.4 -9.3 1.3-11 4.8-10 1.1-11 174.8

firL2Linfalph -10.1 7.9-11 7.6-11 7.8-16 144.5 -9.5 4.0-12 3.5-10 8.1-14 198.3

firL2Linfeps -10.2 7.1-11 2.0-11 7.1-16 321.7 -9.1 8.1-10 5.7-10 0.0-16 232.1

firL2 -11.3 5.2-12 4.7-16 2.0-16 0.3 -13.1 1.3-15 7.3-14 3.3-15 0.2

firLinf -8.9 1.1 -9 1.2 -9 1.0-15 497.2 -9.3 6.6-13 5.4-10 2.4-13 769.6

rand200-300-1 -8.0 1.1-8 1.3 -9 6.0-15 2.9 -6.4 3.3-7 4.3-7 0.0-16 9.9

rand200-300-2 -6.4 3.8-7 5.0 -9 5.9-14 2.7 -5.0 7.8-6 9.0-6 0.0-16 17.0

rand200-800-1 -4.5 3.3-5 2.6-10 2.0-14 5.0 -5.0 1.0-5 1.1-6 0.0-16 33.1

rand200-800-2 -4.1 7.4-5 3.7 -9 7.8-14 5.7 -5.8 8.8-7 1.6-6 0.0-16 73.7

rand400-800-1 -5.5 3.2-6 3.9 -9 6.2-10 16.9 -5.1 7.1-6 2.7-6 0.0-16 35.6

rand400-800-2 -5.3 5.0-6 1.5 -9 4.3 -9 17.2 -4.5 3.5-5 2.2-5 0.0-16 71.6

rand700-1e3-1 -5.9 1.2-6 4.7 -9 3.0-14 67.7 -5.7 1.6-6 1.9-6 0.0-16 174.9

rand700-1e3-2 -5.5 2.9-6 1.8-8 7.0-14 74.6 -4.6 1.4-5 2.6-5 0.0-16 250.7

From Table 3, we have thus seen the performance of SCE based IPMs for two rather
different implementations in SDPT3 and SEDUMI. It is worthwhile to analyze the perfor-
mance of these implementations to isolate the factor contributing to the good performance
in one implementation, but not the other. On the first 10 SOCP problems, nbxxx, nqlxxx
and qsspxxx in the DIMACS library, SEDUMI performs vastly better than the IPM in
SDPT3 in terms of the accuracy attained by the approximate optimal solutions. We hy-
pothesize that SEDUMI is able to obtain accurate approximate optimal solutions for these
test problems primarily because of nice theoretical properties (existence of a strictly feasible
point, and boundedness of solution set) of the HSD model. These problems contain lin-
ear variables that are the results of modeling unrestricted variables as the difference of two
nonnegative vectors. Consequently, the resulting primal SOCPs have unbounded solution
sets and the feasible regions of the dual SOCPs have empty interior. It should come as no
surprise that the IPM in SDPT3 has trouble solving such a problem to high accuracy since
the ill-conditioning in the Schur complement matrix is made worse by the growing norm of
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the primal linear variables as the iterates approach optimality. On the other hand, for the
IPM in SEDUMI, the ill-conditioning of the Schur complement matrix is not amplified since
the norm of the primal variables in the HSD model stays bounded.

To verify the above hypothesis, we solve the nbxxx, nqlxxx and qsspxxx problems again
in SDPT3, but in each IPM iteration, we trim the growth in the primal linear variables,
xu

+, xu
−, arising from unrestricted variables xu using the following heuristic [27]:

xu
+ := xu

+ − 0.8 min(xu
+, xu

−), xu
− := xu

− − 0.8 min(xu
+, xu

−). (18)

This modification does not change the original variable xu but it slows down the growth of
xu

+, xu
−. After these modified vectors have been obtained, we also modify the associated dual

linear variables zu
+, zu

− as follows if µ ≤ 10−4:

(zu
+)i :=

0.5µ

max(1, (xu
+)i)

, (zu
−)i :=

0.5µ

max(1, (xu
−)i)

. (19)

Such a modification in zu
+, zu

− ensures that they approach 0 at the same rate as µ, and thus
prevents the dual problem from attaining the equality constraints in (D) prematurely.

The results shown in Table 4 supported our hypothesis. Observe that with the heuristic
in (18) and (19) to control the growth of (xu

+)i/(z
u
+)i and (xu

−)i/(z
u
−)i, the IPM in SDPT3 can

also achieve accurate approximate solutions, just like what the IPM based on the HSD model
in SEDUMI is able to achieve. It is surprising that such a simple heuristic to control the
growth can result in such a dramatic improvement on the achievable accuracy, even though
the problems (P) and (D) in (1) do not have a strictly feasible point and the corresponding
central path does not exist.

On other problems such as schedxxx, firxxx, and randxxx, the performance of SDPT3
and SEDUMI is quite comparable in terms of accuarcy attained, although SEDUMI is gen-
erally more accurate on the schedxxx problems, while SDPT3 performs somewhat better on
the randxxx problems in terms of accuracy and computation time. On the firxxx problems,
SDPT3 seems to be more robust whereas SEDUMI runs into numerical difficulties quite early
when solving firL1Linfalph and firL2L1alph.

The empirical evidences produced by Table 3 show that the highly sophisticated numerical
techniques employed to solve the SCE in SEDUMI can help to achieve better accuracy, but
sometimes these techniques give limited improvement over the less sophisticated techniques
employed to solve the SCE in SDPT3. On SOCP problems where the two solvers have
vastly different performance in terms of accuracy, the difference can be attributed to the
inherent IPM models used in the solvers rather than the numerical techniques employed to
solve the SCE. The conclusion we may draw here is that the SCE is generally inherently
ill-conditioned, and if our wish is to compute the search direction of (8) to higher accuracy,
a new approach other than the SCE is necessary.
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Table 4: Performance of the SCE based IPM in SDPT3 in solv-
ing SOCP problems with linear variables coming from unrestricted
variables. The heuristics in (18) and (19) are applied at each IPM
iteration.

SDPT3 SeDuMi

problem φ relgap p-inf d-inf Time φ relgap p-inf d-inf Time

nb-u -10.2 6.4-11 1.1-13 5.2-16 16.7 -11.1 6.5-13 8.4-12 0.0-16 14.0

nb-L1-u -10.0 9.9-11 1.1-11 2.2-16 31.9 -12.2 6.1-13 1.0-14 1.0-14 15.1

nb-L2-u -10.2 5.8-11 1.6-11 6.6-16 19.7 -9.3 5.4-10 3.1-12 6.5-12 29.6

nb-L2-bessel-u -10.2 6.7-11 3.3-11 3.3-16 15.1 -10.5 3.3-11 7.9-14 1.7-13 20.4

nql30-u -10.1 8.5-11 1.6-13 8.0-13 7.6 -10.2 6.8-11 3.4-11 2.8-11 4.4

nql60-u -10.4 4.2-11 6.1-12 2.8-13 32.0 -10.0 1.0-10 1.1-11 8.9-12 12.8

nql180-u -8.0 1.0-8 1.7-11 1.5-11 373.6 -9.2 5.8-10 1.9-11 1.1-11 294.7

qssp30-u -10.0 7.4-11 9.2-11 2.7-15 5.0 -11.3 7.1-13 4.8-12 5.2-12 4.9

qssp60-u -8.8 1.4 -9 1.8 -9 4.0-14 23.1 -10.8 3.3-12 1.7-11 1.7-11 28.6

qssp180-u -9.0 1.1 -9 6.7-10 9.5-15 539.9 -11.2 7.0-12 1.2-12 9.9-13 647.8

5 Reduced augmented equation

In this section, we present a new approach to compute the search direction via a potentially
better-conditioned linear system of equations. Based on the new approach, the accuracy of
the computed search direction is expected to be better than that computed from the SCE
when µ is small.

In this approach, we start with the augmented equation in (9). By using the eigenvalue
decomposition, F 2 = QDQT presented in section 3.1, where Q = diag(Q1, · · · , QN) and
D = diag(Λ1, · · · , ΛN). We can diagonalize the (1,1) block and rewrite the augmented
equation (9) as follows.


 −D ÃT

Ã 0





 ∆x̃

∆y


 =


 r̃

rp


 , (20)

where

Ã = AQ, ∆x̃ = QT ∆x, r̃ = QT rx. (21)

The augmented equation (20) has dimension m+n, which is usually much larger than m, the
dimension of the SCE. We can try to reduce its size while overcoming some of the undesirable
features of the SCE such as the growth of ‖M‖ when µ ↓ 0.
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Let the diagonal matrix D be partitioned into two parts as D = diag(D1, D̄1) with
diag(D1) consisting of the small eigenvalues of F 2 of order Θ(µ) and diag(D̄1) consisting
of the remaining eigenvalues of magnitudes at least Θ(1). We partition the eigenvector
matrix Q accordingly as Q = [Q(1) , Q̄(1)]. Then Ã is partitioned as Ã = [Ã1 , Ā1] =
[AQ(1) , AQ̄(1)] and r̃ = [r̃1 ; r̄1] = [(Q(1))T rx ; (Q̄(1))T rx]. Similarly, ∆x̃ is partitioned as
∆x̃ = [∆x̃1 ; ∆x̄1] = [(Q(1))T ∆x ; (Q̄(1))T ∆x].

By substituting the above partitions into (20), and eliminating ∆x̄1, it is easy to show
that solving the system (20) is equivalent to solving the following:


 Ā1D̄

−1
1 ĀT

1 Ã1

ÃT
1 −D1





 ∆y

∆x̃1


 =


 rp + Ā1D̄

−1
1 r̄1

r̃1


 , (22)

∆x̄1 = D̄−1
1 (ĀT

1 ∆y − r̄1). (23)

By its construction, the coefficient matrix in (22) does not have large elements when µ ↓ 0.
But its (1,1) block is generally singular or nearly singular, especially when µ is close to 0.
Since a singular (1,1) block is not conducive for symmetric indefinite factorization of the
matrix or the construction of preconditioners for the matrix, we will construct an equivalent
system with a (1,1) block that is less likely to be singular. Let E1 be a given positive definite
diagonal matrix with the same dimension as D1. Throughout this paper, we take E1 = I.
Let S1 = E1 + D1. By adding Ã1S

−1
1 times the second block equation in (22) to the first

block equation, we get

Ãdiag(S−1, D̄−1
1 )ÃT ∆y + Ã1S

−1
1 E1x̃1 = rp + Ãdiag(S−1, D̄−1

1 )r̃.

This, together with the second block equation in (22) but scaled by S
−1/2
1 , we get the following

equivalent system:


 M̃ Ã1S

−1/2
1

S
−1/2
1 ÃT

1 −D1E
−1
1




︸ ︷︷ ︸
B




∆y

S
−1/2
1 E1∆x̃1


 =




q

S
−1/2
1 r̃1


 , (24)

∆x̄1 = D̄−1
1 (Q̄(1))T (AT ∆y − rx), (25)

where

M̃ = Ã diag(S−1
1 , D̄−1

1 )ÃT , q = rp + Ãdiag(S−1
1 , D̄−1

1 )r̃. (26)

We call the system in (24) the reduced augmented equation (RAE). Note that once ∆y
and ∆x̃1 are computed from (24) and ∆x̄1 is computed from (25), ∆x can be recovered
through the equation ∆x = Q[∆x̃1 ; ∆x̄1].

Remark 5.1 (a) If the matrix D1 is null, then the RAE (24) is reduced to the SCE (10).
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(b) B is a quasi-definite matrix [9, 28]. Such a matrix has the nice property that any sym-
metric reordering ΠBΠT has a “Cholesky factorization” LΛLT where Λ is diagonal with both
positive and negative diagonal elements.

Observe that the (1, 1) block, M̃ , in (24) has the same structure as the Schur complement
matrix M = Ã diag(D−1

1 , D̄−1
1 )ÃT . But for M̃ , diag(S−1

1 , D̄−1
1 ) = O(1), whereas for M ,

diag(D−1
1 , D̄−1

1 ) = O(1/µ). Because of this difference, the reduced augmented matrix B has
bounded norm as µ ↓ 0, but ‖M‖ is generally unbounded. Under certain conditions, B
can be shown to have a condition number that is bounded independent of the normalized
complementarity gap µ. The precise statements are given in the following theorems.

Theorem 5.1 Suppose in (24) we use a partition such that diag(D1) consist of all the eigen-
values of F 2 of the order Θ(µ). If the optimal solution of (1) satisfies strict complementarity,
then ‖B‖ satisfies the following inequality

‖B‖ ≤ O(1) ‖A‖2.

Thus ‖B‖ is bounded independent of µ (as µ ↓ 0).

Proof. It is easy to see that

‖B‖ ≤
√

2 max( ‖M̃‖ + ‖Ã1S
−1/2
1 ‖, ‖S−1/2

1 ÃT
1 ‖ + ‖D1E

−1
1 ‖ ).

Under the assumption that the optimal solution of (1) satisfies strict complementarity, then
as µ ↓ 0, ‖D1‖ ↓ 0, and ‖D̄−1

1 ‖ = O(1), so it is possible to find a constant τ ≥ 1 but of order
Θ(1) such that:

max( ‖S−1
1 ‖, ‖D̄−1

1 ‖, ‖D1E
−1
1 ‖ ) ≤ τ .

Now

‖M̃‖ ≤ ‖Ã‖max(‖S−1
1 ‖, ‖D̄−1

1 ‖)‖Ã‖ ≤ τ‖Ã‖2

and

‖S−1/2
1 ÃT

1 ‖ ≤ ‖S−1/2
1 ‖‖ÃT

1 ‖ ≤ τ‖Ã1‖

‖Ã1S
−1/2
1 ‖ ≤ ‖Ã1‖‖S−1/2

1 ‖ ≤ τ‖Ã1‖,

thus we have

‖B‖ ≤ τ
√

2 max( ‖Ã‖2 + ‖Ã1‖, ‖Ã1‖ + 1 ) ≤ τ
√

2(‖A‖ + 1)2.

From here, the required result follows.
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Lemma 5.1 The reduced augmented matrix B in (24) satisfies the following inequailty:

‖B−1‖ ≤ 2
√

2 max(‖M̃−1‖ , ‖W−1‖),

where W = BT
1 M̃−1B1 + D1E

−1
1 with B1 = Ã1S

−1/2
1 .

Proof. From [20, p. 389], it can be deduced that

B−1 =


 M̃−1/2(I − P )M̃−1/2 M̃−1B1W

−1

W−1BT
1 M̃−1 −W−1


 ,

where P = M̃−1/2B1W
−1BT

1 M̃−1/2. Note that P satisfies the condition 0 ¹ P ¹ I, i.e., P
and I−P are positive definite. By the definition of W , we have 0 ¹ W−1/2BT

1 M̃−1B1W
−1/2 ¹

I, and thus ‖M̃−1/2B1W
−1/2‖ ≤ 1. This implies that

‖M̃−1B1W
−1‖ ≤ ‖M̃−1/2‖ ‖M̃−1/2B1W

−1/2‖ ‖W−1/2‖ ≤ ‖M̃−1/2‖‖W−1/2‖

≤ max
(
‖M̃−1‖ , ‖W−1‖

)
.

It is easy to see that

‖B−1‖ ≤
√

2 max
(
‖M̃−1/2(I − P )M̃−1/2‖ + ‖M̃−1B1W

−1‖ , ‖W−1BT
1 M̃−1‖ + ‖W−1‖

)

≤ 2
√

2 max(‖M̃−1‖ , ‖W−1‖).

Theorem 5.2 Suppose in (24) we use a partition such that diag(D1) consist of all the eigen-
values of F 2 of the order Θ(µ). If the optimal solution of (1) satisfies the strict complemen-
tarity, and the primal and dual nondegeneracy conditions defined in [2], then the condition
number of the coefficient matrix in (24) is bounded independent of µ (as µ ↓ 0).

Proof. Let D̄1 be further be partition into D̄1 = diag(D2, D3) where diag(D2) and diag(D3)
consist of eigenvalues of F 2 of order Θ(1) and Θ(1/µ), respectively. Let Q̄1 and Ā1 be
partitioned accordingly as Q̄1 = [Q2 , Q3] and Ā1 = [AQ2 , AQ3] =: [Ã2 , Ã3]. By
Theorems 20 and 21 in [1], dual nondegeneracy implies that Ã1 = AQ1 has full column
rank and primal nondegeneracy implies that [Ã1 , Ã2] has full row rank. Since M̃ =
[Ã1 , Ã2]diag(S−1

1 , D−1
2 )[Ã1 , Ã2]

T +Θ(µ). Thus σmin(M̃) is bounded away from 0 even when

µ ↓ 0. This, together with the fact that Ã1S
−1/2
1 has full column rank, implies that the

matrix W := S
−1/2
1 ÃT

1 M̃−1Ã1S
−1/2
1 + D1E

−1
1 has σmin(W ) bounded away from 0 even when

µ ↓ 0. By Lemma 5.1, ‖B−1‖ is bounded independent of µ. By Theorem 5.1, ‖B‖ is also
bounded independent of µ, and the required result follows.
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6 Reduced augmented equation and primal infeasibil-

ity

Let [ξ ; η] be the residual vector for the computed solution of (24).

Lemma 6.1 Let u be the machine epsilon and l be the dimension of ∆x̃1. Suppose (l+m)u ≤
1/2 and we use Gaussian elimination with partial pivoting (GEPP) to solve (24) to get
the computed solution (∆x̃1 ; ∆y), then the residual vector [ξ ; η] for the computed solution
satisfies the following inequality:

‖(ξ ; η)‖∞ ≤ 4(l + m)3uρ ‖B‖∞‖(∆x̃1 ; ∆y)‖∞

where ρ is the growth factor associated with GEPP.

Proof. This lemma follows from Theorem 9.5 in [13].

Remark 6.1 Theorem 5.1 stated that if strict complementarity holds at the optimal solution,
then ‖B‖∞ will not grow as µ ↓ 0 in contrast to ‖M‖, which usually grows proportionately to
Θ(1/µ). Now because the growth factor ρ for GEPP is usually O(1), Lemma 6.1 implies that
the residual norm ‖(ξ ; η)‖∞ will be maintained at some level proportional to u‖A‖2 even
when µ ↓ 0.

Now we establish the relationship between the residual norm in solving (24) and the
primal infeasibility associated with the search dierction computed from the RAE approach.
Suppose that in computing ∆x̄1 from (25), a residual vector δ is introduced, i.e.,

∆x̄1 = D̄−1
1 (Q̄(1))T (AT ∆y − r) − δ.

Then we have the following lemma for the primal infeasibility of the next iterate.

Lemma 6.2 Suppose ∆x is computed from the RAE approach. Then the primal infeasibility
‖r+

p ‖ for the next iterate x+ = x + α∆x, α ∈ [0, 1], satisfies the following inequality:

‖r+
p ‖ ≤ (1 − α)‖rp‖ + α‖ξ + Ā1δ − Ã1S

−1/2
1 η‖.

Proof. The computed solution from (24) satisfies

M̃∆y + Ã1S
−1
1 E1∆x̃1 = q − ξ (27)

ÃT
1 ∆y − D1∆x̃1 = r̃1 − S

1/2
1 η. (28)

From (27), we have

Ā1D̄
−1
1 ĀT

1 ∆y = q − ξ − S−1
1 E1∆x̃1 − Ã1S

−1
1 ÃT

1 ∆y.
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Thus we have

A∆x = Ã1∆x̃1 + Ā1D̄
−1
1 (ĀT

1 ∆y − r̄1) − Ā1δ

= Ã1∆x̃1 − Ā1D̄
−1
1 r̄1 − Ā1δ + q − ξ − Ã1S

−1
1 E1∆x̃1 − Ã1S

−1
1 ÃT

1 ∆y. (29)

Now by (28), we have

Ã1S
−1
1 ÃT

1 ∆y = Ã1S
−1
1 (r̃1 − S

1/2
1 η) + Ã1S

−1
1 D1∆x̃1.

By substituting the above equation into (29), we get

A∆x = rp − Ā1δ + Ã1S
−1/2
1 η − ξ,

and the required result follows readily.

Remark 6.2 From Lemma 6.2, we see that if the RAE returns a small residual norm, then
the primal infeasibility of the next iterate would not be seriously worsened by the residual
norm. From Theorem 5.1 and Lemma 6.1, we expect the residual norm ‖[ξ; η]‖ to be small
since ‖B‖ is bounded independent of µ. Also, since by its construction, D̄−1 does not have
large elements, ‖δ‖ is expected to be small as well.

Figure 2 shows the convergence behavior of the IPM in SDPT3, but with search directions
computed from the RAE (24) for the problems ran200 800 1 and sched 50 50 orig. As
can be seen from the relative primal infeasibility curves, the RAE approach is more stable
than the SCE approach. It is worth noting that under the new approach, the solver is able
to deliver 10 digits of accuracy, i.e. φ ≤ −10. This is significantly better than the accuray
φ ≈ −6 attained by the SCE approach. Note that we use a partition such that eigenvalues
of F 2 that are smaller than 10−3 are put in D1.

In Table 5, we show the norms ‖B‖, ‖B−1‖ and the residual norm in solving the RAE
(24) for the last few IPM iterations in solving the problem rand200 800 1. The reader can
notice that ‖B‖ and κ(B) do not grow when µ ↓ 0 in contrast to ‖M‖ and κ(M) in Table
1. The residual norm for the computed solution of (24) remains small throughout, and in
accordance with Lemma 6.1, the residual norm is approximately equal to u‖B‖ times the
norm of the computed solution. By Lemma 6.2, the small residual norm in solving the RAE
explains why the primal infeasibility computed from the RAE approach does not deteriorate
as in the SCE approach.
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Figure 2: Same as Figure 1 but for the RAE approach in computing the search directions
for the SOCP problems rand200 800 1 and sched 50 50 orig. Notice that the primal in-
feasibility does not deteriorate when the iterates approach optimality. Both problems are
primal and dual non-degenerate, and strict complementarity holds at optimality.

Table 5: Condition number of the reduced augmented
matrix B associated with the last few IPM iterations for
solving the SOCP problem rand200 800 1. The maxi-
mum number of columns in Ã1 is 19.

Iter ‖B‖ ‖B−1‖ xT z/N ‖[∆y; ∆x̃1]‖
residual
norm

‖rp‖
‖rp‖

‖B‖‖[∆y; ∆x̃1]‖u
11 3.2e+11 3.1e+02 1.1e-08 1.3e-03 2.5e-08 4.6e-08 5.2e-01

12 3.7e+11 2.7e+02 1.3e-09 4.6e-04 6.9e-09 1.8e-08 4.7e-01

13 3.4e+11 2.8e+02 1.9e-10 2.3e-04 4.3e-09 8.1e-09 4.7e-01

14 2.6e+11 3.7e+02 2.5e-11 1.0e-04 1.2e-09 2.9e-09 4.9e-01

15 2.3e+11 4.2e+02 4.0e-12 3.6e-05 3.4e-10 9.4e-10 5.1e-01

16 2.0e+11 5.2e+02 5.6e-13 1.3e-05 1.4e-10 4.8e-10 8.6e-01

7 Major computational issues

The theoretical analysis in the last section indicates that the RAE approach is potentially
more stable than the standard SCE approach, but the trade-off is that the former requires
a larger indefinite linear system to be solved. Therefore, the efficiency in solving (24) is one
of our major concern in the implementation.

In forming the reduced augmented matrix B, those operations involving Q (the eigen-
vector matrix of F 2) must be handled carefully by exploiting the structure of Q to avoid
incurring significant storage and computational cost. Also, the sparsity of AAT must be
properly preserved when computing M̃ .

7.1 Computations involving Q

The operations involving Q in assembling the RAE (24) are as follows:

• Computation of the (1,1) block M̃ = AQdiag(S−1
1 , D̄−1

1 )QT AT ;

• Computation of the (1,2) block Ã1 = AQ(1);
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the Householder matrix Hi explicitly. Without going into the algebraic details, the precise
form of Hi is given as follows:

Hi = I − hih
T
i ,

where

hi =
1

τi


 τ 2

i sign(g0
i )

ḡi


 ∈ IRni−1, τi :=

√
1 + |g0

i |. (30)

With some algebraic manipulations, the eigenvector Qi can be rewritten in the form given
in the next lemma. The explicit formula derived below is critical to the efficient computation
of those operations involving Q mentioned above.

Lemma 7.1

Qi = diag(Ki, I) − uiv
T
i , (31)

where

Ki =



− 1√

2
1√
2

βi βi


 , ui =




0

hi


 , vi =




βih
0
i

βih
0
i

h̄i


 , (32)

with βi = −sign(h0
i )/

√
2.

Proof. Note that by construction, the first column of Hi is given by −sign(g0
i )gi. Thus from

(13), we have, by letting α = 1√
2

+ sign(g0
i ), that

Qi =



− 1√

2
1√
2

0 · · · 0

1√
2
gi αgi 0 · · · 0


 +




0 0

0 I − hih
T
i




=




− 1√
2

1√
2

0 . . . 0

g0

i√
2

αg0
i 0 . . . 0

...
...

...
...

0 0 0 . . . 0




+




0 0

0 I


 +




0

0

h̄i







τi√
2

ατi

0
...
0




T

−



0

hi







0

hi




T

=




− 1√
2

1√
2

0 . . . 0

− sign(g0

i
)√

2
− sign(g0

i
)√

2
− 1 0 . . . 0

...
...

...
...

0 0 0 . . . 0




+




0 0

0 I


 −




0

hi







− τi√
2

h0
i − ατi

h̄i




T

.
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It is readily shown that h0
i − ατi = −τi/

√
2 = βih

0
i . Now it is easy to see that (31) and (32)

hold.

Observe that each Qi is a rank one perturbation of a highly sparse block diagonal matrix.
Based on the above lemma, those operations listed at the beginning of this subsection, except
the first one, can be computed straightforwardly. To compute the matrix M̃ , we have to
further analyze the structure of the matrix Qidiag(S−1

1i , D̄−1
1i )QT

i .
Let Gi = diag(S−1

1i , D̄−1
1i ) and Σi = diag(Ki, Ii), then Qi = Σi − uiv

T
i and

Qi Gi Q
T
i = Σi Gi Σ

T
i − ΣiGiviu

T
i − uiv

T
i GiΣ

T
i + uiv

T
i Gi viu

T
i .

By setting ṽi = ΣiGivi, and ρi = vT
i Givi (note that ρi is a positive scalar and Σi is an

orthogonal matrix), we have

Qi Gi Q
T
i = ΣiGiΣ

T
i − ṽiu

T
i − uiṽ

T
i + ρiuiu

T
i ,

= ΣiGiΣ
T
i + lil

T
i − 1

ρi

ṽiṽ
T
i , (33)

where li = ṽi/
√

ρi −
√

ρiui. With the expression in (33), each component matrix M̃i in

M̃ =
∑N

i=1 M̃i can be expressed as:

M̃i = AiQiGiQ
T
i AT

i = Ai (ΣiGiΣ
T
i ) AT

i + (Aili)(Aili)
T − 1

ρi

(Aiṽi)(Aiṽi)
T . (34)

Since ΣiGiΣ
T
i is a highly sparse block diagonal matrix, thus M̃i is a symmetric rank two

perturbation to a sparse matrix if AiA
T
i is sparse. Hence, the computational complexity of

M̃ is only slightly more expensive than that for the Schur complement matrix M .

7.2 Handling dense columns

Let Σ = diag(Σ1, . . . , ΣN), and

Al = [A1l1 , . . . , AN lN ] , Av =

[
1√
ρ1

A1ṽ1 , . . . ,
1√
ρN

AN ṽN

]
. (35)

Then it is readily shown that

M̃ = A (Σdiag(S−1
1 , D̄−1

1 )ΣT ) AT + AlA
T
l − AvA

T
v . (36)

If AAT is sparse, then the first matrix in (36) is sparse as well. For an SOCP problem
where all the cones are low dimensional, typically the matrices Al and Av are also sparse.
In that case, the reduced augmented equation (24) may be solved directly. However, if high
dimensional cones exist, then Al and Av invariably contain dense columns. Moreover, when
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A is sparse but with dense columns, AAT will also be dense. In order to preserve the sparsity
in M̃ , it is necessary to handle the dense columns separately when they exist.

Let P1 be the dense columns in AΣdiag(S
−1/2
1 , D̄

−1/2
1 ) and Al, and P2 be the dense

columns in Av. Let M̃s = M̃ − P1P
T
1 + P2P

T
2 be the “sparse part” of M̃ . It is well known

that by introducing the following new variables

t1 = P T
1 ∆y, t2 = −P T

2 ∆y,

the dense columns can be removed from M̃ ; see [4]. The precise form of the reduced aug-
mented equation (24) with dense column handling is as follows:




M̃s U

UT −C







∆y

S
−1/2
1 E1∆x̃1

t1

t2




=




q

S
−1/2
1 r̃1

0

0




, (37)

where q is defined in (26) and

U =
[
Ã1S

−1/2
1 , P1, P2

]
, C = diag(D1E

−1
1 , I1,−I2).

7.3 Direct solvers for symmetric indefinite systems

The solution of the sparse symmetric indefinite system (37) is one of the most computation-
ally intensive step in each IPM iteration. Therefore, it is critical that the solver used must
be as efficient as possible.

We consider two methods for solving (37). The first is the Schur complement method,
which is also equivalent to the Sherman-Morrison-Woodbury formula. The second is the
Bunch-Parlett factorization implemented in MA47 [19]. Each of these methods has its own
advantage in different circumstances.

Schur complement method This method is widely used for dense column handling in
IPM implementations; see [4] and the references therein. The method uses the sparse
matrix M̃s as the pivoting matrix to perform block eliminations in (37). It is readily
shown that solving (37) is equivalent to solving the following systems:

(
UT M̃−1

s U + C
)




S
−1/2
1 E1∆x̃1

t1
t2


 = UT M̃−1

s q −




S
−1/2
1 r̃1

0
0


 (38)

∆y = M̃−1
s q − M̃−1

s U




S
−1/2
1 E1∆x̃1

t1
t2


 .
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Note that since M̃ is symmetric positive definite, its “sparse part”, M̃s, is typically
also positive definite if the number of dense columns removed from M̃ is small. If M̃s

is indeed positive definite, then (38) can be solved by Cholesky or sparse Cholesky
factorization. As mentioned before, highly efficient and optimized sparse Cholesky
solvers are readily available. Another advantage of the Schur complement method is
that the symbolic factorization of M̃s needs only be computed once or twice during the
initial phase of the IPM iteration and it can be re-use for subsequent IPM iterations
even when the partition used in D changes.

But the Schur complement method does have a major disadvantage in that the matrix
UT M̃−1

s U +C is typically dense. This can lead to huge computational burden when U
has large number of columns, say, more than a few hundreds. Furthermore, the Schur
complement method is numerically less stable than a method that solves (37) directly.

Roughly speaking, the Schur complement method is best suited for problems with U
having a small number of columns. When U has a large number of columns or when M̃s

is not positive definite, we have to solve (37) directly by the second method described
below.

MA47 MA47 is a direct solver developed by J. Reid and I.S. Duff [19] for sparse symmetric
indefinite systems. This is perhaps the only publicly available state of the art direct
solver for sparse symmetric indefinite systems. It appears not to be as efficient as the
sparse Cholesky codes of Ng and Peyton [17].

The MA47 solver implements the multi-frontal sparse Gaussian elimination described
in [8]. In the algorithm, the pivots used are not limited only to 1×1 diagonal pivots but
also 2× 2 block diagonal pivots. The solver performs a pre-factorization phase (called
symbolic factorization) on the coefficient matrix to determine a pivoting order so as to
minimize fill-ins. In the actual factorization process, this pivoting order may be mod-
ified to achieve better numerical stability. Note that in sparse Cholesky factorization,
the pivoting order is the natural order. Because significant overhead may be incurred
when the pivoting order is modified in sparse symmetric indefinite factorization, it is
sometimes much more expensive than performing the sparse Cholesky factorization on
a matrix with the same dimension.

The advantage of using MA47 to solve (37) is that it does not introduce a fully dense
matrix in the solution process. Thus it is more suitable for SOCP problems with U
having a relatively large number of columns.

Compared to the Schur complement method described above, the MA47 method does
a disadvantage in that the symbolic factorization of the reduced augmented matrix
need to be re-computed whenever the partition used in D changes.
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7.4 Partitioning Strategy

As shown in section 6, the RAE approach for computing the search directions has the
potential to overcome certain numerical instabilities encountered in the SCE approach. The
RAE was derived from the augmented equation (9) by modifying the part of the coefficient
matrix involving the small eigenvalues of F 2. Here we will describe the partition we use in
D = diag(D1, D̄1).

The choice of D1 is dictated by the need to strike a balance between our desire to compute
more accurate search directions and to minimize the size of the RAE to be solved. From
the perspective of computational efficiency, it is better to have as fewer columns in the
matrix U in (37) as possible, thus suggesting that the threshold for labelling an eigenvalue
as ”small” should be low. But from the perspective of accuracy, it is beneficial to partition
eigenvalues that are smaller than, say 10−3, into D1 to improve the conditioning of the
reduced augmented matrix.

With due consideration in balancing the two issues mentioned in the last paragraph, we
adopt a hybrid strategy in computing the search direction in each IPM iteration.

If κ(F 2) ≥ 106,
put the eigenvalues of F 2 that are smaller than 10−3 in D1, and the rest in D̄1.

Otherwise,
put all the eigenvalues of F 2 in D̄1.

Some of our test problems also contain linear blocks (i.e., cones with dimensions ni = 1). In
this case, F 2

i = zi/xi is a scalar, and we put F 2
i in D1 if it is smaller than 10−3, otherwise,

we put it in D̄1.
As noted in Remark 3.1, when Ã1 has full row rank (for which a necessary condition

is that the number of small eigenvalues put into D1 is at least m), the Schur complement
matrix M is not highly ill-conditioned, and it is not necessary to use the RAE approach to
compute the search directions. When such a situation occurs, we use the SCE approach.

8 Numerical experiments

The reduced augmented equation (24) or (37) is computationally more expensive to solve
than the SCE (10) because it is larger in size. As we have discussed in the last section, we
can try to minimize the additional computational cost by a judicious choice of the solver
used. If the number of columns in the matrix U is small, then by using the Schur complement
method, the cost of solving (37) should not be much more expensive than that of solving the
SCE. We adopt the following heuristic rule for the choice of the solver used for solving (37).
If the number of columns in U is smaller than 200, we use the Schur complement method;
otherwise, we use the MA47 method.

The RAE approach is implemented in Matlab based on the IPM in SDPT3, version
3.1; see [26]. But the search direction in each iteration is computed based on the RAE (37).
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We use the same stopping criteria mentioned in section 4. Again, the numerical results are
obtained from a Pentium IV 2.4GHz PC with 1G RAM.

We consider the same SOCP problems in the section 4. But to keep our focus on the
comparsion between the SCE and RAE approaches without the complication of unbounded
primal solution sets, we exclude the nbxxx, nqlxxx, and qsspxxx problems from the numer-
ical experiments in this section.

Our major concern in the experiments is in the following two criteria: efficiency and
accuracy. We measure efficiency by the average CPU time spent per IPM iteration; while
accuracy is again measured by the relative duality gap (relgap), and the primal and dual
infeasibilities (p-inf and d-inf).

The numerical results in Table 3 show that the IPMs based on SCE may not deliver
approximate optimal solutions with small primal infeasibilities. In Table 6, we see that the
RAE approach can drive the primal infeasibilities of all the problems to a level of 10−9 or
smaller. For the schedxxx and randxxx problem sets, both the SCE based IPMs in SDPT3
and SEDUMI cannot deliever accurate approximate solutions where the accuracies attained
range from φ = −2.8 to φ = −8.9 for the schedxxx set and from φ = −4.5 to φ = −8.0 for
the randxxx set. The IPM based on the RAE approach, however, can achieve solutions with
accuracy φ ≤ −8.8 for all the problems in these 2 sets. The improvement in the attainable
accuracy is more than 5 orders of magnitude in some cases. For the firxxx problems, the
SCE approach can already produces accurate approximat solutions, and the RAE approach
produces comparable accuracies.

The good performance in terms of accuracy of the RAE based IPM on the schedxxx

and randxxx problem sets is consistent with theoretical results established in section 6.
The SOCP problems in the schedxxx set are primal and dual nondegenerate, and strict
complementarity holds at optimality. For the randxxx set, all the problems are primal non-
degenerate, but 4 of the problems are dual degenerate. It is interesting to note that dual
degeneracy does not seem to affect the performance of RAE on these degenerate problems.
This fact is consistent with the observation we made in Remark 6.2.

By Theorem 5.2, the condition number of the reduced augmented matrix for the problems
in schedxxx set is bounded when µ ↓ 0. But as noted in Remark 3.2, strict complementarity,
and primal and dual nondegeneracy in an SOCP does not necessarily imply that the associ-
ated Schur complement matrix has bounded condition numbers when µ ↓ 0. The numerical
results produced by the schedxxx set concretely show the difference in numerical stability
between the SCE and RAE approaches.

From the average CPU time taken per IPM iteration for the RAE and SCE approaches
in Table 6, we see that the RAE approach is reasonably efficient in that the ratio (compare
with SDPT3) at most 5.0 for all the test problems, and 85% of them have ratios between
1.0 and 2.0.

The objective values obtained by the RAE based IPM are given in Table 7.
As we are able to compute rather accurate approximate solutions for (1), it is worthwhile

to gather information such as primal and dual degeneracy, and strict complementarity for
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some of the smaller SOCP problems we have considered in this paper. Such information
is given in Table 8. We note that the degeneracies of the problems are determined by
computing the numerical row and column rank (via Matlab command rank) of the matrices
in Theorems 20 and 21 in [1], respectively.

Table 6: A comparison between 2 SCE based IPMs and the RAE
based IPM for solving SOCP problems. The last column in the
table gives the maximum number of columns in the matrix U in
(37).

SDPT3 SeDuMi RAE approach

problem φ Titer φ Titer φ Titer relgap p-inf d-inf Time nc(U)

sched-50-50-ori -4.3 0.19 -7.0 0.18 -10.3 0.24 4.7-11 9.4-12 1.4-11 9.3 86

sched-100-50-or -3.8 0.42 -6.0 0.41 -10.2 0.75 6.8-11 4.8-11 1.5-11 32.4 476

sched-100-100-o -2.8 0.82 -3.3 0.77 -8.8 1.52 1.8 -9 4.2-10 9.5-11 61.0 242

sched-200-100-o -5.2 2.16 -3.9 1.65 -10.5 6.67 1.1-11 2.9-11 2.1-11 326.6 574

sched-50-50-sca -6.2 0.20 -8.2 0.30 -10.6 0.30 2.7-11 1.4-12 4.3-15 9.2 85

sched-100-50-sc -6.1 0.43 -8.9 0.46 -10.2 0.99 6.5-11 3.5-11 7.1-14 31.8 495

sched-100-100-s -6.2 0.78 -7.1 0.66 -9.5 2.18 3.2-11 3.5-10 2.4-14 72.1 254

sched-200-100-s -5.8 2.14 -7.8 2.39 -10.5 10.79 3.3-11 1.2-11 1.3-13 334.5 578

firL1Linfalph -9.9 7.43 -4.7 8.83 -9.9 8.72 2.6-11 1.3-10 0.9-15 305.3 7

firL1Linfeps -10.2 5.94 -10.4 3.32 -10.2 7.63 5.8-11 1.7-12 0.8-15 297.6 536

firL1 -10.1 27.90 -9.0 22.01 -10.1 29.37 3.3-11 7.4-11 1.0-15 675.6 0

firL2a -10.3 4.77 -12.6 4.50 -10.3 4.99 5.0-11 6.6-16 0.8-16 39.9 804

firL2L1alph -10.1 5.16 -3.3 4.68 -10.1 5.36 7.9-11 4.1-12 6.8-16 123.3 4

firL2L1eps -10.4 9.92 -9.3 8.32 -10.4 14.78 3.8-11 2.3-11 0.9-15 280.9 1

firL2Linfalph -10.1 4.25 -9.5 7.34 -10.1 7.30 7.8-11 5.6-14 7.5-16 248.2 19

firL2Linfeps -10.2 14.62 -9.1 6.83 -10.1 15.08 7.1-11 7.9-11 6.6-16 331.7 2

firL2 -11.3 0.03 -13.1 0.03 -11.3 0.05 5.2-12 2.8-16 1.2-16 0.4 1

firLinf -8.9 18.41 -9.3 28.50 -8.9 24.49 3.6-10 1.2 -9 1.0-15 710.3 170

rand200-300-1 -8.0 0.24 -6.4 0.76 -10.4 0.27 3.9-11 1.9-13 5.6-15 3.8 47

rand200-300-2 -6.4 0.24 -5.0 1.41 -10.3 0.29 4.5-11 6.6-14 5.6-14 4.7 62

rand200-800-1 -4.5 0.50 -5.0 2.76 -10.3 0.58 5.6-11 1.2-14 1.9-14 9.3 19

rand200-800-2 -4.1 0.52 -5.8 6.14 -10.1 0.58 7.6-11 5.1-13 7.1-14 9.9 19

rand400-800-1 -5.5 1.69 -5.1 3.23 -10.4 1.89 3.7-11 1.3-13 1.5-14 26.5 40

rand400-800-2 -5.3 1.72 -4.5 7.16 -10.6 1.90 2.5-11 3.1-13 4.7-14 28.5 40

rand700-1e3-1 -5.9 6.15 -5.7 13.45 -10.2 6.78 6.0-11 1.3-14 2.5-14 122.1 123

rand700-1e3-2 -5.5 6.22 -4.6 22.79 -10.3 6.87 4.7-11 4.7-13 6.1-14 137.4 164
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Table 7: Primal and dual objective values obtained by the IPM
using the RAE approach.

Problem
primal

objective
dual

objective
sched-50-50-ori 2.6673000977e+04 2.6673000976e+04

sched-100-50-or 1.8188993938e+05 1.8188993936e+05

sched-100-100-o 7.1736778733e+05 7.1736778607e+05

sched-200-100-o 1.4136044650e+05 1.4136044650e+05

sched-50-50-sca 7.8520384401e+00 7.8520384399e+00

sched-100-50-sc 6.7165031104e+01 6.7165031099e+01

sched-100-100-s 2.7330785593e+01 2.7330785592e+01

sched-200-100-s 5.1811961029e+01 5.1811961027e+01

firL1Linfalph -3.0673166428e-03 -3.0673166686e-03

firL1Linfeps -2.7112896667e-03 -2.7112897249e-03

firL1 -2.9257812784e-04 -2.9257816083e-04

firL2a -7.1457742547e-04 -7.1457747536e-04

firL2L1alph -5.7634915863e-05 -5.7634994782e-05

firL2L1eps -8.4481294183e-04 -8.4481297976e-04

firL2Linfalph -7.0591166471e-03 -7.0591167258e-03

firL2Linfeps -1.4892049053e-03 -1.4892049762e-03

firL2 -3.1186645862e-03 -3.1186645914e-03

firLinf -1.0068176536e-02 -1.0068176895e-02

rand200-300-1 -1.5094030119e+02 -1.5094030120e+02

rand200-300-2 -1.2861024801e+02 -1.2861024801e+02

rand200-800-1 1.8086048336e+00 1.8086048335e+00

rand200-800-2 -2.3277765218e+01 -2.3277765220e+01

rand400-800-1 6.6607764191e+00 6.6607764188e+00

rand400-800-2 6.3708631134e+01 6.3708631135e+01

rand700-1e3-1 -7.1501954797e+01 -7.1501954801e+01

rand700-1e3-2 -5.5374169004e+01 -5.5374169006e+01

Table 8: Primal and dual degeneracy, and strict complementarity
information of approximate solutions of some SOCPs. A “1” means
true and a “0” means false. A number of the form (34/35) in the
second column means that at the computed approximate optimal
solution, the column rank of Ã1 is 34, and the number of columns
in Ã1 is 35.

Problem
primal

non-degeneracy
dual

non-degeneracy
strictly

complementary
sched-50-50-orig 1 1 (79/79) 1
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Table 8: Primal and dual degeneracy, and strict complementarity
information of approximate solutions of some SOCPs. A “1” means
true and a “0” means false. A number of the form (34/35) in the
second column means that at the computed approximate optimal
solution, the column rank of Ã1 is 34, and the number of columns
in Ã1 is 35.

Problem
primal

non-degeneracy
dual

non-degeneracy
strictly

complementary
sched-50-50-scaled 1 1 (83/83) 1

firL2a 1 1 (1/1) 1

firL2Linfalph 1 1 (15/15) 1

firL2 1 1 (1/1) 1

rand200 300 1 1 0 (34/35) 1

rand200 300 2 1 0 (62/65) 1

rand200 800 1 1 1 (19/19) 1

rand200 800 2 1 1 (19/19) 1

rand400 800 1 1 1 (40/40) 1

rand400 800 2 1 1 (40/40) 1

rand700 1e3 1 1 0 (84/85) 1

rand700 1e3 2 1 0 (126/130) 1

9 Conclusion

We analyzed the accuracy of the search direction computed from the SCE approach, and
how the residual norm in the computed solution affects the primal infeasibility and hence
the achievable accuarcy in the approximate optimal solution.

We also discussed the factors contributing to the good numerical performance of the well
implemented SCE-based public domain software SEDUMI.

A reduced augmented equation is proposed to compute the search direction in each IPM
iteration when the SCE cannot be solved to sufficient accuracy. The proposed reduced
augmented equation approach can improve the robustness of IPM solvers for SOCP. It can
be implemented efficiently by carefully preserving the sparsity structure in the problem data.
Numerical results show that the new approach can produce approximate optimal solutions
that are much more accurate than that produced by the SCE approach.
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[27] K.C. Toh, R.H. Tütüncü, and M.J. Todd, On the implementation of SDPT3 (version
3.1) – a Matlab software package for semidefinite-quadratic-linear programming, in-
vited paper, 2004 IEEE Conference on Computer-Aided Control System Design, Taipei,
Taiwan.

[28] R.J. Vanderbei, Symmetric Quasidefinite Matrices, SIAM J. Optimization, 5 (1995),
pp. 100–113.

[29] S.J. Wright, Stability of linear equations solvers in interior-point methods, SIAM J.
Matrix Analysis and Applications, 16 (1995), pp. 1287–1307.

[30] S.J. Wright, Stability of augmented system factorizations in interior-point methods,
SIAM J. Matrix Analysis and Applications, 18 (1997), pp. 191–222.

[31] Y. Ye, M.J. Todd, and S. Mizuno, An O(
√

nL)-iteration homogeneous and self-dual
linear programming algorithm, Math. Oper. Res., 19 (1994), pp. 53–67

37


