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1 Introduction

1.1 Motivation

Let S(n1, . . . , nm) be the linear space of symmetric block-diagonal matrices with m blocks of sizes

nk × nk, k = 1, . . . ,m, respectively, and let Ψ be a mapping from S(n1, . . . , nm) to S(n1, . . . , nm)

itself. We consider the problem of finding a root of Ψ(X) = 0. This symmetric block-diagonal-

matrix-valued equation problem (matrix equation problem for short) has many applications in op-

timization. For example, arising from Lyapunov stability analysis of systems under uncertainty

[4, 23], it is desired to know whether there exists an n × n symmetric matrix X such that the

following system is feasible {
λX − (LiX + XLi) � 0, i = 1, . . . , k
X − I � 0 ,

(1)

where λ is a given constant, I, Li, i = 1, . . . , k are given n × n symmetric matrices, and for an

arbitrary symmetric matrix Y we write Y � 0 and Y � 0 if Y is positive definite and positive

semidefinite, respectively. It is easy to convert (1) into a matrix equation problem. For X � 0 we

denote its symmetric square root by X1/2. Let |X| := ( X2 )1/2 and X+ := (X + |X|)/2 for any

X ∈ S(n1, ..., nm). Note that |X| −X = 0 if and only if X is positive semidefinite. Let

Ψ(X) :=
k∑

i=1

[ |λX − LiX −XLi | − λX + LiX + XLi ] + [ |X − I | −X + I ] .

Then solving problem (1) is equivalent to solving the matrix equation Ψ(X) = 0. Note that this

equation is not differentiable (in the sense of Fréchet), but is strongly semismooth [30, 5]. For the

definition of semismooth matrix functions and some related topics see Section 2 below or references

[30, 5] for more details.

Another application of matrix equations refers to semidefinite programming (SDP). As a modeling

tool of optimization and a powerful relaxation form of some combinatorial optimization problems,

SDP has caught great attention of the research community in recent years. The website of semidef-

inite programming (http://www.zib.de/helmberg/semidef.html) contains a nice categorized list of

papers in this area. Assuming strict feasibility of both primal and dual problems, a semidefinite

program is equivalent to finding X � 0, S � 0, and y ∈ IRm such that

Ai • X = bi, i = 1, . . . ,m,
m∑

i=1

yiAi + S = C, X • S = 0 , (2)

where • denotes the matrix Frobenius inner product. It is shown by Tseng [33] that

X � 0, S � 0, X • S = 0 ⇐⇒ X − [X − S]+ = 0 . (3)
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Thus, system (2) can be re-written as

Ai • X = bi, i = 1, . . . ,m,
m∑

i=1

yiAi + S = C, X − [X − S]+ = 0 , (4)

which has the form of Ψ(W ) = 0 with W := diag (y1, . . . , ym, S,X) being a block-diagonal matrix.

A generalization of semidefinite programming — the semidefinite complementarity problem (SDCP)

— can also be reformulated as a matrix equation. The problem (SDCP) is to find, for a given

continuously differentiable mapping F : S(n1, . . . , nm) → S(n1, . . . , nm), an X ∈ S(n1, . . . , nm)

such that

X � 0, F (X) � 0, X • F (X) = 0 . (5)

By (3) this problem is equivalent to

X − [X − F (X)]+ = 0 . (6)

A special case of the SDCP, where F is linear, was introduced by Kojima, Shindo and Hara [19]

and further studied in e.g., [12, 13, 17, 18]. For the general (nonlinear) SDCP, Monteiro and Pang

[21, 22] treated it as a constrained equation and introduced interior-point methods for solving

the constrained equation. Tseng [33] introduced merit functions to reformulate the SDCP as an

optimization problem. Chen and Tseng [6] studied non-interior continuation methods for solving

the SDCP. Pang, Sun and Sun [24] studied semismooth homeomorphisms and strong stability of

the SDCP.

The interest in the nonlinear SDCP is stemmed from the research on nonlinear semidefinite opti-

mization problems. Shapiro [27] studied first- and second-order perturbation analysis of nonlinear

semidefinite optimization problems. Jarre [14] gave an interior-point method for solving nonconvex

semidefinite programs. Fares, Noll and Apkarian [7] investigated a sequential semidefinite pro-

gramming approach for a variety of problems in optimal control, which can be cast as minimizing

a linear objective function subject to linear matrix inequality constraints and nonlinear matrix

equality constraints. Leibfritz and Mostafa [20] proposed an interior point constrained trust region

method for a special class of nonlinear semidefinite programming problems.

In this paper we study a smoothing Newton method for solving a nonsmooth matrix equation

that includes the SDP and the SDCP as special cases. In particular, for the SDP, this method

achieves quadratic convergence under strict complementarity. For the SDCP, quadratic convergence

is proved under the condition that the Jacobian of the problem is positive definite on the affine

hull of the critical cone at the solution. The strict complementarity condition is not assumed

here. To establish these results, we investigate the strong semismoothness and the B(ouligand)-
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subdifferential of the so-called squared smoothing matrix function, which are of their own theoretical

interest.

The study on smoothing Newton methods can be traced back to a nonsmooth version of Newton’s

method [26] for solving nonsmooth vector valued equations. It was later found that smoothing

techniques could be applied to the nonsmooth Newton method to improve its computational perfor-

mance. Many researchers have contributed to this area, see for example the book [11] and the refer-

ences therein. The basic idea of the smoothing Newton method is to replace the nonsmooth equation

Ψ(X) = 0 by a smoothing equation G(ε, X) = 0, where G : IR × S(n1, . . . , nm) → S(n1, . . . , nm),

such that

G(ε, Y ) → Ψ(X) , as (ε, Y ) → (0, X) .

Here the function G is required to be continuously differentiable around (ε, X) unless ε = 0. The

classical damped Newton method can then be used to solve G(ε, X) = 0 as ε ↓ 0 to get a solution

of Ψ(X) = 0. Computational results show that this type of methods is quite efficient in solving

vector complementarity problems [34].

For ε ∈ IR and X ∈ S(n1, . . . , nm), the squared smoothing function Φ : IR × S(n1, . . . , nm) →
S(n1, . . . , nm) is defined by

Φ(ε, X) := ( ε2I + X2 )1/2 , (ε, X) ∈ IR× S(n1, . . . , nm) . (7)

Then, Φ is continuously differentiable around (ε, X) unless ε = 0 and for any X ∈ S(n1, . . . , nm),

[Y + Φ(ε, Y ) ]/2 → X+ , as (ε, Y ) → (0, X) .

Thus we can use Φ to construct smoothing functions for nonsmooth systems (4) and (6). We show

that the smoothing function

G(ε, X) := X − [X − F (X) + Φ(ε, X − F (X))] /2 (8)

can be used to design a quadratically convergent algorithm for (4) and (6). We note that Chen and

Tseng [6] have developed a nice smoothing Newton method for the SDCP and reported promising

computational results. The difference between our paper and theirs is that we show the strong

semismoothness of the smoothing function, which can be utilized to establish quadratic convergence

whereas paper [6] did not prove the strong semismoothness of the smoothing function. As a result,

paper [6] needs the strict complementarity assumption and the convergence rate proved there is

only superlinear whereas we obtain quadratic rate of convergence without this assumption for the

SDCP.
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1.2 Notation and organization of the paper

The notation used is fairly standard. Generally, we use calligraphic letters for sets, capital let-

ters for matrices and matrix functions, lowercase letters for vectors, and Greek letters for scalars,

respectively. A diagonal matrix is denoted by diag (λ1, ..., λn) where λ1, ..., λn are the diagonal

entries. Similarly, a block-diagonal matrix is written as diag (B1, ..., Bm) with B1, ..., Bm being the

block matrices.

For simplicity, here and below, we will write

S : = S(n1, . . . , nm) and n : =
m∑

i=1

ni(ni + 1)/2 .

We designate by Aij or aij the (i, j)-th entry of A. For matrices A,B ∈ S, the Frobenius inner

product is defined as

A • B : = Trace (AT B) = Trace (AB) .

Consequently, the Frobenius norm of A ∈ S is

‖A‖F : = ‖A‖ : = (A • A )1/2 .

The 2-norm of a vector x is denoted by ‖x‖. Let I be the identity matrix of appropriate dimension.

This paper is organized as follows. In Section 2 we review some results on nonsmooth matrix

functions and prove the strong semismoothness of Φ defined in (7). Section 3 is devoted to char-

acterizing the B-subdifferential of Φ, which will be used in the sequel. We describe the squared

smoothing Newton method in Section 4. Applications of the smoothing Newton method to the

SDP and SDCP are discussed in Sections 5 and 6, respectively. Some final remarks are given in

Section 7.

2 Strong semismoothness of Φ(ε, X)

This section is devoted to proving the strong semismoothness of the squared smoothing function

Φ. As a preparation we introduce some basic definitions and results on a general matrix function

Ψ : S → S1, where S1 is also a symmetric block-diagonal matrix space, but could be of different

shape and size from S.

Suppose that Ψ : S → S1 is a locally Lipschitz matrix function. According to [30], Ψ is differentiable

almost everywhere. Denote the set of points at which Ψ is differentiable by DΨ and for any X ∈ DΨ,

let JΨ(X) denote the Jacobian of Ψ at X. Let ∂BΨ(X) be the B-subdifferential of Ψ at X defined
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by

∂BΨ(X) = { lim
Xk → X
Xk ∈ DΨ

JΨ(Xk) } (9)

and let ∂Ψ(X) denote the convex hull of ∂BΨ(X).

Definition 2.1 Suppose that Ψ : S → S1 is a locally Lipschitz matrix function. Ψ is said to be

semismooth at X ∈ S if Ψ is directionally differentiable at X and for any V ∈ ∂Ψ(X + H) and

H ∈ S,

Ψ(X + H)−Ψ(X)− V (H) = o(‖H ‖) .

Ψ is said to be strongly semismooth at X if Ψ is semismooth at X and

Ψ(X + H)−Ψ(X)− V (H) = O(‖H ‖2) . (10)

Instead of showing the strong semismoothness by definition, we will use the following result [30,

Theorem 3.6].

Theorem 2.2 Suppose that Ψ : S → S1 is locally Lipschitz and directionally differentiable in a

neighborhood of X. Then Ψ is strongly semismooth at X if and only if for any X + H ∈ DΨ,

Ψ(X + H)−Ψ(X)− JΨ(X + H)(H) = O(‖H ‖2) . (11)

In order to show that Φ(ε, X) satisfies (11), we will first identify the differential points of Φ. We

shall show that Φ is differentiable at (ε, X) if and only if ε2I + X2 is nonsingular. Here we view Φ

as a function from S(1, n) to S ≡ S(n). This result can be extended to the general block-diagonal

case easily. Unless stated otherwise, S is assumed to be of this simple structure here and below.

For any X ∈ S, let LX be the Lyapunov operator:

LX(Y ) : = XY + Y X, ∀ Y ∈ S

with L−1
X being its inverse (if it exists at all).

For X ∈ S, there exist an orthogonal matrix P and a diagonal matrix Λ = diag (λ1, . . . , λn) of

eigenvalues of X such that

X = PΛP T . (12)

Define three index sets associated with the eigenvalues of matrix X:

α : = { i : λi > 0 }, β : = { i : λi = 0 } and γ : = { i : λi < 0 } .
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Let κ := α ∪ γ and write

Λ =


Λα 0 0

0 Λγ 0

0 0 0

 .

Define two diagonal matrices of order |κ |:

D : =

[
Λα 0

0 Λγ

]

and |D| = (D2 )1/2, i.e.,

|D | =

[
Λα 0

0 |Λγ |

]
.

Lemma 2.3 For (ε, X) ∈ IR× S, the following statements hold.

(a) If ε2I + X2 is nonsingular, then Φ is continuously differentiable around (ε, X) and JΦ(ε, X)

satisfies the following equation

JΦ(ε, X)(τ,H) = L−1
Φ(ε,X)(LX(H) + 2ετI), ∀ (τ,H) ∈ IR× S . (13)

In particular, in this case,

‖ JΦ(ε, X)(τ,H) ‖ ≤
√

n | τ | + ‖H ‖ . (14)

(b) Φ is globally Lipschitz continuous and for any (ε, X), (τ, Y ) ∈ IR× S,

‖Φ(ε, X)− Φ(τ, Y ) ‖ ≤
√

n | ε− τ |+ ‖X − Y ‖ . (15)

(c) Φ is directionally differentiable at (0, X) and for (τ,H) ∈ IR× S,

Φ′((0, X); (τ,H)) = P

 L−1
|D|[DH̃κκ + H̃κκD] |D|−1DH̃κβ

H̃T
κβD|D|−1 ( τ2I + H̃2

ββ )1/2

P T ,

where H̃ := P T HP .

(d) Φ is differentiable at (ε, X) if and only if ε2 + X2 is nonsingular.

Proof. (a) For any C � 0, we have, by applying [33, Lemma 6.2] or direct calculation, that

( C2 + W )1/2 − C = L−1
C (W ) + o(‖W‖) for all W ∈ S sufficiently small. Then, for ε2I + X2

nonsingular (and hence positive definite), we have

Φ(ε + τ,X + H)− Φ(ε, H) = ( C2 + W )1/2 − C

= L−1
C (LX(H) + 2ετI) + O

(
τ2 + ‖H‖2

)
+ o(‖W‖) ,
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where C := Φ(ε, X) and W := LX(H) + 2ετI + τ2I + H2. Thus, Φ is continuously differentiable

around (ε, X) and

JΦ(ε, X)(τ,H) = L−1
C (LX(H) + 2ετI) .

To prove (14), we first note that

LX(H) + 2ετI = P
(
LΛ(P T HP ) + 2ετI

)
P T

and for any Y ∈ S,

L−1
C (Y ) = PL−1

Φ(ε,Λ)(P
T Y P )P T .

Thus, we have

P T JΦ(ε, X)(τ,H)P = L−1
Φ(ε,Λ)

(
LΛ(P T HP ) + 2ετI

)
.

Hence, by direct calculation, for i, j = 1, . . . , n,

(P T JΦ(ε, X)(τ,H)P )ij =

 (P T HP )ij(λi + λj)
(√

ε2 + λ2
i +

√
ε2 + λ2

j

)−1

if i 6= j(
λi(P T HP )ii + ετ

) (
ε2 + λ2

i

)−1/2 otherwise ,

which, implies that

n∑
i,j=1

((
P T JΦ(ε, X)(τ,H)P

)
ij

)2

≤ nτ2 +
n∑

i,j=1

(
(P T HP )ij

)2
.

Hence,
‖ JΦ(ε, X)(τ,H) ‖2 = ‖P T JΦ(ε, X)(τ,H)P ‖2

≤ nτ2 + ‖P T HP ‖2 = nτ2 + ‖H ‖2 .

This completes the proof of part (a).

(b) By part (a) of this lemma, for ε 6= 0 and τ 6= 0 we have

‖Φ(ε, X)− Φ(τ, Y ) ‖ = ‖Φ(| ε |, X)− Φ(| τ |, Y ) ‖

=
∥∥∥∥ ∫ 1

0
JΦ(| τ |+ t(| ε | − | τ |), Y + t(X − Y ))(| ε | − | τ |, X − Y )dt

∥∥∥∥
≤

√
n | (| ε | − | τ |) |+ ‖X − Y ‖

≤
√

n | ε− τ |+ ‖X − Y ‖ .

By a limiting process the above inequality is also true for ετ = 0. Hence, (15) holds.

(c) For any τ ∈ IR and H ∈ S and t ∈ [0,∞), let

∆(t) := Φ(tτ,X + tH)− Φ(0, X)
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and

∆̃(t) := P T ∆(t)P .

Then,
∆̃(t) = P T Φ(tτ,X + tH)P − P T Φ(X)P

=
(
t2τ2I + (P T (X + tH)P )2

)1/2
− |P T XP |

=
(
t2τ2I + ( P T XP + tP T HP )2

)1/2
− |P T XP |

=
(

t2τ2I + (Λ + tH̃)2
)1/2

− |Λ | .

Thus,

∆̃(t) =
(
|Λ|2 + W̃

)1/2
− |Λ | ,

where

W̃ : = t2τ2I + tΛH̃ + tH̃Λ + t2H̃2

and

|Λ| =

[
|D| 0

0 0

]
.

After simple computations we have

W̃ = t

 DH̃κκ + H̃κκD DH̃κβ

H̃T
κβD 0

+

 O(t2) O(t2)

O(t2) t2τ2I + t2[H̃T
κβH̃κβ + H̃2

ββ]

 . (16)

By Lemma 6.2 in Tseng [33], we have

∆̃(t)κκ = L−1
|D|(W̃κκ) + o(‖W̃‖), (17)

∆̃(t)κβ = |D|−1W̃κβ + o(‖W̃‖) (18)

and

W̃ββ = ∆̃(t)T
κβ∆̃(t)κβ + ∆̃(t)2ββ . (19)

Hence,

∆̃(t)κβ = t|D|−1DH̃κβ + o(t) , (20)

which, implies that

∆̃(t)T
κβ∆̃(t)κβ = t2H̃T

κβ(|D|−1D)2H̃κβ + o(t2) = t2H̃T
κβH̃κβ + o(t2) . (21)

According to (17) and (16),

∆̃(t)κκ = tL−1
|D|(DH̃κκ + H̃κκD) + o(t) . (22)
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Since

W̃ββ = t2τ2I + t2[H̃T
κβH̃κβ + H̃2

ββ] ,

from (19) and (21), we obtain

∆̃(t)2ββ = t2τ2I + t2H̃2
ββ + o(t2) . (23)

Furthermore, since ∆̃(τ)ββ is positive semidefinite (see the definition of ∆̃(t)), we know from (23)

that ∆̃(t)ββ is well defined and

∆̃(t)ββ = t
(

τ2I + H̃2
ββ + o(1)

)1/2
. (24)

Hence, from (22), (20), and (24),

lim
t↓0

∆̃(t)
t

=

 L−1
|D|[DH̃κκ + H̃κκD] |D|−1DH̃κβ

H̃T
κβD|D|−1 ( τ2I + H̃2

ββ )1/2

 ,

which, completes the proof of part(c).

(d) Only the “only if” part needs a proof. Obviously ε2I + X2 is nonsingular at ε 6= 0. If Φ is

differentiable at (0, X), then part (c) of this lemma shows that Φ′((0, X); (τ,H)) is a linear function

of (τ,H) only if β = ∅; i.e. only if X is nonsingular. 2

Lemma 2.3 shows that the squared smoothing matrix function Φ is directionally differentiable

everywhere and globally Lipschitz continuous. It also shows that it is differentiable at (ε, X) ∈ IR×S
if and only if ε2I + X2 is nonsingular.

The next result is vital in order to prove the strong semismoothness of Φ. By noting the fact that

I and X can be simultaneously diagonalized, we may extend the proof used in [30, Lemma 4.12]

from |X| to Φ. Here we follow the outline of a simpler proof given in [5, Proposition 4.10].

Lemma 2.4 Let X ∈ S. Then, for any τ ∈ IR and H ∈ S such that τ2I +(X +H)2 is nonsingular,

Φ is differentiable at (τ,X + H) and

Φ(τ,X + H)− Φ(0, X)− JΦ(τ,X + H)(τ,H) = O(‖∆Z ‖2) , (25)

where ∆Z := (τ,H).

Proof. Let D denote the space of n×n real diagonal matrices with non-increasing diagonal entries.

For each Y ∈ S, define

OY : = {P ∈ O : P T Y P ∈ D },
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where O := {P ∈ IRn×n : P T P = I }.

Let λ1 ≥ . . . ≥ λn denote the eigenvalues of X. By [6, Lemma 3] or [31, Proposition 4.4], there

exist scalars η > 0 and ρ > 0 such that

min
P ∈OX

‖P −Q ‖ ≤ η ‖Y −X ‖ whenever Y ∈ S, ‖Y −X ‖ ≤ ρ, Q ∈ OY .

If τ = 0, then the left hand side of (25) reduces to Ψ(X + H)−Ψ(X)− JΨ(X + H)(H), where for

each Y ∈ S, Ψ(Y ) := |Y |. Then, it follows from [30, Lemma 4.12] that (25) holds.

Suppose τ 6= 0. Let µ1 ≥ . . . ≥ µn denote the eigenvalues of X + H, and choose any Q ∈ OX+H .

Then, by (26), there exists P ∈ OX satisfying

‖P −Q ‖ ≤ η‖H ‖ .

For simplicity, let R denote the left hand side of (25), i.e.,

R : = Φ(τ,X + H)− Φ(0, X)− JΦ(τ,X + H)(τ,H) .

Letting C := Φ(τ,X +H) = ( τ2I +(X +H)2 )1/2 and noting that Q ∈ OC , we obtain from Lemma

2.3 and the formula for L−1
C given in [33, Page 171] that

JΦ(τ,X + H)(τ,H) = L−1
C [(X + H)H + H(X + H) + 2τ2I]

= Q[Ξ ◦ (QT ((X + H)H + H(X + H))Q + 2τ2I)]QT ,

where the matrix Ξ ∈ S has entries

Ξij = 1/(θi + θj)

and θi =
√

τ2 + µ2
i is the i-th eigenvalue of C. Then, letting R̃ := QT RQ and H̃ := QT HQ, we

have that

R̃ = Σ− ST ΛS − Ξ ◦ (U + 2τ2I) , (26)

where Σ := diag (
√

τ2 + µ2
1, . . . ,

√
τ2 + µ2

n), Λ := diag (λ1, . . . , λn), S := P T Q, and Uij := (µi +

µj)H̃ij for all i, j.

Since diag (µ1, . . . , µn) = QT (X + H)Q = ST diag (λ1, . . . , λn)S + H̃, we have

n∑
k=1

SkiSkjλk + H̃ij =

{
µi if i = j

0 else
, i, j = 1, . . . , n . (27)

Since S = P T Q = (P −Q)T Q + I and ‖P −Q‖ ≤ η‖H‖, it follows that

Sij = O(‖H ‖), ∀ i 6= j . (28)
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Since P,Q ∈ O, we have S ∈ O so that ST S = I. This implies

1 = S2
ii +

∑
k 6=i

S2
ki = S2

ii + O(‖H ‖2), i = 1, . . . , n (29)

and

0 = SiiSij + SijSjj +
∑

k 6=i,j

SkiSkj = SiiSij + SjiSjj + O(‖H ‖2), ∀ i 6= j . (30)

We now show that R̃ = O(‖∆Z ‖2), which, by ‖R‖ = ‖R̃‖, would prove (25). For any i ∈ {1, . . . , n},
we have from (26) and (27) that

R̃ii =
√

τ2 + µ2
i −

n∑
k=1

S2
ki|λk | −

1
2θi

(2τ2 + 2µiH̃ii)

=
√

τ2 + µ2
i −

n∑
k=1

S2
ki|λk | −

τ2

θi
− µi

θi

(
µi −

n∑
k=1

S2
kiλk

)

=
√

τ2 + µ2
i − S2

ii|λi | −
τ2

θi
− µi

θi
(µi − S2

iiλi) + O(‖H ‖2)

=
√

τ2 + µ2
i − (1 + O(‖H ‖2))|λi | −

τ2

θi
− µi

θi
(µi − (1 + O(‖H ‖2))λi) + O(‖H ‖2)

=
√

τ2 + µ2
i − |λi | −

τ2

θi
− µi

θi
(µi − λi) + O(‖H ‖2)

= f(τ, µi)− f(0, λi)− Jf(τ, µi)(τ, µi − λi) + O(‖H ‖2) , (31)

where the third and fifth equalities use (28), (29) and the fact that |µi/θi| ≤ 1. The last equality

follows by defining f(τ, µ) :=
√

τ2 + µ2. Since f is known to be strongly semismooth and, by a

result of Weyl [2, page 63],

|µi − λi | ≤ ‖H ‖, ∀ i (32)

and the right hand side of (31) is O(‖∆Z‖)2. For any i, j ∈ {1, . . . , n} with i 6= j, we have from

(26) and (27) that

R̃ij = −
n∑

k=1

SkiSkj |λk | − Ξij(µi + µj)H̃ij

= −
n∑

k=1

SkiSkj |λk |+ Ξij(µi + µj)
n∑

k=1

SkiSkjλk

= −(SiiSij |λi |+ SjiSjj |λj |) + Ξij(µi + µj)(SiiSijλi + SjiSjjλj) + O(‖H ‖2)

= − ((SiiSij + SjiSjj |λi |) + SjiSjj(|λj | − |λi |))

+Ξij(µi + µj) ((SiiSij + SjiSjj)λi + SjiSjj(λj − λi)) + O(‖H ‖2)

= −SjiSjj (|λj | − |λi | − Ξij(µi + µj)(λj − λi)) + O(‖H ‖2)

= −SjiSjj

(
|λj | − |λi | −

µj + µi

θj + θi
(λj − λi)

)
+ O(‖H ‖2) , (33)
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where the third and fifth equalities use (28), (30) and Ξij |µi + µj | ≤ 1. We have

|λj | − |λi | −
µj + µi

θj + θi
(λj − λi)

= |λj | − |λi | −
µj + µi

θj + θi
(µj − µi)−

µj + µi

θj + θi
(λj − µj + µi − λi)

= |λj | − |λi | −
(τ2 + µ2

j )− (τ2 + µ2
i )√

τ2 + µ2
j +

√
τ2 + µ2

i

− µj + µi

θj + θi
(λj − µj + µi − λi)

= |λj | − |λi | −
(√

τ2 + µ2
j −

√
τ2 + µ2

i

)
− µj + µi

θj + θi
(λj − µj + µi − λi). (34)

Since |µj +µi|/(θj +θi) ≤ 1 and | |λk |−
√

τ2 + µ2
k | = | ‖(0, λk)‖−‖(τ, µk)‖ | ≤ | (0, λk)− (τ, µk) | ≤

|τ | + |λk − µk| for k ∈ {i, j}, we see from (32) that the right hand side of (34) is O(|τ | + ‖H‖).
This, together with (28), implies the right hand side of (33) is O(‖H‖(|τ | + ‖H‖)). The proof is

completed. 2

According to Theorem 2.2 and Lemmas 2.3 and 2.4, we obtain the following main result of this

section.

Theorem 2.5 The squared smoothing matrix function Φ is strongly semismooth at (0, X) ∈ IR×S.

The theorem above provides a basis for quadratic convergence of the squared smoothing Newton

method for the SDCP, which is to be discussed in Section 5.

3 Properties of the B-subdifferential of Φ

In this section, we shall discuss some properties of the B-subdifferential of the squared smoothing

function Φ at (0, X) ∈ IR × S. These properties play a key role in the proof of nonsingularity of

the Jacobians arising from the SDP and the SDCP. Assume that X has the eigen-decomposition

as in (12), i.e.,

X = PΛP T ,

where P is an orthogonal matrix and Λ is the diagonal matrix of eigenvalues of X and has the form

Λ =


Λα 0 0

0 Λγ 0

0 0 0

 .

Partition the orthogonal matrix P according to

P = [ Wα Wγ Wβ ] ,

12



with Wα ∈ IRn×|α|, Wγ ∈ IRn×|γ| and Wβ ∈ IRn×|β|.

Recall that the critical cone of S+ := {X � 0 : X ∈ S } at X ∈ S is defined as:

C(X;S+) := T (X+;S+) ∩ ( X+ −X )⊥ ,

where T (X+;S+) is the tangent cone of S+ at X+ and (X+ −X)⊥ is the subset of matrices in S
that are orthogonal to (X+ −X) under the matrix Frobenius inner product. The critical cone can

be completely described [3, 9] by

C(X;S+) = {Y ∈ S : W T
γ Y Wγ = 0, W T

γ Y Wβ = 0, W T
β Y Wβ � 0 } . (35)

Consequently, the affine hull of C(X;S+), which we denote L(X;S+), is the linear subspace

{Y ∈ S : W T
γ Y Wγ = 0, W T

γ Y Wβ = 0 } .

Proposition 3.1 For any (0,H) ∈ IR× S and V ∈ ∂BΦ(0, X), it holds that

V (0,H) = P (Ω ◦ P T HP )P T , (36)

H + V (0,H) ∈ L(X;S+) (37)

and

[H − V (0,H)] • [H + V (0,H)] ≥ 0 , (38)

where ◦ denotes the Hadamard product and the matrix Ω ∈ S has entries

ωij =


t ∈ [−1, 1] if (i, j) ∈ (β, β)

λi + λj

|λi|+ |λj |
otherwise .

Proof. Let V ∈ ∂BΦ(0, X). By Lemma 2.3 and the definition of the elements in ∂BΦ(0, X),

it follows that there exists a sequence {(εk, Xk)} converging to (0, X) with (εk)2I + (Xk)2 being

nonsingular such that

V (0,H) = lim
k→∞

JΦ(εk, Xk)(0,H) = lim
k→∞

L−1
Ck (LXk(H)) ,

where Ck := Φ(εk, Xk). Let Xk = P k Λk (P k)T be the orthogonal decomposition of Xk, where Λk

is the diagonal matrix of eigenvalues of Xk and P k is a corresponding orthogonal matrix. Without

loss of generality, by taking subsequences if necessary, we may assume that {P k} is a convergent

sequence with limit P = lim
k→∞

P k and Λ = lim
k→∞

Λk (clearly X = PΛP T ). Then,

lim
k→∞

Λk
β = 0 .

13



For any H ∈ S with H̃k := (P k)T HP k, we have

LCk

(
JΦ(εk, Xk)(0,H)

)
= LXk(H) ,

i.e., (
(εk)2I + (Λk)2

)1/2
Ũk + Ũk

(
(εk)2I + (Λk)2

)1/2
= ΛkH̃k + H̃kΛk ,

where Ũk := (P k)T
[
JΦ(εk, Xk)(0,H)

]
P k. By denoting C̃k := ( (εk)2I + (Λk)2 )1/2, we have


C̃k

ααŨk
αα + Ũk

ααC̃k
αα C̃k

ααŨk
αγ + Ũk

αγC̃k
γγ C̃k

ααŨk
αβ + Ũk

αβC̃k
ββ

C̃k
γγŨk

γα + Ũk
γαC̃k

αα C̃k
γγŨk

γγ + Ũk
γγC̃k

γγ C̃k
γγŨk

γβ + Ũk
γβC̃k

ββ

C̃k
ββŨk

βα + Ũk
βαC̃k

αα C̃k
ββŨk

βγ + Ũk
βγC̃k

γγ C̃k
ββŨk

ββ + Ũk
ββC̃k

ββ



=


Λk

αH̃k
αα + H̃k

ααΛk
α Λk

αH̃k
αγ + H̃k

αγΛk
β Λk

αH̃k
αβ + H̃k

αβΛk
γ

Λk
γH̃k

γα + H̃k
γαΛk

α Λk
γH̃k

γγ + H̃k
γγΛk

γ Λk
γH̃k

γβ + H̃k
γβΛk

β

Λk
βH̃k

βα + H̃k
βαΛk

α Λk
βH̃k

βγ + H̃k
βγΛk

γ Λk
βH̃k

ββ + H̃k
ββΛk

β

 .

For each k, define the matrix Ωk ∈ S with entries

ωk
ij =

(√
(εk)2 + (λk

i )2 +
√

(εk)2 + (λk
j )2
)−1

(λk
i + λk

j ), i, j = 1, . . . , n .

Since {Ωk} is bounded, by taking a subsequence if necessary, we assume that {Ωk} is a convergent

sequence and

lim
k→∞

Ωk = Ω .

Hence, it follows that

lim
k→∞

Ũk = lim
k→∞

Ωk ◦ H̃k = Ω ◦ H̃ ,

which, proves (36). Hence,

P T V (0,H)P =


H̃αα Ωαγ ◦ H̃αγ H̃αβ

H̃T
αγ ◦ ΩT

αγ −H̃γγ −H̃γβ

H̃T
αβ −H̃T

γβ Ωββ ◦ H̃ββ

 .

Let E ∈ S be the matrix whose entries are all ones. Thus,

P T [H + V (0,H)]P =


2H̃αα (Ωαγ + Eαγ) ◦ H̃αγ 2H̃αβ

H̃T
αγ ◦ (Ωαγ + Eαγ)T 0 0

2H̃T
αβ 0 (Ωββ + Eββ) ◦ H̃ββ

 (39)
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and

P T [H − V (0,H)]P =


0 (Eαγ − Ωαγ) ◦ H̃αγ 0

H̃T
αγ ◦ (Eαγ − Ωαγ)T 2H̃γγ 2H̃γβ

0 2H̃T
γβ (Eββ − Ωββ) ◦ H̃ββ

 .

(40)

Hence, from (39), we get

W T
γ [H + V (0,H)]Wγ = 0 and W T

γ [H + V (0,H)]Wβ = 0 ,

which, proves (37).

By noting the fact that ωij ∈ [−1, 1] for all i, j = 1, . . . , n, from (39) and (40), we obtain

[H − V (0,H)] • [H + V (0,H)]

=
(
P T [H − V (0,H)]P

)
•
(
P T [H + V (0,H)]P

)
=

∑
i∈α, j∈γ

2(1− ωij)(1 + ωij)H̃2
ij +

∑
i∈β, j∈β

(1− ωij)(1 + ωij)H̃2
ij

≥ 0 ,

which, proves (38). This completes the proof. 2

4 The squared smoothing Newton method

Let Ψ : S(n1, . . . , nm) → S(n1, . . . , nm) be locally Lipschitz continuous. Let G : IR×S(n1, . . . , nm) →
S(n1, . . . , nm) be an approximate function of Ψ such that G is continuously differentiable around

(ε, X) ∈ IR× S(n1, . . . , nm) unless ε = 0 and

lim
(ε,Y )→(0,X)

G(ε, Y ) = Ψ(X) .

The existence of such a G was proved in [29] for vector valued functions. It can be easily extended

to matrix valued functions by making use of the isometry between IRn and S(n1, . . . , nm). For the

SDP and the SDCP, there are many choices for G. In particular, a computationally efficient form

for the SDCP is

G(ε, X) := X − [X − F (X) + Φ(ε, X − F (X))] /2 . (41)

The squared smoothing Newton method, in particular, solves the auxiliary equation

E(ε, X) :=
[

ε
G(ε, X)

]
= 0 (42)
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and uses the merit function φ(Z) := ε2 + ‖G(Z)‖2 for the line search, where Z := (ε, X).

Let ε̄ ∈ IR++ and η ∈ (0, 1) be such that ηε̄ < 1. Define an auxiliary point Z̄ by

Z̄ : = (ε̄, 0) ∈ IR× S(n1, . . . , nm)

and θ : IR× S(n1, . . . , nm) 7→ IR+ by

θ(Z) := η min{1, φ(Z)} .

Let

N : = {Z = (ε, X) ∈ IR× S(n1, . . . , nm) : ε ≥ θ(Z)ε̄ } .

Algorithm 4.1

Step 0. Select constants δ ∈ (0, 1) and σ ∈ (0, 1/2). Let ε0 := ε̄, X0 ∈ S(n1, . . . , nm) be an

arbitrary point and k := 0.

Step 1. If E(Zk) = 0, then stop. Otherwise, let θk := θ(Zk).

Step 2. Compute ∆Zk := (∆εk,∆Xk) ∈ IR× S(n1, . . . , nm) by

E(Zk) + JE(Zk)(∆Zk) = θkZ̄ . (43)

Step 3. Let lk be the smallest nonnegative integer l satisfying

φ(Zk + δl∆Zk) ≤ [ 1− 2σ(1− ηε̄)δl ]φ(Zk) . (44)

Define Zk+1 := Zk + δlk∆Zk.

Step 4. Replace k by k + 1 and go to Step 1.

Theorem 4.2 Assume that

(i) for every k ≥ 0, if εk ∈ IR++ and Zk ∈ N , then JE(Zk) is nonsingular; and

(ii) for any accumulation point Z∗ = (ε∗, X∗) of {Zk} if ε∗ > 0 and Z∗ ∈ N , then JE(Z∗) is

nonsingular.

Then an infinite sequence {Zk} is generated by Algorithm 4.1 and each accumulation point Z∗ of

{Zk} is a solution of E(Z) = 0. Moreover, if E is strongly semismooth at Z∗ and if all V ∈ ∂BE(Z∗)

are nonsingular, then the whole sequence {Zk} converges to Z∗,

‖Zk+1 − Z∗ ‖ = O(‖Zk − Z∗ ‖2) (45)
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and

εk+1 = O((εk)2) . (46)

The vector version of the above convergence result is proved in [25], where the smoothing parameter

is a vector rather than a scalar. However, the proof was independent of the dimension of the

parameter vector. Therefore, with a slight revision if necessary, its matrix version can be established

similarly. For brevity we omit the proof.

The key conditions for quadratic convergence of Algorithm 4.1 are: (a) the strong semismoothness

of the smoothing function E and (b) the nonsingularity of all V ∈ ∂BE(Z∗) (in [25], ∂E(Z∗),

rather than ∂BE(Z∗), was used. However, it is easy to check the convergence properties are still

valid if we replace ∂E(Z∗) by ∂BE(Z∗) in the analysis). In the subsequent sections we will provide

sufficient conditions for (b) to hold in the cases of SDP and SDCP where (a) is naturally implied

by the strong semismoothness of Φ.

5 Application to the SDP

In this section we shall show how to use Algorithm 4.1 to solve (4), which constitutes the optimality

conditions of the semidefinite programming. For this purpose, we assume that {Ai}m
i=1 are linearly

independent, i.e., any α ∈ IRm satisfying
∑m

i=1 αiAi = 0 implies αi = 0, i = 1, . . . ,m.

Define A : S → IRm as follows

A(X) :=


A1 • X

...

Am • X

 , X ∈ S .

Then solving (4) is equivalent to finding a solution to

Ψ(X, y, S) :=


A(X)− b

m∑
i=1

yiAi + S − C

X − [X − S]+

 = 0, (X, y, S) ∈ S × IRm × S . (47)

Define G : IR× S × IRm × S → IRm × S × S as follows

G(ε, X, y, S) :=


A(X)− b

m∑
i=1

yiAi + S − C

X − [X − S + Φ(ε, X − S)] /2

 . (48)
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Then G is continuously differentiable around (ε, X, y, S) with ε 6= 0. Let

E(ε, X, y, S) :=
[

ε
G(ε, X, y, S)

]
. (49)

Hence, finding a solution of Ψ(X, y, S) = 0 is equivalent to finding a solution of E(ε, X, y, S) = 0.

Similar smoothing functions for the SDP are first used in [6] and very recently in [15]. Based on

these smoothing functions, smoothing Newton methods are also designed in [6, 15]. The major

differences between our method and those in [6, 15] in the context of SDP are: (i) our algorithm

needs to solve only one linear system per iteration while the methods in [6, 15] need to solve two; (ii)

quadratic convergence has been established for our algorithm while only superlinear convergence

has been established for methods in [6, 15]; and (iii) numerical results are reported in [6, 15] while

our paper is focused on theoretical analysis.

The next result shows that JE(ε, X, Y, S) is nonsingular at (ε, X, y, S) ∈ IR × S × IRm × S with

ε 6= 0. Similar proofs can be found in [32, 6, 15].

Proposition 5.1 For any (ε, X, y, S) ∈ IR×S× IRm×S with ε 6= 0, JE(ε, X, Y, S) is nonsingular.

Proof. By Lemma 2.3, we know that JE(ε, X, Y, S) exists. Suppose that there exists (τ,H, z, T ) ∈
IR× S × IRm × S such that

JE(ε, X, Y, S)(τ,H, z, T ) = 0 ,

i.e., 

τ

A(H)
m∑

i=1

ziAi + T

H − [H − T + JΦ(ε, X − S)(τ,H − T )] /2


= 0 , (50)

which, implies that

τ = 0 and 2H − [H − T + JΦ(ε, X − S)(0,H − T )] = 0 .

Hence, by Lemma 2.3,

2H −
[
H − T + L−1

Φ(ε,X−S)L(X−S)(H − T )
]

= 0 ,

which, implies that

LΦ(ε,X−S)(H + T ) = L(X−S)(H − T ) ,
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i.e.,(
ε2I + (X − S)2

)1/2
(H+T ) + (H+T )

(
ε2I + (X − S)2

)1/2
= (X−S)(H−T ) + (H−T )(X−S) .

Since X − S ∈ S, there exist an orthogonal matrix P and a diagonal matrix Λ of eigenvalues of

X − S such that

X − S = PΛP T .

By denoting H̃ := P T HP and T̃ := P T TP , we have

( ε2I + Λ2 )1/2 (H̃ + T̃ ) + (H̃ + T̃ )( ε2I + Λ2 )1/2 = Λ(H̃ − T̃ ) + (H̃ − T̃ )Λ .

Hence,

H̃ + T̃ = Ω ◦ (H̃ − T̃ ) ,

where the matrix Ω ∈ S has entries

ωij =
(√

ε2 + λ2
i +

√
ε2 + λ2

j

)−1

(λi + λj), i, j = 1, . . . , n .

Thus,

H̃ = Ω̃ ◦ T̃ ,

where the matrix Ω̃ ∈ S has entries

ω̃ij =
(

λi + λj −
√

ε2 + λ2
i −

√
ε2 + λ2

j

)−1 (
λi + λj +

√
ε2 + λ2

i +
√

ε2 + λ2
j

)
,

where i, j = 1, . . . , n. From (50), we know that

Ai • H = 0, i = 1, . . . ,m and
m∑

i=1

ziAi + T = 0 ,

which, implies that

T • H =
m∑

i=1

ziAi • H + T • H =

(
m∑

i=1

ziAi + T

)
• H = 0 .

Hence,

0 = T • H = T̃ • H̃ = T̃ • (Ω̃ ◦ T̃ ) ,

which, together with the fact that ω̃ij < 0 for all i and j, implies that T̃ = 0. Thus,

H̃ = Ω̃ • T̃ = 0 and T = H = 0 .

From the linear independence of {Ai}m
i=1 and that fact

∑m
i=1 ziAi + T = 0, we can conclude that

z = 0. This shows that JE(ε, X, y, S) is nonsingular. 2

Proposition 5.1 shows that Algorithm 4.1 is well defined when it is applied to the SDP. We state it

formally in the following theorem. Its proof is a direct application of Theorem 4.2 and Proposition

5.1.
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Theorem 5.2 If Algorithm 4.1 is applied to the SDP, then an infinite sequence {Zk} is generated

and each accumulation point Z∗ of {Zk} is a solution of E(Z) = 0.

For local convergence analysis of Algorithm 4.1 for the SDP, we need the nonsingularity of ∂BE(Z∗)

at a solution Z∗ of E(Z) = 0. Next, we discuss a sufficient condition to guarantee the nonsingularity

of ∂BE(Z∗) at a strict complementary and nondegenerate solution Z∗ = (0, X∗, y∗, S∗) of E(Z) = 0,

i.e., Z∗ satisfies the following two conditions: (a) X∗+S∗ � 0 and (b) for any (H, z, T ) ∈ S×IRm×S
satisfying

A(H) = 0,
m∑

i=1

ziAi + T = 0 and X∗T + HS∗ = 0 ,

it holds that H = T = 0. Condition (a) is called the strict complementarity, under which E

is continuously differentiable around Z∗. Condition (b) was first introduced by Kojima, Shida

and Shindoh [16] for local analysis of interior-point methods. Conditions (a) and (b) are also

used in non-interior point methods for solving the SDP [6, 15]. See [1] for a discussion on strict

complementarity and nondegeneracy cobditions in the SDP.

Proposition 5.3 Let Z∗ = (0, X∗, y∗, S∗) ∈ IR × S × IRm × S be a strict complementary and

nondegenerate solution of E(Z) = 0. Then JE(Z∗) is nonsingular.

Proof. Since (X∗, y∗, S∗) is a solution to the SDP, we have

X∗ � 0, S∗ � 0, X∗S∗ = S∗X∗ = 0 ,

which, implies that there exists an orthogonal matrix P such that

X∗ = P ∆ P T and S∗ = P Σ P T ,

where ∆ = diag (δ1, . . . , δn) and Σ = diag (σ1, . . . , σn) are two positive semidefinite diagonal

matrices and δiσi = 0, i = 1, . . . , n, where δ1, . . . , δn and σ1, . . . , σn are eigenvalues of X∗ and

S∗, respectively. By using the fact that X∗ + S∗ � 0, we also have

δi + σi > 0, i = 1, . . . , n .

Denote Λ := ∆− Σ. Then, Λ = diag (λ1, . . . , λn) is nonsingular and

X∗ − S∗ = P Λ P T ,

where λi = δi − σi, i = 1, . . . , n.
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Suppose that there exists (τ,H, z, T ) ∈ IR× S × IRm × S such that

JE(0, X∗, y∗, S∗)(τ,H, z, T ) = 0 .

We have τ = 0 and 
A(H)

m∑
i=1

ziAi + T

H + T − JΦ(0, X∗ − S∗)(0,H − T )

 = 0 . (51)

In particular, from the third equality of (51), we obtain

P T (H + T )P − P T JΦ(0, X∗ − S∗)(0,H − T ) P = 0 ,

which, together with Proposition 3.1, implies that

H̃ + T̃ = P T JΦ(0, X∗ − S∗)(0,H − T ) P = Ω ◦ (H̃ − T̃ ) ,

where H̃ := P T HP , T̃ = P T TP and Ω ∈ S has entries

ωij =
λi + λj

|λi | + |λj |
, i, j = 1, . . . , n .

Hence,

(E − Ω) ◦ H̃ + T̃ ◦ (E + Ω) = 0 , (52)

where E ∈ S denotes the matrix whose entries are all ones. Denote two index sets

α : = {λi : λi > 0 } and γ : = {λi : λi < 0 } .

By noting the fact that λi = δi if λi > 0 and λi = −σi if λi < 0 and α ∪ γ = {1, . . . , n}, from (52),

we have

T̃ij = 0 ∀ (i, j) ∈ (α, α); H̃ijσj + T̃ijδi = 0 ∀ (i, j) ∈ (α, γ) and H̃ij = 0 ∀ (i, j) ∈ (γ, γ) .

Thus,

∆T̃ + H̃Σ = 0 ,

i.e.,

X∗T + HS∗ = 0 ,

which, together with the first and second equalities of (51) and the non-degeneracy assumption at

Z∗, shows that

H = T = 0.

The linear independence of {Ai}m
i=1 and that fact that T = 0 imply z = 0. Hence, JE(Z∗) is

nonsingular. 2

We can now state quadratic convergence of Algorithm 4.1 for solving the SDP, which does not

require a proof.
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Theorem 5.4 If an accumulation point Z∗ of {Zk} generated by Algorithm 4.1 for solving the

SDP is a strict complementary and nondegenerate solution of E(Z) = 0, then the whole sequence

{Zk} converges to Z∗ with

‖Zk+1 − Z∗ ‖ = O(‖Zk − Z∗ ‖2) (53)

and

εk+1 = O((εk)2) . (54)

In the above theorem for the SDP, we need the non-degeneracy to prove quadratic convergence

of Algorithm 4.1. In the next section, we shall show that, for the SDCP, this assumption can be

replaced by the positive definiteness of the Jacobian of the problem on a certain subspace.

6 Application to the SDCP

In this section, we shall deduce quadratic convergence of the squared smoothing Newton method

in solving the SDCP. We first prove a result on the generalized Jacobian for a composite function.

Proposition 6.1 Let F : S → S1 be continuously differentiable on an open neighborhood N of X

and Ψ : S1 → S2 be locally Lipschitz continuous and semismooth on an open neighborhood of F (X).

Then, for any H ∈ S, it holds that

∂B( Ψ ◦ F )(X)(H) ⊆ ∂BΨ(F (X)) ◦ JF (X)(H), (55)

where ◦ stands for composition.

Proof. Let Υ := Ψ ◦ F . Then Υ is differentiable almost everywhere in N . For any V ∈ ∂BΥ(X),

there exists a sequence of differentiable points {Xk} ⊂ N of Υ converging to X such that

V = lim
k→∞

JΥ(Xk) .

Since Ψ is directionally differentiable on an open neighborhood of F (X), for any H ∈ S,

JΥ(Xk)(H) = Ψ′(F (Xk); JF (Xk)(H)) .

Since Ψ is semismooth at F (Xk), there exists a W ∈ ∂BΨ(F (Xk)) such that

Ψ′(F (Xk); JF (Xk)(H)) = W ◦ JF (Xk)(H).

Thus,

JΥ(Xk)(H) ∈ ∂BΨ(F (Xk)) ◦ JF (Xk)(H) ,
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which, together with the upper semicontinuity of ∂B, implies

lim
k→∞

JΥ(Xk)(H) ∈ ∂BΨ(F (X)) ◦ JF (X)(H) .

This proves (55). 2

In the following analysis, we assume that F : S → S is continuously differentiable and E : IR×S →
IR× S is defined as

E(ε, X) =
[

ε
G(ε, X)

]
, (ε, X) ∈ IR× S , (56)

where G : IR× S → S is defined by (41), i.e.,

G(ε, X) = X − [X − F (X) + Φ(ε, X − F (X))] /2

and for any Y ∈ S,

Φ(ε, Y ) = ( ε2I + Y 2 )1/2 .

Then solving the SDCP is equivalent to solving the following equation

E(ε, X) = 0 . (57)

The next result is on the nonsingularity of the B-subdifferential of E at (0, X) ∈ IR× S.

Proposition 6.2 Suppose that for a given X ∈ S, the Jacobian JF (X) of F at X is positive

definite on the linear subspace L(X − F (X);S+), the affine hull of C(X − F (X);S+). Then all

U ∈ ∂BE(0, X) are nonsingular.

Proof. Let U be an element of ∂BE(0, X). Assume that (τ,H) ∈ IR×S is such that U(τ,H) = 0.

Then, from the definition of the B-subdifferential of E, we know that τ = 0 and there exists a

W ∈ ∂BG(0, X) such that W (0,H) = 0. By Proposition 6.1, there exists a V ∈ ∂BΦ(0, X −F (X))

such that

W (0,H) = H − [H − JF (X)(H) + V (0,H − JF (X)(H))]/2 ,

which, together with the fact that W (0,H) = 0, implies that

2H − [H − JF (X)(H)]− V (0,H − JF (X)(H)) = 0 .

Let H := H − JF (X)(H). We have

2H = H + V (0, H) (58)

and

2
[
H + JF (X)

(
(H + V (0, H))/2

)]
−H − V (0, H) = 0 ,

23



i.e.,

H − V (0, H) + JF (X)(H + V (0, H)) = 0 ,

which, implies that

[H + V (0, H)] • [H − V (0, H)] + [H + V (0, H)] • [JF (X)(H + V (0, H))] = 0 . (59)

By Proposition 3.1, (59), and the assumption that JF (X) is positive definite on L(X−F (X);S+),

we conclude that

H + V (0, H) = 0 ,

which, together with (58), implies that H = 0. This shows that for any (τ,H) ∈ IR× S satisfying

U(τ,H) = 0, one has (τ,H) = 0. Hence, U is nonsingular. The proof is completed. 2

Finally, we can state quadratic convergence of the squared smoothing Newton method for solving

the SDCP.

Theorem 6.3 Suppose that F : S → S is continuously differentiable on S. Suppose that for each

X ∈ S, JF (X) is positive semidefinite. Then an infinite sequence {Zk} is generated by Algorithm

4.1 for solving (57) and each accumulation point Z∗ of {Zk} is a solution of E(Z) = 0. Moreover,

if JF (·) is Lipschitz continuous around X∗ and JF (X∗) is positive definite on the linear subspace

L(X∗−F (X∗);S+), the affine hull of C(X∗−F (X∗);S+), then the whole sequence {Zk} converges

to Z∗,

‖Zk+1 − Z∗‖ = O(‖Zk − Z∗‖2) (60)

and

εk+1 = O((εk)2) . (61)

Proof. For any ε 6= 0 and X ∈ S, by Lemma 2.3, E is continuously differentiable around (ε, X).

It can be checked easily that JE(ε, X) is nonsingular if and only if JG(ε, X)(0,H) = 0 implies

H = 0. It has been shown by Chen and Tseng [6] that the latter is true. Thus, for any ε 6= 0

and X ∈ S, JE(ε, X) is nonsingular. By Theorem 4.2, an infinite sequence {Zk} is generated by

Algorithm 4.1 and each accumulation point Z∗ of {Zk} is a solution of E(Z) = 0.

If JF (·) is Lipschitz continuous around X∗, then by Theorem 2.5 and a property on the strong

semismoothness of a composite function (originally due to Fischer [10], for the matrix version,

see [30, Theorem 3.10]), we know that E is strongly semismooth at (0, X∗). Furthermore, by

Proposition 6.2 , all U ∈ ∂BE(0, X∗) are nonsingular. Thus, by Theorem 4.2, the whole sequence

{Zk} converges to Z∗, and (60) and (61) hold. 2
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7 Conclusions

We have studied quadratic convergence of a squared smoothing Newton method for nonsmooth

matrix equations. For the SDCP, the strong semismoothness of G, together with the positive

definiteness of JF (X∗) on the affine hull of C(X∗−F (X∗);S+), implies that the proposed algorithm

has quadratic rate of convergence without requiring the strict complementarity.

There are several possible directions to extend our work. One direction is to study the strong

semismoothness of other smoothing functions used in [6] and then to improve the local analysis in

[6]; another direction is to relax the nonsingularity condition on the Jacobians. It is also possible to

use some regularization techniques, for example, the Tikhonov-type regularization, to get stronger

global convergence results as has been done for vector valued complementarity problems [8, 28].
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