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Abstract

In this paper, we consider a class of quadratic maximization problems. One important instance
in that class is the famous quadratic maximization formulation of the max-cut problem studied
by Goemans and Williamson [6]. Since the problem is NP-hard in general, following Goemans
and Williamson, we apply the approximation method based on the semidefinite programming
(SDP) relaxation. For a subclass of the problems, including the ones studied by Helmberg [9]
and Zhang [23], we show that the SDP relaxation approach yields an approximation solution with
the worst-case performance ratio at least α = 0.87856 · · ·. This is a generalization of the results
obtained in [6, 9, 23]. In fact, the estimated worst-case performance ratio is dependent on the
data of the problem with α being a uniform lower bound. In light of this new bound, we study
the original max-cut problem and show that the actual worst-case performance ratio of the SDP
relaxation approach (with the triangle inequalities added) is at least α + δd, where δd > 0 is a
constant depending on the problem dimension and data. Karloff [10] showed that for any positive
ε > 0 there is an instance of the max-cut problem such that the SDP relaxation (with triangle
inequalities) bound is worse than α + ε. Hence the improvement is in this sense best possible for
the Goemans and Williamson type approach to the max-cut problem.
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1. Introduction

One of the recent ground-breaking works in approximation algorithms for combinatorial optimization
is the seminal paper by Goemans and Williamson [6] (1995), in which a semidefinite programming
relaxation is proposed for the quadratic maximization formulation of the classical NP-hard max-cut
problem, followed by a novel randomized rounding scheme. Goemans and Williamson managed to
show that this procedure gives an approximate solution for the max-cut problem with the worst-
case performance ratio guaranteed to be no less than 0.87856 · · ·, denoted by α in this paper. Soon it
turned out that the bound α is essentially tight for the Goemans-Williamson approach. In particular,
Karloff [10] shows that for any positive ε > 0 there exists an instance of the max-cut problem such
that the optimal value of the corresponding SDP relaxation is large than 1/(α+ ε) times the optimal
max-cut value. Up to date, no known polynomial-time approximation algorithm solves the max-cut
problem with a guaranteed worst-case performance ratio substantially better than α. On the negative
side, H̊astad [8] shows that it is NP-hard to approximate the max-cut problem with a guaranteed
worst case bound more than 16/17 + ε = 0.94117 · · · + ε, where ε > 0 is any fixed positive constant.

The technique introduced by Goemans and Williamson has found applications in many other com-
binatorial optimization problems. For surveys on the subject, see [5, 7, 9, 12, 16, 19]. The power of
the method has also been extended to more general non-convex quadratic programming problems;
see [9, 13, 14, 15, 18, 20, 21, 23]. As a consequence of their rank-1 matrix decomposition technique,
Sturm and Zhang [17] show that the SDP relaxation can be exact for some interesting quadratic
optimization problems. Tseng [18], and Ye and Zhang [22] further extend the results for quadratic
optimization problems. Zhang [23] studies the quality of the SDP relaxation method under various
assumptions on the structure of the quadratic maximization problem. In particular, it turns out that
the worst-case performance ratio α holds whenever a certain off-diagonal nonpositivity (termed OD
nonpositivity in the remainder of the paper) condition in the cost matrix is satisfied. Moreover, it
is shown that the SDP relaxation is actually exact whenever the cost matrix is off-diagonally non-
negative (termed OD nonnegative). The last result was extended by Kim and Kojima [11], where
they show that a simpler second-order cone relaxation is in fact already exact.

For the max-cut problem itself, Goemans and Williamson [6] show that their rounding algorithm
behaves even better if the percentage of edges in the cut is relatively high, or more precisely, if the
cut contains more than 85% of the total weight of the edges. Using outward rotations, Zwick [24]
obtains an approximation algorithm for max-cut and the performance guarantee is strictly greater
than α, unless the maximum cut of the input graph contains about 84.458% of the total weight of
the edges of the graph. Feige and Langberg [3] present a procedure called RPR2 (Random Projection
followed by Randomized Rounding) for rounding the solution of semidefinite programs and improve
the tradeoff curve (presented by Zwick) for max-cut. In general, however, the approximation ratio
remains α.
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In this paper we mainly present three new results for quadratic maximization. In Section 2, we discuss
some special cases of quadratic maximization problems where the signs in the constraint matrix are
structured. We show that the SDP relaxation approach has a worst-case bound α for these problem
instances. The result can be considered as generalizations of the ones established in [9] and [23]. In
Section 3 we show that if the constraint matrix is indeed OD nonpositive, then the SDP relaxation
bound can be estimated using the SDP optimal solution itself, with α as a uniform lower bound of
the new estimated bound. This analysis relies on the convexity of a related value function. Making
further use of the convexity we prove in Section 4 that the true approximation ratio for the max-
cut problem is α + δ where δ > 0 is in the order of Ω( 1

n2L
) with L denoting the ratio between the

maximum weight and the minimum weight, if we add the triangle inequalities in the SDP relaxation
and assume that every weight is strictly positive. We remark here that recently Feige, Karpinski and
Langberg [2] show that if the degree of the graph is at most Δ, then the SDP relaxation approach
yields an approximation bound α + Ω( 1

Δ4 ), a result with an accent similar to ours.

Throughout, �n denotes the space of n-dimensional Euclidean space; Sn denotes the space of n × n

real symmetric matrices; T denotes the transpose operation for a matrix. We denote ei ∈ �n as
the i-th unit vector, i.e. the vector whose i-th component is 1 and all other components are zeros.
For any x ∈ �n, we denote xi as the i-th component of x. For A ∈ �n×n, Aij denotes the (i, j)-th
entry of A and diag(A) denotes an n-dimensional vector formed by the diagonal elements of A. For
A, B ∈ Sn, we denote 〈A, B〉 =

∑
i,j AijBij as the inner-product between A and B. We denote

A � B (respectively A � B) by the fact that A − B is positive semidefinite (respectively positive
definite). For a given one-dimensional function f , we denote f(A) to be [f(Aij)]n×n. In particular,
for a ∈ �n, we write a2 to denote the n-dimensional vector which is component-wise square of a. For
a given vector d, we use the capitalized letter D to denote the diagonal matrix which takes d as its
diagonal elements.

2 Quadratic maximization and its approximation

Consider the follow quadratic maximization problem

(QP ) maximize xT Qx

subject to x2 ∈ F ,

where F is a closed convex subset of �n, and Q is an arbitrary symmetric matrix.

A related nonlinear semidefinite programming formulation is given as follows:

(SP ) maximize 2
π 〈Q, D arcsin(X)D〉

subject to d ≥ 0, d2 ∈ F
X � 0, diag(X) = e,
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where arcsin(X) := [arcsin(Xij)]n×n and e denotes the all-one vector.

Let v(QP ) denote the optimal value of (QP ) and v(SP ) denote the optimal value of (SP ). It can be
shown that these two optimal values coincide; see e.g. [23].

Theorem 2.1 It holds that v(QP ) = v(SP ).

Consider a relaxed semidefinite maximization problem:

(R) maximize 〈Q, Z〉
subject to diag(Z) ∈ F

Z � 0.

It follows that
v(SP ) ≤ v(R). (2.1)

Because F is a closed convex set, (R) is a well-formulated convex optimization problem.

If Q � 0, Nesterov [14] proved that

v(QP ) ≥ 2
π

v(R). (2.2)

The solution of (R) functions as a good upper bound for (QP ) whereas (QP ) itself is in general an
NP-hard problem. Based on the solution for (R), one obtains an approximative solution for (QP )
with the worst-case performance ratio being 2/π = 0.63661 · · ·. Before proceeding let us introduce
some terms used in [23].

Definition 2.2 We call a symmetric matrix Q = [qij ]n×n OD-nonnegative if qij ≥ 0 for all i, j =
1, · · · , n, and i 
= j. Let the set of all OD-nonnegative matrices be denoted by ODP.

Definition 2.3 We call a symmetric matrix Q = [qij ]n×n OD-nonpositive if qij ≤ 0 for all i, j =
1, · · · , n, and i 
= j. Let the set of all OD-nonpositive matrices be denoted by ODN.

A slight extension of the OD-signed constrained matrices are the following classes of matrices.

Definition 2.4 We call a symmetric matrix Q = [qij ]n×n almost OD-nonnegative if there exists a
sign vector σ ∈ {−1, +1}n such that

qijσiσj ≥ 0

for all i, j = 1, · · · , n, and i 
= j.
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Definition 2.5 We call a symmetric matrix Q = [qij ]n×n almost OD-nonpositive if there exists a
sign vector σ ∈ {−1, +1}n such that

qijσiσj ≤ 0

for all i, j = 1, · · · , n, and i 
= j.

In [23], Zhang proved that v(QP ) = v(SP ) = v(R) if Q is almost OD-nonnegative, and v(QP ) =
v(SP ) ≥ αv(R) if Q � 0 is almost OD-nonpositive where α = 0.87856 · · ·. The last statement is an
improvement on the bound (2.2) under the sign condition.

Along a similar line, Helmberg [9] observes that v(QP ) ≥ αv(R) holds if Q is in the matrix cone
generated by the n × n rank-1 positive semidefinite matrices

(δiei + δjej)(δiei + δjej)T (2.3)

where δi, δj ∈ {−1, +1}, i 
= j.

Clearly, Q being in the above mentioned matrix cone does not imply that it is OD-nonpositive, nor
the other implication direction is true. In this section we shall prove a general result unifying both
considerations.

Let us start by introducing a matrix operation as follows. Let A = [aij ]n×n ∈ �n×n. Then, O(A) ∈
�n×n is defined as

(O(A))ij =

{
−aij if i 
= j

aij if i = j.

In simple terms, O(A) changes the signs of the off-diagonal elements of A to the opposite ones, while
the diagonal elements remain intact.

Following Definitions 2.2 and 2.3, let us further define

M+ := {A | A ∈ ODP, O(A) � 0}

and
M− := {A � 0 | A ∈ ODN}.

It is interesting to note the following fact.

Lemma 2.6 It holds that M+ ⊆ Sn
+.

Proof:

Let A = [aij ]n×n ∈ M+. This means that aij ≥ 0 for i 
= j, and O(A) � 0.
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Let x be an arbitrary n-dimensional real vector. We have

xT Ax =
n∑

i=1

n∑
j=1

xixjaij =
n∑

i=1

x2
i aii +

∑
i�=j

xixjaij ≥
n∑

i=1

|xi|2aii −
∑
i�=j

|xi||xj |aij ≥ 0

where the last step is due to the fact that O(A) � 0. Hence, it follows that A � 0. Therefore, we
have M+ ⊆ Sn

+ as asserted by the lemma. �

One immediate consequence of Lemma 2.6 is that if A ∈ M− then O(A) � 0.

Now we are in a position to study the relationships among (QP ), (SP ), and (R).

Let Z be a feasible solution to (R). Let

d =
√

diag(Z) and X = D+ZD+ + D̄ (2.4)

where D+ stands for the pseudo-inverse of D, i.e. it is also diagonal and

(D)+ii =

{
(di)−1, if di > 0
0, if di = 0,

and D̄ denotes a binary diagonal matrix where D̄ii = 1 if Zii = 0 and D̄ii = 0 otherwise. It can be
easily verified that Zij = didjXij for all i and j. Conversely, if (D, X) is a feasible solution for (SP )
then Z = DXD is a feasible solution for (R).

We first prove the following lemma.

Lemma 2.7 Suppose that the objective matrix Q of (QP ) is in M+ ∪ M−. Then, for any feasible
solution (D, X) of (SP ) and Z = DXD which is a feasible solution of (R), it holds that

2
π
〈Q, D arcsin(X)D〉 ≥ α〈Q, Z〉.

Proof:

First we note the following inequality, which plays a crucial role in [6], i.e.

2
π

arcsin t ≤ 1 − α + αt, for all t ∈ [−1, 1]. (2.5)

By setting t := −t, we have

2
π

arcsin t ≥ α − 1 + αt, for all t ∈ [−1, 1]. (2.6)
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Suppose that Q ∈ M+. Then,

2
π
〈Q, D arcsin(X)D〉 =

∑
i,j

qijdidj(
2
π

arcsin(Xij))

=
∑
i�=j

qijdidj(
2
π

arcsin(Xij)) +
n∑

i=1

qiid
2
i

≥
∑
i�=j

qijdidj(α − 1 + αXij) +
n∑

i=1

qiid
2
i (by (2.6))

= α
∑
i,j

qijdidjXij + (1 − α)
∑
i,j

O(Q)ijdidj

= α〈Q, Z〉 + (1 − α)dT (O(Q))d

≥ α〈Q, Z〉.

Similarly, suppose that Q ∈ M−. Then

2
π
〈Q, D arcsin(X)D〉 =

∑
i,j

qijdidj(
2
π

arcsin(Xij))

=
∑
i�=j

qijdidj(
2
π

arcsin(Xij)) +
n∑

i=1

qiid
2
i

≥
∑
i�=j

qijdidj(1 − α + αXij) +
n∑

i=1

qiid
2
i (by (2.5))

= α
∑
i,j

qijdidjXij + (1 − α)
∑
i,j

qijdidj

= α〈Q, Z〉 + (1 − α)
∑
i,j

qijdidj

= α〈Q, Z〉 + (1 − α)dT Qd

≥ α〈Q, Z〉,

where the last step is due to the fact that Q � 0. �

Because of the linearity of the inner product, the above result extends to matrices that are in the
matrix cone generated by M+ ∪ M−, denoted by cone (M+ ∪ M−).

Theorem 2.8 Suppose that the objective matrix Q of (QP ) is in cone (M+ ∪ M−). Then, for any
feasible solution (D, X) of (SP ) and Z = DXD which is a feasible solution of (R), it holds that

2
π
〈Q, D arcsin(X)D〉 ≥ α〈Q, Z〉.
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Consequently, we have

Theorem 2.9 Suppose that the objective matrix Q of (QP ) is in cone (M+ ∪ M−). Then it holds
that

v(QP ) = v(SP ) ≥ αv(R).

Proof: We note that the inequality guaranteed by Theorem 2.8 holds true for the optimal solution
(D∗, X∗) of (SP ) as well. The result thus follows. �

Obviously, the matrix (δiei + δjej)(δiei + δjej)T is in cone (M+ ∪ M−). Hence, Theorem 2.9 is a
generalization of the result in [9].

Since M− ⊆ cone (M+ ∪ M−), Theorem 2.9 also takes Theorem 3 in [23] as a special case.

To see that Theorem 2.9 genuinely generalizes the results in [9] and [23], consider

Q1 =

⎛
⎜⎝

3 −2 1
−2 3 −2

1 −2 5

⎞
⎟⎠

=

⎛
⎜⎝

2 −2 0
−2 3 −2

0 −2 4

⎞
⎟⎠ +

⎛
⎜⎝

1 0 1
0 0 0
1 0 1

⎞
⎟⎠

� Q2 + Q3.

It is easy to verify that Q2 ∈ M− and Q3 ∈ M+. So Theorem 2.9 applies, when the objective matrix
in (QP ) is Q1. However, Q1 is neither almost OD-nonpositive nor it is a positive sum of the matrices
as given in (2.3).

In the same vein as in [23] we can extend Theorem 2.9 a little bit further.

Theorem 2.10 Let the objective matrix of (QP ) be Q. Suppose that there is a sign vector σ ∈
{−1, +1}n such that

diag (σ)Qdiag (σ) ∈ cone (M+ ∪ M−).

Then it holds that
v(QP ) = v(SP ) ≥ αv(R).

The following remains an interesting open question: How can one verify whether a given symmetric
matrix Q belongs to cone (M+ ∪M−) or not? If this can be done, then the next question would be:
How to verify the condition assumed in Theorem 2.10?
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3 OD nonpositive quadratic maximization

In this section, we concentrate on the OD nonpositive quadratic maximization problem. The goal
is to get an estimation on the worst-case performance ratio in terms of the problem/solution data.
In most cases, this ratio will turn out to be better that α, which plays the role as a uniform lower
bound.

Similar as in (2.4), let Z∗ be an optimal solution of (R), and d∗ =
√

diag(Z∗).

For this fixed d∗, consider

(SP )d∗ maximize 2
π 〈Q, D∗ arcsin(X)D∗〉

subject to X � 0, diag(X) = e,

and its SDP relaxation
(R)d∗ maximize 〈Q, D∗XD∗〉

subject to X � 0, diag(X) = e.

It is easy to see that the optimal value of (R)d∗ equals the optimal value of (R), and the optimal
value of (SP )d∗ is no more than the optimal value of (SP ).

Let X∗ be an optimal solution of (R)d∗ . Obviously, X = eeT (the all-one matrix) is in any case a
feasible solution for (R)d∗ . In case eeT is indeed optimal for (R)d∗ , then it is also optimal for (SP )d∗ .
Hence the relaxation is exact. For the interesting case we may assume that eeT is not optimal for
(R)d∗ , i.e. ∑

i,j

qijd
∗
i d

∗
jX

∗
ij >

∑
i,j

qijd
∗
i d

∗
j

or equivalently, ∑
i�=j

qijd
∗
i d

∗
jX

∗
ij >

∑
i�=j

qijd
∗
i d

∗
j .

Denote
W :=

∑
i�=j

qijd
∗
i d

∗
j (1 − X∗

ij) < 0. (3.7)

Since we are now concerned with the case Q ∈ ODN, we have qijd
∗
i d

∗
j (1 − X∗

ij) ≤ 0 for all i 
= j. Let
us further define

λij :=
qijd

∗
i d

∗
j (1 − X∗

ij)
W

≥ 0

for all i 
= j. Naturally we have
∑

i�=j λij = 1, by definition of W . In other words, λij ’s can be viewed
as coefficients of a convex combination.

We further note that diag((X∗)2) = e and (X∗)2 � 0 and so (X∗)2 forms a feasible solution for (R)d∗ .
Therefore, by optimality of X∗ we have∑

i�=j

qijd
∗
i d

∗
jX

∗
ij ≥

∑
i�=j

qijd
∗
i d

∗
j (X

∗
ij)

2. (3.8)
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Now denote

A :=

∑
i�=j

qijd
∗
i d

∗
j (1 − X∗

ij)X
∗
ij

W
=

∑
i�=j

λijX
∗
ij .

Thus,
−1 ≤ A ≤ 0 (3.9)

where the second inequality is due to (3.8) and the first inequality is due to the fact that X∗ � 0 and
so |X∗

ij | ≤ 1 for all i, j.

Now let us consider a function that plays an important role in our analysis:

h(t) =
1 − 2

π arcsin(t)
1 − t

, t ∈ [−1, 1). (3.10)

Lemma 3.1 The function h(t) defined in (3.10) is strongly convex in the interval [-1,1), and it
attains its minimum at t = −0.6892 · · · with the minimum value equal to α = 0.87856 · · ·.

Proof:

Simple computation shows that

h′(t) = − 2
π

1
(1 − t2)1/2(1 − t)

+
1 − 2

π arcsin t

(1 − t)2

and

h′′(t) = − 2
π

1
(1 − t2)3/2

t

1 − t
− 4

π

1
(1 − t2)1/2(1 − t)2

+ 2
1 − 2

π arcsin t

(1 − t)3
.

One further computes that
h′′(t) ≥ 0.4472 =: μ, (3.11)

for all t ∈ [−1, 1). The second part of the lemma is proved by numerically solving the root of h′(t).
�

To visualize the picture, see Figure 1.
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Figure 1: Function h

In Figure 1, the solid line corresponds to the function h(t), and the dashed line corresponds to the
minimum value α.

Theorem 3.2 If Q ∈ ODP, then

v(QP ) = v(SP ) ≥ h(A)v(R).

Proof:

Let I = {(i, j) | X∗
ij 
= 1}.

Obviously, λij = 0 whenever (i, j) 
∈ I.

By the convexity of h it follows that

h(A) = h(
∑

(i,j)∈I
λijX

∗
ij)

≤
∑

(i,j)∈I
λijh(X∗

ij)

=
∑

(i,j)∈I

qijd
∗
i d

∗
j (1 − X∗

ij)
W

× 1 − 2
π arcsin(X∗

ij)
1 − X∗

ij
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=
1
W

∑
(i,j)∈I

qijd
∗
i d

∗
j (1 − 2

π
arcsin(X∗

ij))

=
1
W

∑
i�=j

qijd
∗
i d

∗
j (1 − 2

π
arcsin(X∗

ij)).

Noting (3.7), the above inequality can be rewritten as

∑
i�=j

qijd
∗
i d

∗
j (

2
π

arcsin(X∗
ij)) ≥

∑
i�=j

qijd
∗
i d

∗
j (1 − h(A) + h(A)X∗

ij). (3.12)

Since X∗ forms a feasible solution to (SP )d∗ , therefore we have

v(SP ) ≥ v(SP )d∗

≥
∑
i,j

qijd
∗
i d

∗
j (

2
π

arcsin(X∗))

=
∑
i�=j

qijd
∗
i d

∗
j (

2
π

arcsin(X∗
ij)) +

n∑
i=1

qii(d∗i )
2

≥
∑
i�=j

qijd
∗
i d

∗
j (1 − h(A) + h(A)X∗

ij) +
n∑

i=1

qii(d∗i )
2 (by (3.12))

= (1 − h(A))
∑
i,j

qijd
∗
i d

∗
j + h(A)

∑
i,j

qijd
∗
i d

∗
jX

∗
ij

= (1 − h(A))(d∗)T Qd∗ + h(A)v(R)

≥ h(A)v(R). (by Q � 0)

This concludes the proof. �

Remark that Theorem 3.2 directly applies to the max-cut and the max-2Sat problems.

Combining Theorem 3.2 and Lemma 3.1, we have

Corollary 3.3 If Q ∈ ODP, then v(QP ) = v(SP ) ≥ αv(R).

4 Further analysis of the max-cut problem

In this section, we shall revisit the original max-cut problem in light of the strong convexity property
of h(·) (Lemma 3.1).

Let us start by introducing the max-cut problem. Consider an undirected graph G(V, E) with |V | = n

and nonnegative (but not all zeros) weights wij = wji on each edge (i, j) ∈ E. The max-cut problem
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aims at finding the set of vertices S that maximizes the total weight of the edges in the cut (S, S̄); that
is, the total weight of the edges with one endpoint in S and the other endpoint in S̄. In this paper,
we assume that the graph is complete and that wij > 0 for all (i, j) ∈ E. The max-cut problem is a
classical NP-hard problem. It is provable that it is even NP-hard to get an approximate algorithm
with a worst-case performance ratio higher than 16/17; see [8].

The Goemans and Williamson approach to the max-cut problem begins with a mathematical pro-
gramming reformulation of the problem:

(MC) maximize 1
2

∑
i,j wij(1 − xixj)

subject to x2
i = 1, i = 1, · · · , n,

which can be viewed as one instance of (QP ) with the cost matrix Q = [qij ]n×n given as

qij =

⎧⎪⎨
⎪⎩

−wij , if i 
= j
n∑

k=1

wik, if i = j,

and F = {e}, which is a singleton. This Q is known as the Laplacian matrix of the graph. In the
case that the weights are all nonnegative then Q � 0.

The equivalent nonlinear semidefinite formulation is

(MCSP ) maximize 2
π 〈Q, arcsin(X)〉

subject to X � 0, diag(X) = e,

and the convex semidefinite programming relaxation for (MCSP ) is (see e.g. [1])

(MCR) maximize 〈Q, X〉
subject to X � 0, diag(X) = e.

(4.13)

As a special case, Theorem 3.2 and Corollary 3.3 apply to problems (MC) and (MCR). In particular,
the result in Corollary 3.3, i.e. v(MC) ≥ αv(MCR), is the celebrated approximation bound of
Goemans and Williamson [6].

Let X∗ be an optimal solution of (MCR), i.e., v(MCR) = 〈Q, X∗〉.
Let us denote

λij = wij(1 − X∗
ij) ≥ 0

for all i 
= j, and
λ =

∑
i,j

λij = 〈Q, X∗〉 > 0.

Furthermore, denote

A =
∑
i�=j

λij

λ
X∗

ij . (4.14)
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As in Section 3 (see (3.9)), we have −1 ≤ A ≤ 0.

Also along the same line as in Section 3, denote I = {(i, j) | X∗
ij 
= 1, i, j = 1, 2, · · · , n}.

By the strong convexity of h as established in Lemma 3.1 we have

h(X∗
ij) ≥ h(A) + h′(A)(X∗

ij − A) +
μ

2
(X∗

ij − A)2, (4.15)

for all i, j, where μ = 0.4472 (cf. (3.11)) is the lower bound on the second order derivative of h in the
domain [−1, 1).

Multiplying λij

λ to (4.15) and sum up for all (i, j) ∈ I, we have

∑
(i,j)∈I

λij

λ
h(X∗

ij) ≥ h(A) +
μ

2

∑
(i,j)∈I

λij

λ
(X∗

ij − A)2 = h(A) +
μ

2

∑
i,j

λij

λ
(X∗

ij − A)2. (4.16)

Now the left side of the above inequality is

∑
(i,j)∈I

λij

λ
h(X∗

ij)

=
∑
i,j

wij(1 − 2
π

arcsinX∗
ij)/〈Q, X∗〉

= 〈Q,
2
π

arcsin(X∗
ij)〉/〈Q, X∗〉.

In combination of (4.16) we have

v(MC) = v(MCSP )

≥ 〈Q,
2
π

arcsin(X∗
ij)〉

≥ h(A)〈Q, X∗〉 +
μ

2

∑
i,j

λij(X∗
ij − A)2

= h(A)v(MCR) +
μ

2

∑
i,j

wij(1 − X∗
ij)(X

∗
ij − A)2. (4.17)

Geomans and Williams [6] use the random hyperplane rounding technique to convert a solution of
(MCR) to a feasible cut in the graph. In that sense, any ratio between v(MC) and v(MCR) will
serve as a worst-case performance bound.

Whenever A ≥ −0.5 or A ≤ −0.8, we shall have h(A) ≥ 0.8835, hence a bound better that α based
on (4.17). Let us now consider the case

A ∈ [−0.8,−0.5]. (4.18)
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In the subsequent discussion we assume that

wij > 0 for all i 
= j. (4.19)

Let
Iε = {(i, j) | |X∗

ij − A| ≤ ε}
and

Jε = {(i, j) | X∗
ij ≥ 1 − ε, i 
= j}

with ε = 0.03.

Let us consider an enhanced (but still polynomially sized) version of the SDP relaxation for the
max-cut problem. That is, we add the following so-called triangle inequalities into the constraint set
of (4.13):

Xij + Xjk + Xki ≥ −1, (4.20)

−Xij − Xjk + Xki ≥ −1, (4.21)

−Xij + Xjk − Xki ≥ −1, (4.22)

Xij − Xjk − Xki ≥ −1, (4.23)

for all possible triplets 1 ≤ i < j < k ≤ n.

Lemma 4.1 Let X∗ be an optimal solution to the problem (MCR) with (4.20), (4.21), (4.22) and
(4.23) added to the constraint set. Then, Iε ∩ Jε = ∅ and {(i, j) | 1 ≤ i 
= j ≤ n} \ (Iε ∪ Jε) 
= ∅.

Proof:

That Iε ∩ Jε = ∅ is immediately clear by the fact that A ∈ [−0.8,−0.5] and ε = 0.03.

We wish to prove the second assertion by contradiction. Namely, for the sake of contradiction, we
assume that Iε ∪ Jε = {(i, j) | 1 ≤ i 
= j ≤ n}.
Let m = rank(X∗) and let X∗ = [v1, · · · , vn]T [v1, · · · , vn]. Therefore, vi ∈ �m, ‖vi‖ = 1, i = 1, ..., n,
and X∗

ij = vT
i vj for all 1 ≤ i, j ≤ n. Let

V1 = {vi | vT
i v1 ≥ 1 − ε, i = 1, ..., n}

and
V2 = {vj | |vT

j v1 − A| ≤ ε, j = 1, ..., n}.
Obviously, V1 ∩ V2 = ∅ and V1 ∪ V2 = {v1, · · · , vn} by the contradiction assumption.

We shall first prove the following three facts regarding V1 and V2.
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Fact 1. For any vi, vj ∈ V1, it must follow that vT
i vj ≥ 1 − ε.

This is because if the above statement is incorrect then we must have |vT
i vj − A| ≤ ε instead (note

the contradiction assumption). However,

vT
i vj = X∗

ij ≥ −1 + X∗
i1 + X∗

1j ≥ −1 + 2 × (1 − ε) = 1 − 2ε

due to (4.21). This is impossible as

|vT
i vj − A| ≥ 1 − 2ε − A > ε.

Fact 2. For any vi, vj ∈ V2, we have vT
i vj ≥ 1 − ε.

To see this, we again prove by contradiction. Suppose there are two vectors vi, vj ∈ V2 such that
|vT

i vj − A| ≤ ε. Then the triplet {v1, vi, vj} would violate the constraint (4.20).

Fact 3. For any vi ∈ V1, vj ∈ V2, we have |vT
i vj − A| ≤ ε.

Once again, this can be shown by contradiction. Suppose that the above is not true. Then we
would have vi ∈ V1, vj ∈ V2, and vT

i vj − 1 ≥ −ε. Then, the triplet {v1, vi, vj} would contradict the
constraints (4.21)-(4.23).

Next we shall perform an operation on the vectors v1, · · · , vn described by the following steps. First
of all, let

vT
k vl = max{vT

i vj | vi ∈ V1 and vj ∈ V2}.
Using Fact 3 we have −0.83 ≤ vT

k vl ≤ −0.47.

By Fact 1 and Fact 2 we know that all the vectors in V1 reside in the second order cone

SOC(vk) := {d | ∠(d, vk) ≤ arccos(1 − ε)},

and all the vectors in V2 reside in the second order cone

SOC(vl) := {d | ∠(d, vl) ≤ arccos(1 − ε)}.

By Fact 3, we know that SOC(vk) ∩ SOC(vl) = {0}.
Let h = (vk + vl)/2. Then,

∠(vk, h) = ∠(vl, h) ≤ arccos(A − ε)/2 ≤ arccos(−0.83)/2 ≤ 1.28.

Moreover, for any d ∈ SOC(vk) we have

∠(d, h) ≤ ∠(d, vk) + ∠(vk, h) ≤ arccos(1 − ε) + arccos(−0.83)/2 ≤ 1.53 < π/2.
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By symmetry, we also have ∠(d, h) ≤ 1.53 < π/2 for all d ∈ SOC(vl).

This implies that there exists a solid and pointed convex cone containing the sum of the two second
order cones, namely there is a solid, pointed convex cone K such that K ⊇ SOC(vk) + SOC(vl). In
particular, we may, for instance, let

K := SOC(h) := {d | ∠(d, h) ≤ 1.53 < π/2}.

Therefore int K∗ 
= ∅.
Before proceeding let us consider a geometric property. Suppose that there is a given direction ι and
a vector x. Suppose ∠(ι, x) > π/2, i.e. ιT x < 0. Consider a movement from x to x + Δx, where Δx

is a small displacement. Then,

cos ∠(ι, x + Δx) =
〈ι, x + Δx〉

‖ι‖ · ‖x + Δx‖
=

〈ι, x〉 + 〈ι, Δx〉
‖ι‖ · ‖x‖

[
1 − xT Δx

‖x‖2
+ o(‖Δx‖)

]

= cos ∠(ι, x) + 〈 ι

‖ι‖ − cos ∠(ι, x)
x

‖x‖ ,
Δx

‖x‖〉 + o(‖Δx‖).

Therefore the angle between ι and x+Δx actually increases from the angle between ι and x for small
displacement Δx if and only if

〈 ι

‖ι‖ − cos∠(ι, x)
x

‖x‖ , Δx〉 < 0. (4.24)

Now let us take any Δx ∈ −int K∗. So we have

〈θu + ξv,Δx〉 < 0 (4.25)

for all θ ≥ 0, ξ ≥ 0, u ∈ SOC(vk) and v ∈ SOC(vl) with 0 
= θu + ξv ∈ K. This implies that if we
shift the whole cone SOC(vl) along the direction Δx, then for each fixed pair of vectors in SOC(vk)
and SOC(vl), the (obtuse) angle between them actually increases, due to condition (4.24) and the
actual choice of the moving direction (4.25), which satisfies condition (4.24).

Let us now perform such a shifting operation. First, we keep SOC(vk) unchanged. In this case,
all the vectors in V1 remain unchanged. Then, we shift the entire cone SOC(vl) slightly along the
direction Δx. In this case, all the vectors in V2 are also shifted along the same direction Δx, while
their relative positions remain unchanged.

It is clear that if we do so, then

∠(vi, vj) is invariant if vi, vj ∈ V1,

∠(vi, vj) is invariant if vi, vj ∈ V2,

∠(vi, vj) increases if vi ∈ V1 and vj ∈ V2,
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where the last assertion is due to (4.24), (4.25) and the above observations.

Let X̂ij = vT
i vj where vi’s, vj ’s are the new vectors after the shifting operation. Since the shifting

does not change the norm, so X̂ � 0 and diag(X̂) = e, implying that X̂ remains feasible for (MCR).
Moreover, X̂ij remains unchanged for either i, j ∈ V1 or i, j ∈ V2. However, X̂ij decreases for i ∈ V1

and j ∈ V2.

It can be easily verified that the corresponding objective value for X̂ is strictly greater than v(R).
Moreover, X̂ also satisfies the triangle inequalities due to the three facts established earlier. The
contradiction proves the lemma. �

Let

L =
max
i�=j

wij

min
i�=j

wij
> 0. (4.26)

Now, we apply Lemma 4.1 and use (4.17) to obtain

v(MC) ≥ h(A)v(MCR) +
μ

2

∑
i,j

wij(1 − X∗
ij)(X

∗
ij − A)2

≥ h(A)v(MCR) +
μ

2

∑
(i,j)∈{(i,j)|1≤i�=j≤n}\{Iε∪Jε}

wij(1 − X∗
ij)(X

∗
ij − A)2

≥ h(A)v(MCR) +
με3

2
min
i�=j

wij

= h(A)v(MCR) +
με3

2L
max
i�=j

wij

≥ h(A)v(MCR) +
με3

4Ln2

∑
i,j

wij(1 − X∗
ij)

= (h(A) +
με3

4Ln2
)v(MCR).

Finally we conclude the following theorem:

Theorem 4.2 Consider the Goemans and Williamson algorithm for the max-cut problem where all
the weights are positive. Suppose that the triangle inequalities (4.20), (4.21), (4.22), (4.23) are added
in the SDP relaxation. Then, the worst-case performance ratio is bounded below by

α(A) =

⎧⎨
⎩

h(A) (≥ 0.8835), if A ∈ [−1,−0.8] ∪ [−0.5, 0],

h(A) +
με3

4Ln2
(≥ α +

με3

4Ln2
), otherwise,

where μ > 0 and ε > 0 are some universal constants, and A is as defined in (4.14) and L is as defined
in (4.26).
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Summarize: We show that the worst-case performance ratio for the Goemans and Williamson method
is at least α + Ω( 1

n2L
) if we add the triangle inequalities, where L is the ratio between the maximum

weight and the minimum weight and n is the number of nodes. Karloff [10] proves that for every given
ε > 0, there is an instance of max-cut such that the performance ratio of the Geomans and Williamson
algorithm using the SDP relaxation with any valid linear constraints (such as the triangle inequalities)
is lower than α+ ε (see also [4]). Feige, Karpinski and Langberg [2] show that for graphs with degree
bounded by Δ, the performance ratio is α + Ω( 1

Δ4 ). Certainly, whether the approximation ratio for
max-cut can be improved substantially beyond α remains a challenging open problem (cf. [3, 4, 24]).
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