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Abstract

Convex feasibility problem in general is a problem of finding a point
in a convex set contains a full dimensional ball and is contained in
a compact convex set. We assume that the outer set is described
by second-order cone inequalities and propose an analytic center cut-
ting plane technique to solve this problem. We discuss primal and
dual settings simultaneously. Two complexity results are reported; the
complexity of restoration procedure and complexity of the overall algo-
rithm. We prove that an approximate analytic center is updated after
adding a second-order cone cut (SOCC) in one Newton step, and that
the ACCPM with SOCC is a fully polynomial approximation scheme.
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1 Introduction

Many large-scale optimization problems can be cast as nondifferentiable op-
timization (NDO) and solved more efficiently by NDO techniques. Amongst
several techniques for solving NDO problems, cutting plane methods have
many advantages when applied to large models. The general idea of cut-
ting plane algorithms is to iteratively build a model, when it is too large.
In other words, it assumes that a complete description of the model is not
initially available and puts it together as needed. This is done by generating
subgradient cuts at each test point.

Selecting a test point is a crucial step in the cutting plane techniques.
One efficient tactic is by means of the analytic center, which leads to the
analytic center cutting plane method (ACCPM) introduced by Sonnevend
[23]. In this technique, first an outer approximation of the original problem
is formed by means of subgradients of the objective function. Next a convex
set composed of the subdifferential set and an upper bound of the optimal
objective value is constructed. This set is known as the set of localization.
At each iteration the analytic center of the set of localization is computed.
This point serves as a test point. If the current test point is not in the
solution set, a set of subgradients is added to the localization set and the
analytic center is updated.

Depending on the original NDO problem, the subgradient cuts may be
linear, quadratic, semidefinite or of the form of second-order cone. The
ACCPM has been studied in the literature for some of these cases. Ye [26],
Goffin, Haurie, and Vial [4], Atkinson and Vaidya [2], Nesterov [16], and
Goffin, Lou, and Ye [5] studied the method in case of single linear cuts. Ye
[27], and Goffin and Vial [6] studied the complexity of the ACCPM when
the oracle returns a set of linear cuts. The method was extended to employ
quadratic and nonlinear cuts by Lou and Sun [12], Luthi and Bueler [13]
and Sharifi Mokhtarian and Goffin [21, 22].

Cutting plane techniques have been recently employed into nonpolyhe-
dral models such as semidefinite programming (SDP). The first paper of this
type was proposed by Helmberg and Rendl [8], in which the authors provide
a spectral Bundle method for a class of SDP. Sun, Toh, and Zhao [24], Toh,
Zhao, and Sun [25], and Chua, Toh, and Zhao [3] apply the ACCPM to con-
vex semidefinite feasibility problem. Oskoorouchi [17] and Oskoorouchi and
Goffin [18] modify the ACCPM by integrating semidefinite cuts (SDC), and
apply this technique to the eigenvalue optimization and maxcut problem
[19]. Krishnan [9] and Krishnan and Mitchell [10] propose an LP cutting
plane and make use of polyhedral scheme for semidefinite programming. A



survey paper of cutting plane methods for semidefinite programming by Kr-
ishnan and Mitchell [11] provide a summary of some of the aforementioned
techniques and a nice comparison between them.

In this paper we extend the cutting plane techniques into another non-
polyhedral model; namely, the second-order cone programming (SOCP).
More precisely, we employ the second-order cone cut (SOCC) into the AC-
CPM. Ingredients of the ACCPM are modified to make the best use of this
integration. SOCP is a convex optimization problem, and a general case of
LP, QP, and QCQP. On the other hand it is well known that SOCP can
be cast as a SDP. However, interior point algorithms designed for SOCP
are computationally less expensive than those designed for SDP. This ad-
vantage of SOCP over SDP motivated the current study. Computation of
SDCs could be very expensive in practice and that may drastically slow
down the algorithm. One approach to overpass this difficulty is to replace
SDCs by SOCCs. However, the theoretical issues of integrating ACCPM
and SOCC should be fully elaborated. This is our intent in this paper.

We present the ACCPM in the context of convex feasibility problem
(CFP). Let F* be a convex set contains a full dimensional ball with ¢ radius
and is contained in a compact convex set (set of localization). We employ
the ACCPM to obtain a point in F*. We assume that there exists an oracle
that at each iteration of the algorithm determines whether the current point
is in F* or returns a SOCC and updates the localization set by adding it
to the center. We discuss how to obtain an interior point of the updated
set of localization, as a warm start for recentering procedure after adding
a central SOCC. We prove that analytic center of the set of localization is
updated in one Newton step after adding a SOCC. Furthermore, we prove
that the ACCPM with SOCC obtains a point in F* after adding at most
O(m/eu) SOCCs, where p > 0 is a condition number on SOCC.

The paper is organized as follows: In Section 2 we study the definition
and most important properties of second-order cone. Section 3 presents
localization sets and their corresponding potential functions in primal, dual
and primal-dual settings. We also describe a Newton algorithm to compute
an approximate analytic center and discuss its complexity. In Section 4 we
present the framework of our algorithm, and a procedure for computing the
recentering direction. We report the complexity of this procedure in this
section, and finally in Section 5 we discuss the convergence analysis and the
complexity of the ACCPM with SOCC.



2 Second-order cone: definitions and properties

In this section we study the most important properties of the second-order
cone and a particular algebra associated with this cone. The material of
this section is mostly based on a survey paper by Alizadeh and Goldfarb [1].
Throughout this paper we use the notations and definitions described in
this section without specific reference. First some notations: we indicate
vectors by lower case letters and matrices by uppercase letters. For z € R?
and y € RY, (z;y) indicates a column vector in RPT¢. We also use bold
fonts for block vector and matrices, e.g., x = (x1;%2;...;2¢) is a k-block
column vector composed of vectors zi, zs, ..., zx. We refer to the space
of symmetric matrices by M", positive semidefinite matrices by M", and
positive definite matrices by M’} . For matrices A and B we define A ® B
a block diagonal matrix composed of A and B:

A 0
won-(13)

and A e B = tr AT B the inner product of A and B.

Let us begin with the definition of the second-order cone. Let S, be
defined as follows:

Sp={zeR" 2= (£;9),% > [I€]}-

Then §,, is a closed, pointed and convex cone called the second-order cone.
It is well-known that S, induces a partial order on R": = =g, s (z >s, )
ifxr—seS, (x—s€S,), where S is the interior of S,,, defined by

Sy ={zeS:& >}

We denote S,, by S when there is no ambiguity. We also use the notation >
and > (without subscripts) for the Lowner partial order on the symmetric
matrices. Thatis A> B (A>B)if A-BeM"} (A-BeM},).

For each vector z = (£p;£) € R™ we define a matrix representation

Mat(z) = ( 5; gf] )

It is easily verified that Mat(x) is a positive semidefinite (positive definite)
matrix iff z € S (x € §°). A special case of Euclidean Jordan algebra can be



defined on the second-order cone. Let x = (§y;&) € R™ and s = (0¢;0) € R".

Define

J?TS

&oo1 + 00&i
ros= .

§oon + 00én
Then (R™, o) define an algebra on the second-order cone. Observe that
z o s = Mat(z)s = Mat(z)Mat(s)e,
where e = (1;0) is the unique identity element of the algebras, i.e.,

roe=eoxr =2x.

It can easily be verified that operator “o” is commutative and distribu-

tive. That is x 0 s = soz, and
zo(as+ ft) =aros+frot

and
(as+ ft)ox =asox+ ftox
for all , 8 € R and =z, s,t € R™.
Similar to the cone of symmetric matrices one can define Spectral de-

composition of z € S
T = Aic1 + Agco, (1)

where C1 = %(175/H5“)7 C2 = %(17 _g/HgH)a and
A = & + (€] and Ao = & — [|€])-

A1 and Ao are eigenvalues of z that can alternatively be derived as the two
roots of the characteristic polynomial of x:

p(N,x) = A2 = 26X + (65 — [1€]1%).

Observe that A\; and g are the largest and smallest eigenvalues of Mat(x)
respectively, with corresponding eigenvectors ¢; and cy. Furthermore & is
an eigenvalue of Mat(z) with multiplicity n — 2.

We now define some important functions for algebra (R", o). Trace and
determinant functions are defined as follows:

tr(ac) = A1 + Ao = 2§,



and B
det(z) = M A2 = &5 — [I€]|.

Frobenius and 2-norm functions are defined analogs to their counterpart in
symmetric matrix algebra:

lzllr = /AT + 3 = V2]all,

l2]l2 = max{|Xi], [Aa[} = |€o| + [I€]]-
Vector z is called singular if Ay # 0 and Ao # 0. In this case

and

e = ATt + 25 e,
and finally if z € S, then the square root of z is uniquely defined via
/2 = A}/201 + )\é/ZCQ.

Algebraic functions can similarly be defined in block sense. Let x =
(21;...,2x) and e = (eq;...;€x), then

k

1xllF = iz llzillr

[l = max; [|2;]|2

tr(x) = 2e'x = I tr(z;)
—1 —1

x=(z . 1)

Associated with each vector s in R™ there is a quadratic operator that
maps any vector z € " to a vector composed of quadratic terms of s:

st =2s0(sox)—s’oux
Q ;

where s = sos. Since this operator plays an important role in our analysis

we explain it in greater detail here. One can explicitly represent () as
Qs = 2Mat?(s) — Mat(s?). (2)
By substituting Mat(s) and Mat(s?) in (2) one can obtain

o, s 2005
¥ 2000 det(s)I +2007 |-



Note that the analogous operator to ()5 in symmetric matrix algebra is the
one that maps any symmetric matrix X into SXS.
Eigenvalues of Q)5 are

Al = (o0 + I3 ])?
and

A5 = (o0 —lla )2,
each with multiplicity one and

det(s) = of — [|o[|?

with multiplicity n —2. Consequently, for a vector s € R, (), is nonsingular
iff s is nonsingular. Moreover, if s € S then A\? and A3 are the maximum and
minimum eigenvalues of Qs respectively. We now present some important
properties of the quadratic operator 5.

Lemma 1 For z € R" and nonsingular, s € R", a € R and integer p, we
have

1. Quv~' == and thus Q;'z =z}

Qse = s?

Q1 = Q' and more generally Qu» = QP

V. (logdet(z)) = 2z~! and V2(logdet(z)) = —2Q;*

QQ.e = QsQ2Qs

det(Q,s) = det?(z) det(s) = det(x?) det(s)

Qu(S) = § and Qu(8°) = S°.

Proof. See Alizadeh and Goldfarb [1], Theorem 3 and Theorem 4. m

NS S e

Lemma 2 Ifx »=s s and z =5 0, then
det(z) > det(s).
Proof. Since x — s =g 0 and = >=g 0, then

le/z (6 — Qm71/28) ~s 0,

and from Part (7) of Lemma 1, e — @, 1/25 =5 0. Therefore det(Q, 1/25) <
1, and from Part (6) of Lemma 1, det(z ') det(s) < 1. m

Next lemma gives extensions of the well-known inequalities on the loga-
rithmic function.



Lemma 3 Let s € S, If ||s||2 < 1, then

2
S
log det(e + 5) > tr(s) — %

Moreover, if ||s||p < 1, then
log det(e + s) > ir(s) + ||s|| 7 +log(1 — [Is|| ),

Proof. Let A = (A, \), where A\ = A1(s) and Ao = Ag(s), then
det(e +s) = (1 + A1)(1 + X2) and

log det(e + s) = log(1 + A1) + log(1l + A2).

If ||s]|2 < 1 then

A2
log(1+ A1) +log(1 +AX2) > A1+ dg — —— 12—,
2(1 = [[Alloc)
The first inequality follows. On the other hand, if ||s||z < 1, then (see [20],
Page 439)

log(1+ A1) +1log(1+ X2) > A + Ao + [|All2 + log (1 — [[A[l2),

which leads to the second inequality. m

3 Analytic center

In this section we present optimality conditions of the analytic center of a
compact convex set described by second-order cone inequalities. Since in this
paper we frequently switch between primal, dual and primal-dual settings,
we present the three characterizations here. Moreover, we introduce the
potential functions and their corresponding feasible sets and show that the
optimality conditions for the analytic center coincide in primal, dual and
primal-dual cases.

We also present a computational algorithm based on a dual approach to
compute an approximate analytic center when an interior point is available.
It should be noted that computational algorithms based on the primal and
primal-dual settings can be similarly derived. However, the dual algorithm
better suits our case.



3.1 Optimality conditions

Let us start with the definitions of the feasible sets and potential functions.
Let A € ™" (m < n) be a full-rank matrix and ¢ € R". Let

fpdéf{meSn:szo},

Fp{yeRm:s=c— ATy s, 0},
]:PDdéf]:PXy:D.

be convex compact sets. We refer to Fp, Fp, and Fpp as primal, dual and
primal-dual feasible sets (localization sets) respectively. Throughout this
paper we assume that

Fp={z €S, : Az =0}
and
Fp={yeR™:s=c- A"y »g, 0}
are nonempty. We sometimes represent Fp only by the slack vector s,
Fp={seS,: ATy +s=c, for some y € R™},
Let z € Fp and s € Fp, then the primal, dual and primal-dual potential
functions are respectively defined via
op(z) f Ty 1 log det ,
def 1

¢p(s) = —5logdet s, and

¢pp(z,5) € ¢p(z) + dp(s)
= zls— % logdet Q,1/25

1
= zls— 2 logdet Q,1/25
The analytic center of Fp is a unique point in the interior of Fp that
minimizes the primal potential function ¢p(z), i.e., the optimal solution of
the following convex optimization problem:

min ¢’z — % log det

s.t.
Az =0 (3)
T €Sy,



From the first order optimality conditions, 2% € S; is the analytic center
of Fp iff there exist y* € R™ and s* € S, such that

Az® =0, ATy* + 5" =¢, and z%0s% = e (4)

Similarly, the analytic center of Fp is defined as the minimizer of the
dual potential function ¢p(s) over the dual feasible region:

min —% log det s

s.t.
ATy+s=c (5)
s €Sy,

and the analytic center of the Fpp is defined as the minimizer of the primal-
dual potential function ¢pp(x,s) over the primal-dual feasible region:

min{¢pp(z,s) :x € Fp,s € Fp} (6)

One can easily verify that the first order optimality conditions for Prob-
lems (5) and (6) coincide with (4). Since the three characterization of the
analytic center lead to the same system of equations, with abusing notation
we sometimes refer to either one of z%, y®, s, or (2% s*) as the analytic
center, without a specific reference to the set.

Note that the value of the primal-dual potential function at the analytic
center is equal to 1, independent of n the dimension of S,,. This is because

for (z,y%, s%) obtained from (4), 2 o * = e. Therefore (2?)7s% =1 and

log det Q(xa)w s =logdete = 0.

The analytic center in the block sense can similarly be defined. For ¢ =
1,...,k, let 24, s;, ¢; € NP7 and define x = (z1;22;...; k), 8 = (815825 ... 8k),
c = (e15¢95...5¢), and

AYA A LAY

def
S=8p X8, X ... XS,

Then the block forms of the primal, dual and primal-dual feasible sets are
defined via

fllgdéf{XES:Ax:O},

10



FE@f{yeﬂ%m:s:c—ATyESO}, and

k  def k
Fip = Fp x Fp,

and the primal, dual and primal-dual potential functions in the block form
are defined

op(x) def Ty — +log det x,

op(s) def —1logdets, and

opp(x,8) def ¢p(x) + ¢p(s) = x''s — %log det Qy1/28,

where Qx = Qz, ®Qz, ®... D Q.. Now with the above definitions, the first
order optimality conditions for the analytic center in block form read

Ax® =0, ATy"+s*=c, x%0s’=e,

where xos = (21 0581;...;2p058;) and € = (ey;...;e;). From the definitions
of x, s and e, and since x% o 8% = e, the optimal value of the primal-dual
potential function composed of k blocks is

¢pp(x*,8%) = k.

3.2 A computational algorithm

In this section we present a dual algorithm to compute the analytic center.
Let us start with a definition:

Definition 4 Let z € S;, y € R™ and 5 € S, satisfy
A7 =0,ATj+5=c, and |Q 25 —ellp <O < 1.

Then (Z,7,3) is called a 0-approximate analytic center.

Note that if “Qil/2§_e“F =0, then >‘1(le/2‘§) =1 and )\2(le/2§) =1,
and thus Q);1/25 = e, and in view of Lemma 1, Z 0 5 = e. In other words, if
# = 0, then #-approximate analytic center is the exact analytic center.

We develop an algorithm for computation of an approximate analytic
center of a compact convex set, composed of one block. The extension to
the general case is trivial.

11



Let s € Fp and d, be a feasible direction for Problem (5), i.e., ATd, +
ds = 0. From Part 4 of Lemma 1

¢p(s+ds) = —% log det(s + ds)
= —% logdet s — (s 1)Td, + %dSTQ;IdS.
let App(s) = da(s + ds) — ¢a(s), then
A¢p(s) =d, As™" + %dyTAleATdy,
and Vg4, A¢p(s) =0 implies that
dy = —(AQ; ' AT) T AsT,
and

dy = AT(AQ7'AT) "1 As™!, (7)
Starting from s € F7p), the above direction with a step size, reduces the
value of potential function at each iteration. Let

—1 —1
Ts =S _Q dsa

S

and define
pS = Q51/2IE5 — €.
Note that ||ps||r measures the distance from the current point (zs, s) to the

analytic center. We first establish a lower bound on the potential reduction
at each iteration:

Lemma 5 Let for a given s € Fy), ||psl|lr > 1, and consider the dual direc-
tions with step size af||ps||, for a <1
dy = ———(AQ, ' AT) ' 4s™!
Y ( Qs ) S
sl

and ds = —ATd,, and update y* =y +d, and st = s +ds. Then

¢p(s™) — ¢p(s) < =9,

2

where § = o — ﬁ

12



Proof. First since

ps = Qsl/ﬂs —€

Qu28 ' —QupQy ds — e
Qs12Qy 126 — Qu12Q°_ 1 nds — €
e—Qs1/2Q4-12Q4-1/2ds — €

= _Q3_1/2d8

then . o
1Qg=1/2ds||F = WHQS—I/Z'dsHF =a<l

S

and from Lemma 3

1Q, 128" —e|%
1 —[|Qy-1/28T —el2)
aZ

2(1 —a)’

—logdet(Q,-1/28") < —tr(Q,128T —e) + o
< —tr(Qu128T —€) +

On the other hand
—tT(Qs_1/28+ — 6) = t’)"(Qs_l/zAT(iy) = 2(AQS_1/26)Td~y
Therefore

¢p(sT) — pp(s) = —logdet(QS_l/zs"')
2

< 24sYHTd, + 2(10‘7_00 (8)

The tightest bound on the reduction of the potential function can be
obtained by minimizing the right hand side of (8). That is

min (As 1)Td,
s.t.
1Qs-1/2ATdy|lF <o, <1,

From the first order optimality conditions, the optimal solution of the above
problem reads
—«

= (AQ;'AT)LAs™.
lpsll 7

Y

13



Since ||ps|lr = |Qs-1/2ds |, then

_ > - _ _ _
(As HTd, = il TAT(AQ, *AT) tAs ™t
_ —« 2

< —a/2.

The proof follows from (8) now. m

Note that for 1/3 < a < 1/2, the potential reduction § is at least 1/4
(and at most 0.268). However in practice, a line search method is employed

to maximize the reduction and ensure dual feasibility.

Next lemma shows that once we are close enough to the analytic center,

full Newton steps yields dual feasibility and converges quadratically.

Lemma 6 If ||ps||r < 1, then st =s+ds; € S and
lps+llF < llpsl-

Proof. Since

Q51/2(€ _ps) = Q51/2 (26 - QSI/Z(I;s)
= 25— Qsms
= s+ dsa

then s = Q,/2(e — ps). On the other hand, since ||p(s)||r < 1, then
Arle —ps) = 1 — Xa(ps) > 0 and Aa(e —ps) = 1 — Ai(ps) > 0. That is

e —ps €Sy, and since Q,1/2(Sy;) = Sy, then sT € Sp.

Now since z4 is the minimizer of the following least-square problem:

min ||Q51/2£E — €||F
s.t.

then
[ps+llF = |Qsry2mst —ellp < |Qeryr2ms —ellF,
or
Ips+llF < [1Quir2s™ —ellp,

where 2 = ;. By substituting s™ in the above inequality one has

Ips+lle < 112Qq1/28 — Qu/2Qsw — €| .

14



o is distributive

(Q$1/2S - 6)2 = (le/zs - e) o (Q$1/2S — e)
(Qu1/28)* = 2Quu/28 + e

Now since

and in view of Lemma 1

(Qxl/zs)Z = Qle/zse = Qxl/ZQSQxl/ze = Qxl/zst'

Thus
(le/zs — 6)2 = le/zstL‘ — 2Qm1/23 +e.

The proof now follows from (10). m

Computational algorithms based on primal and primal-dual settings can
be developed similar to the dual algorithm. Primal algorithm starts with an
interior point 2° € Fp and updates the primal direction d, at each iteration.
In this case one should be careful with the round-off error when updates zT.
In other words, at each iteration the updated primal direction d, should be
projected to the null space of A to ensure primal feasibility. We refer the
reader to a survey paper by Goffin and Vial [7] for the analysis of primal
algorithm in linear case and to Oskoorouchi [17] and Oskoorouchi and Goffin
[19] for that of the semidefinite, and combination of linear and semidefinite
cases.

The initial interior point plays a very important role in the performance
of the Newton algorithm. In Lemma 5 we showed that the potential function
is reduced by § > 0 at each iteration. This implies that after at most

0 <¢D(80) - ¢D(8“)>

)

Newton steps, the algorithm stops with an approximate analytic center.
Therefore the complexity of the algorithm depends on the proximity of the
initial point to the analytic center.

4 The analytic center cutting plane method

In this section we present the framework of our algorithm and discuss the
detail of the updating direction. The goal is to find a feasible solution in
a convex set F*, which contains a full dimensional ball with (< 1) radius,
and is contained in

Fp={yeRm: ATy <5 c};

15



a convex compact set described by second-order cone inequalities.
Let us begin with a definition.

Definition 7 Let y be an approximate analytic center of the current set of
localization Fp, and B € R™*P be a full rank matriz, and d € RP Then for
ally ¢ F*

BTy <s, d, (11)

is called a second-order cone cut (SOCC) in S,. If d = BTy then the cut
passes through the center y and is called a central second-order cone cut. If
d >s, BTy (d <s, BTY), then (11) is called shallow (deep) cut.

In our analysis in this paper we work with the central cuts. Therefore,
we assume that d = BTy when we refer to (11) as the second-order cone
cut.

First we make three assumptions:
Assumption 1 The initial set of localization is the unit ball. That is
Fh={yeR™:|lyll <1}.

If Ag = (0 —1Ip,) € R™™FL and ¢y = e, then FY can be written in
the standard form

Fh={yeR™: Aly <s,.., co}-

Notice that Assumption 1 is only a scaling assumption and does not reduce
the generality of our analysis.

Assumption 2 The set of localization Fp is composed of second-order cone
cutting planes generated by an oracle, i.e., at each iteration, an oracle de-
termines if the current point is in the solution set F* or returns SOCC
ATy =s, ¢ that contains F*, and

max{||a;|,i = 1,2,...,p} =1,
where a;s are the columns of matriz A.

Assumption 2 implies that at the kth iteration of the algorithm, the set of
localization takes the block form

]:]f,:{ye}"%:ATyjsc}

16



Assumption 3 Let ATy =s,, ¢i be a SOCC. Define
i = max{det(ATu) : ATu =8y, 0 ull <1}

Then
p=min{u;,i =1,...,k} > 0.

Assumption 3 is necessary for establishing a lower bound on the optimal
value of the potential function.

The framework of the ACCPM can be presented as follows:

Algorithm 1 Let FY = {y: ||y|| <1} be the initial set of localization, and
k=0

Step 1. Compute y*, an approzimate analytic center of ]—%.

Step 2. Call the oracle: if y* € F*, stop. Otherwise add the cutting plane

T T =k
Ap 1y 385, Abp1¥y (12)
to the current set of localization, and update

Fpt={y € Fp: AL (" —y) =s,,,, 0} (13)
Step 3. Set k=k+ 1 and go to Step 1.

Algorithm 1 starts from the unit ball and at each iteration adds a central
SOCC to the set of localization, and updates the analytic center. We need an
interior point of the updated set of localization in order to use the algorithm
described in Section 3 to compute an approximate center. On the other
hand, since the complexity of the algorithm depends on the initial point,
one should select an interior point which is as close as possible to the next
analytic center. Such a point is known as a warm start in the literature (see
Mitchell and Todd [14] and Mitchell [15]). To obtain a warm start after
adding a central cut, one can start from the current analytic center which
is on the boundary of F f)ﬂ and move towards minimizing the log det of the
new slack vector. Let us describe this procedure now.

Dropping the index, let (7,7, 3) be a #-approximate analytic center of

FE={yeF):s=c—Aly =50}

17



and let the oracle returns the SOCC (12) and updates the set of localization
as in (13). Observe that 7 is on the boundary of A;{_i_l(gj — ) =8p,,, 0 and

therefore it is not an interior point of F EH. Corresponding to the updated
dual set of localization, one can obtain the updated primal set of localization

]-"Jk;rl ={x € S, w541 € Spyy, 1 Ax + Ap1@py1 = 0}

Let dy = y — y* and dy = x — xF. Consider the following optimization
problems:
Primal direction Dual direction
min —% log det 541 min —% log det sg41
s.t. s.t. (14)
Ady + Ak+1$k+1 =0 and Sk+1 = —A%:_de
“le/?dXHF <1 “Qg*l/?ATdy”F <1
Trt1 € Spyyy Sk+1 € Spppy-

The optimal solution of Problems in (14) give the primal and dual di-
rections to obtain a warm start for computing the analytic center of the
updated set. Now this lemma.

Lemma 8 Let U = Af | (AQs-1AT) " Apyy be a pry1 X pry1 symmetric
matriz. Then

. . 1
1 = argmin{zl, Uzgyy — 3 logdet zxq1 : Tpy1 € Spyyy ) (15)
and
dx = —Qs1 AT(AQe1 AT) 1 A8,

are the optimal solutions of primal problem of (1) and thus the primal
updating direction; and

N . _ 1
81 = argmin{sj U spq1 — 2 logdet spy1: sky1 € Spyyy b (16)

and 1
dy = =5 (AQ-1 AT) M Ap s,

are the optimal solutions of the dual problem of (14) and thus the dual up-

dating direction.
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Proof. We first derive the KKT optimality conditions for the primal

direction. The norm constraint can be written as

~T ~
2dx Qde S 1.

Thus dyx and Zx41 are optimal iff there exist u € R™ and ug > 0 such that

_5%1;11 + A;EFHU =0
ATy + qugcix =0
Qg /2dx |l =1 = 0
Ady + App1dgy = 0

By multiplying AQg-1 to (18) from the left hand side, one has

(AQs—1 AT)u + ugAdy = 0,
and in view of (20)
u=1ug(AQs-1AT) 1Ay 1Bk
On one hand from (18)
dy = —Qs-1 AT (AQs1 AT) " Apa@pp,
and on the other hand by substituting u to (17), we have
Ept1 = uoUZps1.

Now from (19)
Qx;‘cFHkaH =1

(17)
(18)
(19)
(20)

(21)

T -1 _ : —1 _ _
Or T} 1Ty = Ug. Since Tpi1 0 Tyl = € then uy = 2. Therefore Equa-

tion (21) is the optimality condition of Problem (15).

To derive the dual direction, let up > 0 be the unique multiplier corre-
sponding to the norm constraint in dual problem. Then d, and 5;; are

optimal iff
Aps18ty +uo(AQs-1AT)dy =0,

where §11 = —A;‘fﬂdy. Therefore

-1

d, ” (AQs—1 AT) " Apirs,ty,
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and 1
_— 71 . 22
Sk+1 %0 Usiis (22)

Similar to the primal case, for optimal d}, one has

~

2d,” (AQs-1AT)d, = 1. (23)
Substituting dAy in (23), we have up =2. =

Note that the objective functions of Problems (15) and (16) are self-
concordant functions, and therefore Z 1 and 41 can be efficiently obtained
by the Newton method and a line search. In the next lemma we show that
the optimal updating directions obtained from Lemma 8 lead to interior
points of primal and dual localization sets.

Lemma 9 Let xt = (X + ady; azp41) and st = (8 + ads; aspi1) for a <
1 —0. Then (x*,s™) is an interior point of ‘7:113451'

Proof. The dual feasibility is trivial. Let us prove the primal feasibility.
First observe that since x € F 1’3 and dy ?}nd Zk41 are optimal for the primal
problem in (14), then clearly A (X + adx) + Aky1(aZrs1) = 0 and 24 €

S§k+1. We prove that Z; + ady, >s,, 0, for i = 1,...,k. In what follows we

indicate Z; by z, 5; by s, dy by dg, § by s, and dy by dx.

1Qu-1/2d2l7 = 2(1Q,-1/2ds ]
= 2“@3*1/2621-*1/26251/261:1:||2
= 2(Qq/2d2)"Qy12Q5-1Q, 1/2(Qq1/2dy)
= 2Q,-12Q4 1Qu-1/2 ® (Qq/2dy) (Q1/2dy)"
200", 00 ® (Qu1202)(Qq/2da)"

2y Aj(Qéil/Qs)Ay’(Q51/2d:p)(Q51/2dm)T (24)
2\ (Qéil/Qs)tr(st d2)(Qq1/2dy)"

= 2>\1(Q§i1/25)||Q51/2dx||2

= M(Qg,,)Q2dal7,

and since [|Qg1/2dx||F = 1, then ||Q,1/2d||F < 1. Thus

1Qp-1/2dal < Al(Qéil/Qs)- (25)

VAN

IN
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Now since A\;(Q,) = A?(z), then
M(QQ,,/»s) = AT(Q/29),
and since s € §p; and £1/2 is nonsingular, then Q128 € Sp; and therefore
M(Qg,e) = A7 (Qgur29)- (26)
On the other hand since (z, s) is a f-approximate analytic center, then

Q125 — eillp <0,

which implies that |A\2(Q,1/25) — 1] <0, or

1
Ay (Qgs2s) < 19 (27)
Now in view of (25), (26), and (27) one has
1
1Qp-1/2ds||F < 1—0’ (28)

and since a« <1 — 6
e; + an—l/2dx >5pi 0.

Therefore z + ad, = Quu/2(6i + aQy-1/2dy) =5, 0. =

In the next two lemmas we establish upper bounds on the primal and
dual potential functions at the updated points.

Lemma 10 Let x be a 0-approzimate analytic center of .7:]’3 and xT be the
interior point of .7-";3“ defined in Lemma 9. Then

1 1 1
¢p(xt) — pp(x) < af — 5) —5 log(l — a) — loga — 3 log det 511
Proof. The primal potential function at the updated point is

~ 1 ~
dp(xT) = (x4 ady) — 3 log det(x + adx) +

N 1 .
(A 9) B — 3 log det oy 1.
First from Part (6) of Lemma 1

log det (X + ady ) = log det X + log det(e + aQq—1/2dy).
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Now since ||@Qy—1/2dx||F < 1, from Lemma 3
log det(x + ady) > logdet X + atr(Qyo1/2dy) +
| Qx-1/72dx|| 7 + log(1 — | Qg-1/2dx| ),
and noting that ¢ 4+ log(1 — ¢) is a nonincreasing function
log det (X + ady) > log det X + atr(Qg-1/2dy) + o + log(1 — ). (29)
Also since Ay 1Tk = —Ad,
Tdy + gr App1@pe = (¢ — ATg)Tclﬁx —§7d,. (30)

Incorporating (29) and (30) into ¢p(x™) one has
br(x") —dp(x) = as"dx— Str(Quor/adi)
—%(Oz +log(l — a)) — % log det adig 1.
The lemma now follows from tr(Qi,1/2c;X) = 2eTQi,1/dex and

gTd; — eTQi—l/ZCix < (Q)—cl/2§ - e)TQ)—(—l/szx

Qi—l/ZCixy

IN

1(Qz1/28 =€)l p
6.

‘ F

IN

Lemma 11 Let s be a 0-approximate analytic center of .7-",% and s be the
interior point of fﬁ“ defined in Lemma 9. Then

1 1 1 R
¢p(s) —¢p(5) < (6 — 3) ~ 5 log(l —a) —loga — S logdet S

Proof. Following the same line of proof as in Lemma 10 we have
bt —dn(s) < —%tr(Qg_l/zds)—%—% log(l—a)—% log det @y 1. (31)
Let x be an approximate analytic center of F 1’%. Since
tr(Qgids) = —2e’QgupA”d,
= —2d," AQq e
= —2d, Az
= 0,
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then

tr(Qs-1/2ds) = tr(Qs-12 — Qg1/2)ds
= 2dI(Qg-1/2 — Qx12)e
= 2d](Qs-1/2€ — Qx1/2€)
= 2dZQ§—1/2 (e — Qgi/2%).
Thus ]
9 |atr (Qs-1/2ds)| < a|Qs-1/2ds]|r[|Qg1/2% — €] < af.

The proof now follows from the above inequality and (31). =

In the next theorem we show that the number of Newton steps needed
to recover the analytic center is bounded by O(1).

Theorem 12 Let (X,8) be a 0-approzimate analytic center of Fkpy, and

(xT,s%) be an interior point of the updated set of localization .7-"112'51 derived

in Lemma 9. Then the number of Newton steps needed to compute an ap-

proximate analytic center of .7-"112'51 is bounded by O(1) when starting from
(x*,s™).

Proof. Adding up the two inequalities in Lemma 10 and Lemma 11
gives
¢pp(x",8T) — dpp(%,8) <

200 — o — log(1 — o) — 2log o — log det Q172 Sp41.
k+1

Recall that ;41 and §;41 are optimal for Problem (15) and Problem (16)
and from the optimality conditions (21) and (22), 8x+1 = Uzgs1. Therefore

56;;11 = 25541,
or
R R 1
Tg41 O Sk+1 = 56-
Thus
¢pp(xT,st) < dpp(X,8) + 200 — a — log(l — @) — 2log o+ 21og 2. (32)

Let us first bound ¢pp(X,8). From Lemma 3, since (x,§) is a 6 approx-
imate center
|Q51/28 — e[|

(1= 1Qg1/28 —ell2)”

log det(Qg1/28) > tr(Qz1/28 — ) — 5
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But e = (er;eg;...;¢e;) and e’ e = k. Thus
tr(Qg1/28 — e) = 2eT (Qg1/25 — e) = 2(xT5 — k),

and therefore

opp(,5) = 'S - logdet(Qy/s5)

|Qs1/25 — el
(1 = [[Qz1/28 — ell2)

IN

x's — (xT's — k) + 1

IN
ol
+

(33)

Thus (32) reads

2

¢pp(xT,s7) —k <

< m—l—%ﬁ—a—log(l—a) —2log a+ 2log 2.

Now let ((x®)**!, (s*)5*1) be the exact analytic center of F5E! then since
pp((x*)F L, (s*)1) =k + 1, we have

¢PD(X+,S+) _ ¢PD ((xa)k+1’ (Sa)k+1) < ,0(9,0[),

where
2

41-9)

is a constant for fixed values of # and o < 1 — 8. On the other hand from
Lemma 5, Newton method reduces the potential function by a constant
amount J at each iteration. Therefore after at most

28]~ oq),

iterations, the algorithm stops with an approximate center of F I’ffbl. ]

p(0,a) = + 200 —a—log(l —a) —2loga +2log2 —1

Selecting arbitrary values for # < 1 and @ < 1 — 6, say 6 = 0.25 and
a = 0.70, one has
p(6,a) <0.11.

As mentioned in Section 3.2, § > 0.25. Therefore
[@} < [0.44] =1

This means that an approximate analytic center for F 113451 can be obtained
in at most one Newton step when starting from (x*,s™).
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5 Convergence analysis

In this section we establish a bound on the number of SOCC needed by the
algorithm before it obtains a solution in F*. Let us first introduce some
notations for optimal value of potential functions at the analytic center:

opt(Fp) = pp(x?)
opt(Fp) = ¢p(s*)
opt(Fpp) = ¢pp(x*,s?)
We bound the dual potential function at the kth iteration. Recall that
Frl={yeR":s=c— ATy =50, and AL, (7" —v) = Spot1 0}
where A = [A; Ay... Ag].

Lemma 13 Let
v = (a] (AQe—1AT) tay)'/?,

where ay is the first column of matrix Agr1. Then
opt(Fptt) > opt(Fpp) — log,
Proof. First observe that from Inequality (33)

92
41-0)

¢pp(X,8) — opt(Fpp) <

which implies that

(¢r) = opt(Fh)) + (#06) = wt(FP)) < 17—

or
92
i1-9)

Pp(X) — opt(FpE) < (34)
On the other hand
opt(}"]g’l) =k+1-— opt(fjliﬂ)

and from Lemma 10

|
opt(FE™) < gp(xF) < ¢p(%) — 5 logdet it +1(0, ),
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where 7(0, @) = (0 — 1) — L log(1 — @) — log .. Thus

1
opt(Fp) > (k+1) — ¢p(x) + 5 logdet Zp41 — n(0, ).

Now in view of (34)

1 62
opH(FE) > (k+1) — opt(Fh) + ~logdet sy — (6, @) — ——
2 4(1 —0)
or
opt(FEFLY > opt(FE) + 1logdeti +1—-n(0,a) — 972
b= iy Frl a1 -6y
For arbitrary values 6 = 0.25 and a = 0.70 we have
1
opt(FEFLY > opt(FE) + 3 log det 41 + log 2. (35)

Now recall that 21 satisfies (15), and therefore &7 Ufj1 = 1/2. Let

L
r=—=7 e,
\/5’7
then z € S, ., and
T L
z Ux = 2—726 Ue
1 _ _
= 2—7267’,4{+1(AQS AT Ap g e
1 _ _
= 2—72611T(AQ5 'AT)
1
= 3
Therefore logdet ;1 > logdetz = —2logy — log2. Lemma follows from
(35) now. m

Next lemma establishes a preliminary bound on &, the number of SOCC,
in terms of ;.

Lemma 14 Let Ay, Ao, ..., A be k SOCCs with a condition number p > 0,
and for each i =1,2,....k

7i = ((a})" (AQTAT) 1a})' 2, (36)
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where a} is the first column of matriz A;. Then

k k )
>_logi > - loge’p,
=1

where € is the radius of the full dimensional ball contained in F*.
Proof. From Lemma 13

opt(FF) > opt(Fp ') —logm

k
> opt(Fh) — Y logi. (37)
i=1

Since F9, is the unit ball ||y|| < 1 with the analytic center y® = 0, then
opt(Fp) = log(1 - [ly*||*) = 0.

Now let y° be the center of the full dimensional ball contained in F*.
Since for every y € F¥ ¢ — ATy =5 0, then for u with ||u| < 1, one has

c— AT(y° +eu) =50,
or ¢ — ATy¢ =5 eATu. Now from Lemma 2
det(c — ATyc) > det(eATw).
In view of Assumption 3, since A contains k blocks
det(c — ATy%) > (£2p)F. (38)
On the other hand,
opt(FE) < —% log det(c — ATy°). (39)
The proof follows from (37)- (39). =
We need to bound )" ;. First this lemma:

Lemma 15 Let A = [A; Ay ... Ag], and d} be the first column of matriz
A;. Then

L&
AQ'AT = I+ ai(a))” (40)

=1
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Proof. We drop the index i. First observe that for any vector u

1
uw'u— uT'Qsu > 0.

)\I(Qs)

Let u = Q,-1/2 ATz for an arbitrary vector z. Then clearly

1
A —IAT
Qs = )\I(Qs)

Now let s = (0¢; 7). From the definition of Qj

01 — 1 <||s||2 —20¢5T )
R .

"~ det?(s) \ —2005 det(s)Ip, + 2557

AAT, (41)

From Assumption 1, for the initial set %, we have Ag = (0 — I,,), and
¢o = e. Thus sy = (1;y) and

_ 1 1+ [ly||? —2yT
Q. = ( Iyl y ‘

A—TwPZ\ -2y (= |yl>)Lm + 295"
Thus
1
AQ AT = ———— (1= |lyl]*) I + 2yy”
0 0 (1—||yr|2)2[ }
1 2

I, + ny
L= lyll2™™ "~ (1= lyl[?)?

and clearly
AOQsalAOT = I (42)

Now since
k
AQT'AT = A)Q5 A + Y AiQ; AT,
i=1

in view of (41) and (42)

k
1
AQe1AT = I, + Y ———A;AT 43

On the other hand for s; = ¢; — ATy € S,

M(Qs,) = M (s:) = (0f + [18°]))* < (205)°
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and from Assumption 2
M (Qs;) < 4. (44)

Inequality (40) now follows from (43) and (44) m

We are now ready to establish a bound on the number of second order
cone cutting planes.

Theorem 16 Let F* contains o full dimensional ball with € radius and is
contained in FY. Let Algorithm 1 is employed to generate a series of the
nested convex sets F§ C .7-%71 C ... C FY by means of the second-order
cone cuts Al'y =s,. G, forit=1,2,....k. Then the algorithm finds a solution
in F* when m

k> O(EQN).

Proof. Let G° = I and define

1
Gkl =Gk + Za’f(a’f)T, (45)

where af is the first column of matrix A;. Observe that
1&s
Gl =1+ 1 Zaﬁ(a’l)T, (46)
i=1
and therefore G¥ > I. Taking logdet from both sides of (45)

2
log det(G**+1) = log(1 + %’“) +log det(G*), (47)

where 77 = ()T (GF)~Lak. Since G* = T and ||a¥|| < 1, therefore r2 <1
and consequently

7,2 7,2 (7“2/4)2 7,2
log(l+—£)y> %k k7~ &k
og(l+31) 2 2(1—r2/4) = 5

Thus since log det(G") = 0, from (47)

1 k
k+1 2
logdet(G"™*) > R 2-2:1 s (48)

Now from Lemma 15 and Inequality (46)

AQ. 1 AT = GF,
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and therefore r; > ;, where ~; is defined as in (36). Thus
W LA
log det(G > = °,
og det(G*) > = ;%
On the other hand
t k+1
log det(G* 1) < mlog <&> .
m
But from (46) tr(G¥*') = m + k/4. Thus
k+1 k
log det(G"™") < mlog(l + —).
4m
Combining (49) and (50) one has

k k
2 < 5mlog(l + —

=1

E@zl i

Now since [[¥_, v; < (—1k—)k, then

Now in view of Lemma 14

k
5 log eu <

IN

or

The algorithm stops when this inequality is violated. m
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