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Abstract: This paper presents a genetic algorithm method for solving convex quadratic

bilevel programming problem. Bilevel programming problems arise when one optimiza-

tion problem, the upper problem, is constrained by another optimization, the lower

problem. In this paper, the bilevel convex quadratic problem is transformed into a single

level problem by applying Kuhn-Tucker conditions, and then an efficient method based

on genetic algorithm has been proposed for solving the transformed problem. By some

rule, we simplify the transformed problem, so we can search the optimum solution in

the feasible region, and reduce greatly the searching space. Numerical experiments on

several literature problems show that the new algorithm is effective in practice.
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1 Introduction

The bilevel programming problem is an optimization problem that is constrained by another optimiza-

tion problem. This mathematical programming model arises when two independent decision makers,

ordered within a hierarchical structure, have conflicting objectives. The decision maker at the lower

level has to optimize its own objective function under the given parameters from the upper level deci-

sion maker, who, in return, with complete information on the possible reactions of the lower, selects

the parameters so as to optimize its own objective function.

The quadratic bilevel programming (QBP) problem is an optimization model formulated as follows:
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max
x≥0

F (x, y) = cT
1 x + dT

1 y + (xT , yT )R(xT , yT )T

where y solves (1)

max
y≥0

f(x, y) = cT
2 x + dT

2 y + (xT , yT )Q(xT , yT )T

s.t. Ax + By ≤ b

where F (x, y), f(x, y) are the objective functions of the leader and the follower, respectively. c1, c2 ∈
Rn1 , d1, d2 ∈ Rn2 , A ∈ Rm×n1 , B ∈ Rm×n2 , b ∈ Rm. R, Q ∈ R(n1+n2)×(n1+n2) are symmetric matrices,

respectively, x ∈ Rn1 , y ∈ Rn2 are the decision variables under the control of the upper level and lower

level, respectively.

The conventional solution approach to the bilevel programming problem is to transform the original

two level problems into a single level one by replacing the lower level optimization problem with its

Kuhn-Tucker optimization conditions. Branch-and-bound method [1-6], descent algorithms [11, 12],

and evolutionary method [8, 10, 13, 14] have been proposed for solving the bilevel programming

problems based on this reformulation.

In this paper we consider the problem (1) where F (x, y) and f(x, y) are convex functions. Unlike

the linear case, this problem does not necessarily attain its optimal solution at an extreme point

of the constrain region. We transformed the problem 1 into a single level problem by Kuhn-Tucker

optimization conditions. For solving the latter problem, an efficient method based on genetic algorithm

has been proposed in which each feasible chromosome represents a feasible solution and thereby

reducing the search space significantly. In Section 2, the development of the algorithm including

some concepts and theories are presented. The genetic algorithm for solving the quadratic bilevel

programming problem is proposed in Section 3. The computational studies on several literature

problems are reported for the efficiency of the proposed method in Section 4. We conclude the paper

in Section 5.

2 The Development of Genetic Algorithm for Solving the
QBP Problem

In this section the development of the algorithm are discussed. In the problem (1), let

Q =
[

Q2 QT
1

Q1 Q0

]

where Q0 ∈ Rn2×n2 , Q1 ∈ Rn2×n1 , Q2 ∈ Rn1×n1 . Then f(x, y) is transformed into

f(x, y) = cT
2 x + xT Q2x + (d2 + 2Q1x)T y + yT Q0y

Let S = {(x, y)
∣∣Ax + By ≤ b, x, y ≥ 0} denote the constraint region of the QBP problem. In order to

ensure that the problem (1) is well posed we make assumption that S is nonempty and compact. Let
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Q0 be a negative-definite matrix, so for each fixed x, there exists a unique solution to the following

programming problem

max
x,y≥0

f(x, y) = cT
2 x + xT Q2x + (d2 + 2Q1x)T y + yT Q0y

s.t. Ax + By ≤ b (2)

and the problem (1) has a global optimum [5]. So, we recall that a point (x, y) is said to be feasible to

the problem (1) if (x, y) ∈ S and y is an optimal solution of the problem (2). Kuhn-Tucker conditions

for the second level problem are derived and then the problem (1) is transformed into a single level

problem of the form:

max F (x, y) = cT
1 x + dT

1 y + (xT , yT )R(xT , yT )T

s.t. Ax + By + w = b (3)

2Q1x + 2Q0y −BT u + v = −d2

uT w = 0

vT y = 0

x, y, u, v, w ≥ 0

where u ∈ Rm, v ∈ Rn1are Kuhn-Tucker multipliers associated with the lower problem. So we have

the following theorem

Theorem 1 [2]: f(x, y) is continuous and convex and a constraint qualification hold for the problem

(2) with fixed x at x∗. Then a necessary and sufficient condition that is (x∗, y∗) solves the problem

(1) is that there exist a u∗ ∈ Rm, v∗ ∈ Rn1 ≥ 0, such that (x∗, y∗, u∗, v∗) is the optimal solution of the

problem (3).

Hence, we recall that a point (x∗, y∗) is called an optimal solution of the problem (1) (solution for

short), if (x∗, y∗) is an optimal solution of the problem (3).

The genetic algorithms (GA) are search and optimization procedures motivated by natural prin-

ciples and selection [7]. Because of its simplicity, minimal problem restrictions, global perspective,

and implicit parallelism, GA have been applied to a wide variety of problem domains including en-

gineering, sciences and commerce. Now, a new method based on genetic algorithm is proposed to

solve problem (3). It is assumed that the problem consists of m constraints and the decision maker

of the lower level has n2 decision variables under his control. Each chromosome is described by using

a string consisting of m + n2 binary components in the proposed algorithm. The first m components

are associated with the vector u and the remaining n2 components are associated with the vector v.

This chromosome, according to following rule [8], transforms the problem (3) into the problem

(4) below. If the value of the ith component of the chromosome corresponding to ui, which is the
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ith component of u, is equal to zero, then the variable ui is also equal to zero; In addition, its

complementary variable wi, which is the ith component of w, is greater than or equal to zero, otherwise

ui is greater than or equal to zero and its complementary variable wi is equal to zero. On the other

hand, if the jth component corresponding to the variable vj , which is the jth component of v , is zero,

then the value of variable vj is equal to zero and its complementary variable yj is greater than or

equal to zero, otherwise vj is greater than or equal to zero and its complementary variable yj is equal

to zero. This rule is applied with each chromosome for simplification of problem (3). The simplified

problem is as follows:

max F (x, y
′
) = cT

1 x + d1

′T
y
′
+ (xT , y

′T
)R

′
(xT , y

′T
)T

s.t. Ax + B
′
y
′
+ w

′
= b (4)

2Q1x + 2Q0

′
y
′ −B”T

u
′
+ v

′
= −d2

x, y
′
, u

′
, v
′
, w

′ ≥ 0

In the problem (4), y
′
, u

′
, v
′
, and w

′
are those component of y, u, v, and w that are greater than or

equal to zero. Also, d1

′
is the component of d1 associated with y

′
. The columns of the matrices B

′

and B” are the columns and rows of B, which are associated with the variables y
′
and u

′
, respectively.

The columns of the matrix Q0

′
are the columns of Q0, which are associated with the variables y

′
. The

columns of the matrix R
′
are the columns of R, which are associated with the variables y

′
.

solution of the problem (4), if existing is a feasible solution for quadratic bilevel programming

problem and the optimal value of the objective function is the fitness value for this chromosome.

The following theorem helps us to find a way to search and evaluate the feasible solution of the

QBP problem.

Theorem 2 If the solution of the simplified problem (4) by each chromosome exists, then this solution

is a feasible solution of the original problem (1).

3 The description of the proposed GA:

This yields the following genetic algorithm steps which are described in turn:

Step 1: Generating the initial population

The initial population consists of a set of feasible chromosomes. For generating these chromosomes

the following problem is solved:

max
x,y≥0

f
′
(x, y) = cT

2 x + xT rx + (d2 + 2Q1x)T y + yT Q0y

s.t. Ax + By ≤ b
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where r ∈ Rn1×n1 is a random matrix. By changing the components of r, the optimal solution also

changes, but the optimality conditions hold. These feasible solutions are converted into chromosomes

and the values of the objective functions of the first level are used for fitness value of each chromosome.

After generating sufficient such chromosomes, then go to step 2.

Step 2: Crossover

In this step, firstly, a random number Pc ∈ [0, 1] is generated. This number is the percentage of

the population on which the crossover is performed. Then, two chromosomes are selected randomly

from the population as the parents. Children are generated using the following procedure: Ran-

dom integer c is generated in the interval [1, l − 1] , where l is the number of components of a

chromosome(l = m + n2). The cth first components of the children are the same components as the

respective parents (i.e. The first child from the first parent and the second child from the second

parent.). The remaining components are selected according to the following rules:

i. The (c+ i)th component of the first child is replaced by the (l− i+1)th component of the second

parent (for i = 1, 2, · · · , l − c).

ii. The (c + i)th component of the second child is replaced by the (l − i + 1)th component of the

first parent (for i = 1, 2, · · · , l − c).

For example, by applying the proposed operator for the following parents, and assuming c = 5, we

obtained the following children.

Parents Children

10110 1100 10110 0100

11010 0010 11010 0011

Note that the proposed operator generates chromosomes with more variety since this operator can

generate different children from similar parents. It is evaluated with problem (4) for feasibility and

fitness value. If the new chromosome generated is unfeasible then it is eliminated and the algorithm

continues. The crossover operation continues for Pc percent of the population.

Step 3: Mutation

In this step, firstly, a random number Pm ∈ [0, 1] is generated. This number is the percentage of

population on which the mutation is performed. Then one chromosome is selected randomly from the

population. An integer random number n is generated in the interval [1, l], where l is the length of

the chromosome(l = m + n2) . For generating new chromosome the nth component is changed to 0,

if it was initially 1 and to 1 if it was initially 0. The new chromosome is evaluated with problem (4)

for feasibility and fitness value. The mutation operation is performed for Pm percent of the population.

5



Step 4: Selection

The chromosomes are arranged in descending order of fitness value. A population corresponding to the

size of the original population is selected from top of the list. This is considered as the new population.

Step 5: Termination

The algorithm terminates at the maximal iteration number. The best generated solution, which has

been recorded in all iterations in the earliest time, is reported as the solution for QBP problem by

proposed GA algorithm.

4 Computational Experiences

In order to test the efficiency of the proposed GA method, several literature problems are solved.
Example 1

min(x1 − 30)2 + (x2 − 20)2 − 20y1 + 20y2

s.t.x1 + 2x2 ≤ 30
x1 + x2 ≥ 20
0 ≤ x1 ≤ 15
0 ≤ x2 ≤ 15

min(x1 − y1)2 + (x2 − y2)2

s.t.

0 ≤ y1 ≤ 15
0 ≤ y2 ≤ 15

Example 2[9]

min y1
2 + y2

2 + x2 − 4x

s.t.

0 ≤ x ≤ 2
where yT = (y1, y2) solves

min y1
2 + 0.5y2

2 + y1y2 + (1− 3x)y1 + (1 + x)y2

s.t.

2y1 + y2 − 2x ≤ 1
yT = (y1, y2) ≥ 0

Example 3[9]

min y1
2 + y3

2 − y1y3 − 4y2 − 7x1 + 4x2

s.t. x1 + x2 ≤ 1
x = (x1, x2)T ≥ 0

where yT = (y1, y2) solves
min y1

2 + 0.5y2
2 + 0.5y3

2 + y1y2 + (1− 3x1)y1 + (1 + x2)y2

s.t.

2y1 + y2 − y3 + x1 − 2x2 + 2 ≤ 0
yT = (y1, y2, y3) ≥ 0

The compare of the results by the algorithms in the paper and the results in the references is as

follows:
Prob. result in the paper result in the references
No. (x, y) F f (x, y) F f

1 (15, 7.5, 10, 7.5) 331.25 25 (15, 7.501, 10, 7.501) 331.262 25

2 (0.8462, 0.7692, 0) −2.0771 −0.5918 (0.8438, 0.7657, 0) −2.0769 −0.5863

3 (0.611, 0.389, 0, 0, 1.833) 0.6389 1.6806 (0.609, 0.391, 0, 0, 1.828) 0.6426 1.6708

Notes: F and f are the objective function value of the upper-level and lower-level programming
problem, respectively.
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5 Conclusion

This paper presents a method based on genetic algorithm approach for solving bilevel programming

problem. Kuhn-Tucker condition for the second level problem are derived and then the QBP problem

is transferred into a single level problem with complementary constraints. By some rule in Ref [8],

we simplify the transformed problem, so we can search the optimum solution in feasible region, and

reduce greatly the searching space. From the numerical result, the results by the method in this paper

accord with the results in the references. So the proposed GA is very efficient from computational

point of view and quality of solutions
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