
Domination analysis for minimum multiprocessor scheduling

Gregory Gutin� Tommy Jensen and Anders Yeo�

Department of Computer Science
Royal Holloway� University of London

Egham� Surrey� TW�� �EX� UK
gutin�tommy�anders��cs�rhul�ac�uk

Abstract

Let P be a combinatorial optimization problem� and let A be an approximation al�
gorithm for P � The domination ratio domr�A� s� is the maximal real q such that the
solution x�I� obtained by A for any instance I of P of size s is not worse than at least the
fraction q of the feasible solutions of I� We say that P admits an Asymptotic Domination
Ratio One �ADRO� algorithm if there is a polynomial time approximation algorithm A

for P such that lims�� domr�A� s� � �� Recently� Alon� Gutin and Krivelevich proved
that the partition problem admits an ADRO algorithm� We extend their result to the
minimummultiprocessor scheduling problem�

Keywords� combinatorial optimization	 domination analysis	 minimummultiprocessor
scheduling

� Introduction� Terminology and Notation

Let P be a combinatorial optimization problem� I an instance of P � A an approximation
algorithm for P and x�I� the solution of I obtained by A� The domination ratio domr�A� I�
of A for I is the number of solutions of I that are no better than x�I� divided by the
total number of feasible solutions of I � The domination ratio domr�A� s� of A for P is
the minimum of domr�A� I� taken over all instances I of P of size s� We say that A is an
asymptotic domination ratio one �ADRO� algorithm for P if A runs in polynomial time and
lims�� domr�A� s� � ��

Domination analysis� whose aim is to evaluate the domination ratios of various combina�
torial optimization heuristics� allows one to understand the worst case behavior of heuristics�
Thus� domination analysis complements the results of the classical approximation analysis�
Notice that the domination ratio avoids some drawbacks of the approximation ratio 	�
�� In
particular� the domination ratio does not change on equivalent instances of the same prob�
lem� For example� by adding a positive constant to the weight of every arc of a weighted
complete digraph� we obtain an equivalent instance of the traveling salesman problem �TSP��
While the domination ratio of a TSP heuristics remains the same for both instances� the
approximation ratio changes its value� For more details� see 	���

Sometimes� domination analysis provides us with a deep insight into the behavior of
heuristics� For example� it is proved in 	
� that the greedy algorithm is of the minimum
possible domination ratio �i�e�� ��f�s�� where f�s� is the number of feasible solutions in in�
stances of size s� for a number of optimization problems including TSP and the assignment
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problem� In order words� the greedy algorithm may �nd the unique worst possible solution�
�This theoretical result is in line with computational experiments with the greedy algorithm
for TSP� e�g� see 	���� where the authors came to the conclusion that the greedy algorithm
�might be said to self�destruct�� and that it should not be used even as �a general�purpose
starting tour generator��� Notice that this result cannot be formulated in the terms of ap�
proximation analysis �AA� since AA does not distinguish between solutions with the same
objective function value�

Initially� domination analysis was used only for analysis of TSP heuristics �for a survey� see
	����� Recently� the domination ratios of algorithms for some other combinatorial optimization
problems have also been investigated 	�� �� �� �� 
� ���� In 	��� two heuristics for Generalized
TSP have been compared� Their performances in computational experiments are very similar�
Nevertheless� bounds for domination ratios show that one of the heuristics is much better
than the other one in the worst case� Two greedy�type heuristics for the frequency assignment
problem were compared in 	���� Again� bounds for the domination ratios allowed the authors
of 	��� to �nd out which of the two heuristics behaves better in the worst case�

Let p � � be an integer and let S be a �nite set� A p�partition of S is a p�tuple
�A�� A�� � � � � Ap� of subsets of S such that A� � A� � � � � � Ap � S and Ai � Aj � � for
all � � i � j � p�

In what follows� N always denotes the set f�� �� � � � � ng and each i � N is assigned a
positive integral weight ��i�� For a subset A of N � ��A� �

P
i�A ��i�� The minimum

multiprocessor scheduling problem �MMSP� 	�� can be stated as follows� We are given a triple
�N� �� p�� where p is an integer� p � �� We are required to �nd a p�partition C of N that
minimizes ��A� � max��i�p ��Ai� over all p�partitions A � �A�� A�� � � � � Ap� of N �

Clearly� if p � n� then MMSP becomes trivial� Thus� in what follows� p � n� The size s
of MMSP is ��n�

Pn
i�� log ��i���

Hochbaum and Shmoys 	��� proved that MMSP admits a polynomial time approximation
scheme� Alon� Gutin and Krivelevich 	�� proved that the partition problem� which coincides
with MMSP for the special case of p � �� admits an ADRO algorithm� We extend their result
to MMPS with unrestricted p� While using some of the ideas from 	��� our proof is based on
a number of new ideas and is much more complicated�

Let �a�� a�� � � � � ap� be a p�tuple of p non�negative integers such that
Pp

i�� ai � n� The
number of p�partitions �A�� A�� � � � � Ap� of N in which ai � jAij equals�

n

a�� a�� � � � � ap

�
�

n�

a��a�� 	 	 	ap� � ���

Given n� p �p � n�� let mc�n� p� denote the maximum value of the multinomial coe�cient� n
a��a������ap

�
�

� Preliminary Results

Lemma ��� Let n � p� Then the following holds�

mc�n� p� � pn���� 

�r

p

��n

�p��
�

Proof� Suppose that �a�� a�� � � � � ap� is chosen in such a way as to maximize
� n
a��a������ap

�
for

given n and p� It is not di�cult to see that all ai � �� By ���� using the Robbins formulation
of Stirling�s formula 	��� we get the following�
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By di�erentiating g�x� � �x � ���� lnx twice we get g���x� � �
x � �

�x� � Since g���x� � �
for x � ��� we conclude that g�x� is convex for x � ���� Thus� by Jensen�s Inequal�
ity�

Pp
i�� g�ai��p � g�

Pp
i�� ai�p� as a�� a�� � � � � ap � ���� However� this is equivalent to

�p
i��a

ai����
i � �n�p��n�p�����p� which together with the inequality above implies the follow�

ing�

mc�n� p� � �
p
�����p 
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This completes the proof� �

Corollary ��� For even n� n�
�n����� � �n 


q
�
�n �

Recall that N � f�� �� � � � � ng� A set F of subsets of N is called an antichain if no element
of F is contained in another element of F � By the famous Sperner�s Lemma� jFj � � n

bn��c
�
�

Consider a set P of p�partitions ofN�We call P a p�antichain if it has no pair �A�� A�� � � � � Ap��
�B�� B�� � � � � Bp� such that Ai � Bi and Ai 
� Bi for some i � f�� �� � � � � pg�

The following generalization of Sperner�s Lemma is due to Meshalkin 	��� �its further
extensions are given in 	����

Lemma ��� The number of elements in a p�antichain of N is at most mc�n� p��

The next two lemmas are well known� Nevertheless� since they have short proofs� we
provide such proofs�

Lemma ��� The number of p�tuples �x�� x�� � � � � xp� of non�negative integers satisfying x��
x� � 	 	 	� xp � q equals

�q�p
q

�
�

Proof� Consider the set S � f�� �� � � � � p� qg� Choose a p�element subset T � ft�� t�� � � � � tpg
of S� t� � t� � 	 	 	 � tp� Observe that every T corresponds to a p�tuple �t� � t	 � �� t� �
t�� �� � � � � tp� tp��� ��� where t	 � �� satisfying the conditions of the lemma and vice versa�
The well�known fact that there are

�q�p
p

�
�
�q�p

q

�
p�element subsets in a �p� q��element set

completes the proof� �

Lemma ��� For every integer k � �� ��� �
k �

k�� � e�� and ��� �
k �

k � e���

Proof� By di�erentiating ln x we see that �
k � ln�k� � ln�k � �� � �

k�� for k � �� which

implies that ��
k � ln�k��k � � ��

k�� � Thus� �� � k ln�� � �
k � and �k � �� ln�� � �

k � � ���
Exponentiating each side in the above inequalities� we obtain the desired results� �

Lemma ��	 Let �N� �� p� be a triple de�ning an instance of MMSP �p � �� and let ���� �
���� � � � � � ��n� � �� Let �� �

Pn
i�� ��i��p� The number gp of p�partitions A �

�A�� A�� � � � � Ap� of N for which the objective function of MMSP satis�es

��A� � max
��i�p

��Ai� � �� � �

is less than pn
�q


p
�n

�p��q
�
� �

�



Proof� Let A � �A�� A�� � � � � Ap� be a p�partition of N such that ��A� � �� � �� Then� for
each j � f�� �� � � � � pg� we may write

��Aj� � �� � ij � 	j � ���

where ij is a non�negative integer and � � 	j � �� For a p�tuple �i�� i�� � � � � ip� of non�negative
integers� we denote by Q��i�� i�� � � � � ip� the set of all p�partitions A satisfying

� � ij � ��� � ��Aj�� � �

for each j � �� �� � � � � p �see ����� It is not di�cult to see that Q��i�� i�� � � � � ip� forms a
p�antichain of S� Thus� by Lemma ��� and Lemma ����

jQ��i�� i�� � � � � ip�j � pn���� 

�r

p

��n

�p��
�

By ��� and the de�nitions of ��� ij and 	j �
Pp

j�� ij �
Pp

j�� 	j � p� Since
Pp

j�� ij is
integral�

Pp
j�� ij � p � �� Thus� the sum of jQ��i�� i�� � � � � ip�j over all p�tuples �i�� i�� � � � � ip�

of non�negative integers with
Pp

j�� ij � p� � equals the number gp�
By the arguments above� Lemma ��� and Corollary ���� we have

gp �
P
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jQ��i�� i�� � � � � ip�j � ��p��p
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Lemma ��
 Let p � � and x be integers� and let a be a rational number such that x � a � �
and ap is an integer� If ��� x��

ap �x � 
� then
�ap
x

�
��p�

x��� �
p�

ap�x � 
 
 ax

eax� �

Proof� By Lemma ��� we get the following�

�ap
x

�
��p�

x��� �
p�

ap�x �
�ap�x���x

x� ��p�
x���� �

p�
p���a��� �

p�
a�x

� ��� x��
ap �

x �ap�
x

pxx� �e
���a� p

p���
x�a

� 
 
 ax

x� 
 e�a�
�

Consider the following simple procedure for obtaining a random p�partition of a �nite set
S� Start from the p�partition A � �A�� A�� � � � � Ap�� where each Ai is empty� and assign each
element of S independently at random to one of Ai�s� �In particular for each j � S and
i � f�� �� � � � � pg� Prob�j � Ai� � ��p��

Lemma ��� Let p� b � � be integers and let a be a positive rational number such that ap
is an integer and b � a� Assume that p is large enough that �� � b��

ap �
b � �

� holds� Let
A � �A�� A�� � � � � Ap� be a random p�partition of f�� �� � � � � apg� Then the probability that

jAij � b for all i � f�� �� � � � � pg is at most ��� ab

�eab��
p�

Proof� Let Bi be the event that jAij � b� Mallows 	��� proved that the probability that all
Bi hold is bounded above by �p

i��Prob�Bi� �various more general results can be found in

�



	
��� We will now give an upper bound for Prob�Bi�� Using 
 � ��� in Lemma ��
� we obtain
the following�

Prob�Bi� � �� �apb ���p�b��� �
p�

ap�b � �� ab

�eab�

This implies that �
p
i��Prob�Bi� � ��� ab

�eab��
p� �

Lemma ��� Let �N� �� p� be a triple de�ning an instance of MMSP �p � �� and let ���� �
���� � � � � � ��n� � �� Assume that there is a rational number q such that � � q � �
and n � qp� Let �� �

Pqp
i�� ��i��p� Let A � �A�� A�� � � � � Ap� be a random p�partition of

N � f�� �� � � � � qpg and let E be the event that
P

j�Ai
��j� � �� � � for all i � f�� �� � � � � pg�

Let a � d qp
�q��e�p and b � d�q � �e� If ��� b��

pa �
b � �

� holds then Prob�E� � ��� ab

�eab��
p�

Proof� If ���� � ����� then clearly Prob�E� � �� Thus� we may assume that �� �� � ���� �
���� � � � � � ��qp� � �� Since ���q � �� we have �q�����

q � � � ��� Thus�

�q � ����

q
� � � �� � ���� � ���� � � � � � ��qp� � ��

Letm be the maximal integer for which ��m� � �����q�� Thus� m �q�����
q ��qp�m� ��

�q � p���

This implies that m � qp
�q�� � Let S � f�� �� � � � � apg� By Lemma ���� the probability that at

least b elements of S are assigned to the same set Ai is at least �� ��� ab

�eab��
p� Observe that�

by the de�nitions of m� b and a� the sum of weights � of at least b elements of S exceeds
�� � �� The last two facts imply that Prob�E�� ��� ab

�eab��
p� �

� Main Result

Recall that the size s of MMSP is ��n �
Pn

i�� log ��i��� Consider the following approxima�
tion algorithm H for MMSP� If s � pn� then we simply solve the problem optimally� This
takes O�s�� time� as there are at most O�s� solutions� and each one can be evaluated and
compared to the current best in O�s� time� If s � pn� then sort the elements of the sequence
����� ����� � � � � ��n�� For simplicity of notation� assume that ���� � ���� � 	 	 	 � ��n�� Com�
pute r � dlogn� log pe and solve MMSP for �f�� �� � � � � rg� �� p� to optimality� Suppose we
have obtained a p�partition A of f�� �� � � � � rg� Now for i from r � � to n add i to the set Aj

of the current p�partition A with smallest ��Aj��

Theorem ��� The algorithm H runs in time O�s� log s�� We have lims�� domr�H� s� � ��

Proof� We may assume that every operation of addition and comparison takes O�s� time
�see� e�g�� 	���� As we observed above� the case s � pn takes O�s�� time� Let s � pn� The
sorting part of H takes time O�sn logn�� The �optimality� part can be executed in time
O�spdlogn� logpe� � O�sn�� Using an appropriate data structure� one can �nd out where to
add each element i for i � r in O�s log p� time� Thus� the time complexity of H is O�s� log s��

In what follows� we assume that s � pn� Observe that to prove that lims�� domr�H� s� �
� it su�ces to show that limn�� domr�H� s� � �� Indeed� by p � n and s � pn � nn�
lims�� n ���

Let � � � be arbitrary� We will show that there exists an integer n� such that domr�H� s� �
�� � for all n � n�� Let n� � maxfn	� n�� n�� n
g� where n	� n�� n� and n
 are any integers
satisfying the following inequalities for all ��� � a � � and � � b � 
�

�
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a
p

logn��

�b � �

� � �
�
�� ab

�eab�

	plogn��


� �
q

�
�

q

 log logn� log log logn�

� logn�
� �

q
�
� 
 ��
�log logn���

Let I be an instance �N� �� p�� where n � n�� and let A � �A�� A�� � � � � Ap� be a p�partition
of N obtained by H for I�

Let Aj be the set of maximal weight in A and let m be the maximum element of Aj �
Clearly� ��A� � ��Aj�� Note that if m � r or m � p� then A is an optimal solution� so we
may assume that

m � r and m � p ���

Since m � r� m is the last element added to Aj � If we divide every ��i�� i � �� �� � � � � n� by
��m� we do not change the solution A of H � Thus� we may assume that ��m� � ��

At the time just before m was appended to Aj � ��Ai� � ��Aj� for every i 
� j� Hence�
��Aj� � ��m� �

Pm��
i�� ��i��p � �� � �� where �� �

Pm
i�� ��i��p� Thus�

��A� � �� � �� ���

We now consider the following cases�

Case �� m � �p� There are pm possible ways of putting �� �� � � � � m into p sets of a p�
partition� By ��� and Lemma ���� the number of p�partitions of f�� �� � � � � mg that are worse
than A is more than

pm � pm
r
�

�

�r
�p

�m

�p��
�

Clearly� no matter how we place the elements m� �� m� �� � � � � n into the sets of a p�
partition B worse than A �i�e�� ��A� � ��B��� we will end up with a solution worse than A�
Thus� the number of solutions worse than A is more than

pn�m


�pm � pm

r
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�r
�p

�m

�p���A � pn
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domr�H� I� � ��
r
�
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�r
�p
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�p��
���

Since m � �p� we have
p
�p���m� � ��
�� So if p � log logn� then we are done as n � n
�

If p � log logn� then by ��� and the de�nition of n� we obtain the following�

domr�H� I� � ��
r
�

�

�s
�p

� logn� log p

�p��
� ��

r
�

�

�s
� log logn log log logn

� logn

�
� �� ��

Case �� m � �p� We de�ne q � m
p � �� and note that �by ����� q � � and p � m�� �

logn��� log p�� This implies that p �
p
logn��� Let a � d qp

�q��e�p and b � d�q��e� and note

that �

 � a � � and � � b � 
� By the de�nitions of n	� n� and Lemma ��
� we have the

following�

�



domr�H� I� � ��
�
�� ab

�eab�

�p

� ��
�
�� ab

�eab�

�plogn�


� �� �� ���

�

References

	�� A�V� Aho� J�E� Hopcroft and J�D� Ullman� The Design and Analysis of Computer Algo�
rithms� Addison�Wesley� Reading MA� �

��

	�� N� Alon� G� Gutin and M� Krivelevich� Algorithms with large domination ratio� Submit�
ted�

	�� G� Ausiello� P� Crescenzi� G� Gambosi� V� Kann� A� Marchetti�Spaccamela and M� Pro�
tasi� Complexity and Approximation� Springer� Berlin� �


�

	�� M� Beck and T� Zaslavsky� A shorter� simpler� stronger proof of the Meshalkin�Hochberg�
Hirsh bounds on componentwise antichains� J� Combin� Theory Ser� A ��� ������� �
��
�

�

	�� D� Ben�Arieh� G� Gutin� M� Penn� A� Yeo and A� Zverovitch� Transformations of Gen�
eralized ATSP into ATSP� experimental and theoretical study� To appear in Oper� Res�
Letters�

	�� D� Berend and S�S� Skiena� Combinatorial dominance guarantees for heuristic algorithms�
Manuscript� �����

	
� D�P� Dubhashi and D� Ranjan� Balls and bins� A study in negative dependence� Random
Struct� Alg� ����� ��

��� 

�����

	�� G� Gutin� A� Vainshtein and A� Yeo� Domination analysis of combinatorial optimization
problems� To appear in Discrete Appl� Math�

	
� G� Gutin and A� Yeo� Anti�matroids� Oper� Res� Lett� �� ������� 

�

�

	��� G� Gutin� A� Yeo and A� Zverovitch� Exponential Neighborhoods and Domination Anal�
ysis for the TSP� In The Traveling Salesman Problem and its Variations �G� Gutin and
A�P� Punnen� eds��� Kluwer� Dordrecht� �����

	��� D�S� Hochbaum and D�B� Shmoys� Using dual approximation algorithms for scheduling
problems� theoretical and practical results� J� ACM �� ��
�
�� ��������

	��� D�S� Johnson� G� Gutin� L� McGeoch� A� Yeo� X� Zhang� and A� Zverovitch� Exper�
imental Analysis of Heuristics for ATSP� In The Traveling Salesman Problem and its
Variations �G� Gutin and A� Punnen� eds��� Kluwer� Dordrecht� �����

	��� A�E� Koller and S�D� Noble� Domination analysis of greedy heuristics for the frequency
assignment problem� To appear in Discrete Math�

	��� C�L� Mallows� An Inequality Involving Multinomial Probabilities� Biometrika �� ��
����
��������






	��� L�D� Meshalkin� A generalisation of Sperner�s theorem on the number of subsets of a
�nite set� Theor� Probability Appl� � ��
���� ��������

	��� H� Robbins� A remark on Stirling�s formula� Amer� Math� Monthly �� ��
���� ����
�

	�
� E� Zemel� Measuring the quality of approximate solutions to zero�one programming
problems� Math� Oper� Res� � ��
���� ��
�����

�


