
DIPARTIMENTO DI MATEMATICA

PURA ED APPLICATA “G. VITALI”

Gradient Projection Methods for

Quadratic Programs and

Applications in Training Support

Vector Machines

T. Serafini, G. Zanghirati, L. Zanni

Revised on July 2003

Preprint nr. 48 (Febbraio 2003)

Università degli Studi di Modena

GRADIENT PROJECTION METHODS FOR QUADRATIC

PROGRAMS AND APPLICATIONS IN TRAINING SUPPORT

VECTOR MACHINES∗

THOMAS SERAFINI1,† GAETANO ZANGHIRATI2,‡ LUCA ZANNI1,§

February 2003. Revised July 2003.

1Dipartimento di Matematica, Università di Modena e Reggio Emilia, via Campi 213/b, 41100 Modena, Italy;
2Dipartimento di Matematica, Università di Ferrara, via Machiavelli 35, 44100 Ferrara, Italy.

Gradient projection methods based on the Barzilai-Borwein spectral steplength choices are considered for quadratic
programming problems with simple constraints. Well known nonmonotone spectral projected gradient methods and
variable projection methods are discussed. For both approaches the behavior of different combinations of the two
spectral steplengths is investigated. A new adaptive stplength alternating rule is proposed, that becomes the basis for
a generalized version of variable projection method (GVPM). Convergence results are given for the proposed approach
and its effectiveness is shown by means of an extensive computational study on several test problems, including the
special quadratic programs arising in training support vector machines. Finally, the GVPM behavior as inner QP solver
in decomposition techniques for large-scale support vector machines is also evaluated.

Keywords: quadratic programs, support vector machines, gradient projection methods, decomposition techniques, large-
scale problems.

1 Introduction

The aim of this work is to analyse gradient projection methods for minimizing quadratic functions on nonempty

closed convex sets defined by simple constraints. Particular interest is devoted to a special problem of this type:

the convex quadratic programming (QP) problem with box constraints and a single linear equality constraint

arising in training the learning methodology named support vector machine (SVM).

Gradient projection methods appear promising approaches for the above problems since they are based

on successive projections on the feasible region, which are nonexpensive operations when the constraints are

simple. Furthermore, their low memory requirements and extreme simplicity make them attractive for large-

scale problems, both in scalar and parallel environments. On the other hand, it is well known that these methods

may exhibit very slow convergence if not combined with appropriate steplength selections.

Here we deal with gradient projection methods that exploit the two spectral steplengths introduced by

Barzilai and Borwein in [1] for the unconstrained case. We consider a nonmonotone spectral projected gradient

method developed in [3] and the variable projection methods introduced in [33, 34]. Even if the two approaches

can exploit the same steplength selections and can be described within the same gradient projection scheme, they

∗This work was supported by the Italian Education, University and Research Ministry (grants FIRB2001/RBAU01JYPN and
FIRB2001/RBAU01877P).

†E-mail: serafini.thomas@unimo.it
‡E-mail: g.zanghirati@unife.it
§E-mail: zanni.luca@unimo.it

1

present considerable differences. In fact, the method in [3] uses a nonmonotone linesearch technique [20], while

the variable projection methods use a limited minimization rule as (monotone) linesearch procedure [2]. For

both schemes we are interested in investigating the improvements arising from some kinds of alternation between

the two BB rules. This analysis is motivated by the promising results recently obtained in [18, 19, 21, 38] with

different alternating strategies. In the nonmonotone gradient method for unconstrained problems described in

[21], an alternation at each iteration between the two BB rules is suggested, while in the variable projection

method for SVM QP problems discussed in [18, 19, 38], an alternation every three iterations is recommended.

In this paper, we verify the effectiveness of these alternating strategies for both SPGM and VPM; moreover,

we introduce a generalized VPM version based on an adaptive alternating strategy for the steplength selection.

For the generalized scheme, that includes VPMs as special cases, we give both the convergence analysis and the

numerical evidences of its promising performances. We evaluate the behavior of the considered approaches on

several test problems and, in particular, on the QP problem arising in training standard SVMs (see [17] and

the references therein for optimization problems in nonstandard SVMs).

Since we are specially interested to this last problem, we briefly recall its main features [4, 7, 8, 37]. Given

a training set of labelled examples

D = {(zi, yi), i = 1, . . . , n, zi ∈ R
m, yi ∈ {−1, 1}} ,

the SVM algorithm performs classification of new examples z ∈ R
m by using a decision function F : R

m →

{−1, 1}, of the form

F (z) = sign

(

n
∑

i=1

x∗
i yiK(z, zi) + b∗

)

, (1)

in which K : R
m × R

m → R denotes a special kernel function and x∗ = (x∗
1, . . . , x

∗
n)T is the solution of

min F(x) =
1

2
xT Gx−

n
∑

i=1

xi

sub. to
∑n

i=1 yixi = 0,
0 ≤ xj ≤ C, j = 1, . . . , n,

(2)

where G has entries Gij = yiyjK(zi, zj), i, j = 1, 2, . . . , n, and C is a parameter of the SVM algorithm. Once

the vector x∗ is computed, the quantity b∗ ∈ R in (1) may be is easily derived. A training example zi is called

support vector (SV) if the corresponding x∗
i is nonzero and bound support vector (BSV) if x∗

i = C. Widely used

kernel functions are the linear kernel (K(zi, zj) = zT
i zj), the polynomial kernel (K(zi, zj) = (1+zT

i zj)
d, d ∈ N)

and the Gaussian kernel (K(zi, zj) = exp(‖zi − zj‖22/(2σ2)), σ ∈ R). Since the matrix G corresponding to

these kernels is in general dense and in many real-world applications its size is very large (n� 104), the training

phase of an SVM leads to a challenging QP problem. In fact, standard QP solvers based on explicit storage of G

cannot be used and strategies that exploit the special features of the problem are absolutely necessary. Among

these strategies, decomposition techniques are certainly the most investigated (see [12] for a different approach

in linear SVMs). They consist in splitting the large problem (2) into a sequence of smaller QP subproblems

that can fit into the available memory. The packages in [14, 31] are designed for subproblems of size 2 which are

2

analytically solvable, while the techniques in [5, 6, 22, 23, 29, 38] have the subproblem size as a parameter and

they need a numerical QP solver. In these cases, a crucial question is what kind of QP solver is most convenient.

The numerical experiments of this work show that the considered gradient projection methods are very effective

inner solvers for decomposition techniques and may be useful to improve the performance of existing packages

or to design new decomposition schemes.

The paper is organized as follows. Section 2 states the considered gradient projection approaches, section 3

presents a numerical comparison of the methods, section 4 shows their effectiveness as inner solvers for SVMs

decomposition techniques and, finally, section 5 draws some conclusions.

2 Two Gradient Projection Approaches for Quadratic Programs

We consider the numerical solution of the quadratic program

min
x∈Ω

f(x) =
1

2
xT Gx + qT x (3)

where G is an n × n symmetric matrix, q, x ∈ R
n and Ω ⊂ R

n is a nonempty closed convex set defined by

simple constraints. Throughout the paper, PΩ(·) denotes the orthogonal projection on Ω. We are interested in

solving this problem by gradient projection methods that fall in the following general scheme:

Algorithm GPM (Gradient Projection Methods)

Step 1. Initialization. Let x(0) ∈ Ω, 0 < αmin < αmax, α0 ∈ [αmin, αmax]; set k = 0.

Step 2. Projection. Terminate if x(k) satisfies a stopping criterion; otherwise compute the direction

d
(k) = PΩ(x(k) − αk(Gx(k) + q))− x(k). (4)

Step 3. Linesearch. Compute
x(k+1) = x(k) + λkd

(k), λk ∈ (0, 1],

where λk is a stepsize determined by a linesearch procedure.

Step 4. Updating. Compute αk+1 ∈ [αmin, αmax], set k ← k + 1 and go to step 2.

We analyse gradient projection methods that use an αk+1 steplength selection based on the Barzilai-Borwein

(BB) spectral rules:

α
(1)
k+1 =

(x(k+1) − x(k))T (x(k+1) − x(k))

(x(k+1) − x(k))T G(x(k+1) − x(k))
=

d
(k)T

d
(k)

d
(k)T

Gd
(k)

, (5)

α
(2)
k+1 =

(x(k+1) − x(k))T G(x(k+1) − x(k))

(x(k+1) − x(k))T G2(x(k+1) − x(k))
=

d
(k)T

Gd
(k)

d
(k)T

G2d
(k)

. (6)

In particular we concentrate on the nonmonotone spectral projected gradient method (SPGM) introduced in

[3] and on the variable projection methods (VPMs) proposed in [18, 33, 34]. The first approach combines the

updating rule (5) with the nonmonotone linesearch procedure developed in [20], while the variable projection

methods use a classical limited minimization rule as linesearch procedure and either (5) or (6). Before stating in

details the two approaches and discussing the behavior of the steplength selections, we introduce the following

property:

3

Lemma 2.1 Let G be an n× n symmetric matrix and d ∈ R
n. If d

T Gd > 0 then

d
T Gd

d
T G2d

≤
d

T
d

d
T Gd

. (7)

Proof By Cauchy-Schwarz inequality we have

d
T Gd ≤

√

d
T
d

√

(Gd)T (Gd) =
√

d
T
d

√

d
T G2d

and we may obtain (7) by squaring and dividing by (dT Gd)(dT G2d). �

The previous Lemma ensures that, at each iteration of a gradient projection scheme, if d
(k)T

Gd
(k) > 0 then

the steplength candidate values given by rules (5) and (6) satisfy

α
(2)
k+1 ≤ α

(1)
k+1.

In the following we present the two gradient projection approaches and in the next section we analyse their

behavior on several test problems.

2.1 The Nonmonotone Spectral Projected Gradient Method

We recall the SPGM introduced in [3, alg. SPG2] for the minimization of differentiable functions on nonempty

closed and convex sets. When SPGM is applied to solve the QP problem (3), it may be stated this way:

Algorithm SPGM (Spectral Projected Gradient Method)

Step 1. Initialization. Let x(0) ∈ Ω, M ≥ 1, 0 < σ1 < σ2 < 1, γ ∈ (0, 1), 0 < αmin < αmax, α0 ∈ [αmin, αmax];
set k = 0.

Step 2. Projection. Terminate if x(k) satisfies a stopping criterion; otherwise compute the descent direction

d
(k) = PΩ(x(k) − αk(Gx(k) + q))− x(k).

Step 3. Linesearch. Compute
x(k+1) = x(k) + λkd

(k), λk ∈ (0, 1],

with λk given by the following linesearch procedure:

Step 3.1. Set λ = 1, T = (Gx(k) + q)T d
(k) and fM = max0≤j≤min{k,M−1} f(x(k−j)).

Step 3.2. If f(x(k) + λd
(k)) ≤ fM + γλT then

set λk = λ;

else
define λnew ∈ [σ1λ, σ2λ], set λ = λnew and go to step 3.2;

end.

Step 4. Updating. If d
(k)T

Gd
(k) ≤ 0 then

set αk+1 = αmax;

else
compute αk+1 = min

{

αmax, max
{

αmin, α
(1)
k+1

}}

;

end.
Set k ← k + 1 and go to step 2.

4

Table I SPGM versus VPM comparison on the HARKERP2 test problem.

method it ls time fmin

SPGM(α(1)) 33 3 0.10 −5.000E−1

SPGM(α(2)) 4340 0 12.19 −5.000E−1

VPM(α(1)) 119 34 0.36 −5.000E−1

VPM(α(2)) 3706 1 12.06 −5.000E−1

From the computational viewpoint, the main tasks of each iteration may be considered the projection on

Ω in Step 2 and the matrix-vector product w = Gd
(k) first involved in the function evaluation of Step 3.2,

excluding the first iteration which computes also Gx(0). In fact, suppose t = Gx(k) be already computed,

then all the other quantities can be obtained by vector-vector operations from w and/or t (the stopping rule

and the λnew selection will be discussed later). At the end of the iteration, t itself is simply updated by

t ← t + λkw = Gx(k+1). Of course, the computational cost of these main tasks can be largely reduced for

special forms of Ω and/or G.

The convergence analysis developed in [3] ensures that any accumulation point of the sequence {x(k)}

generated by SPGM is a constrained stationary point. From the performance viewpoint, the spectral steplength

(5), coupled with a nonmonotone linesearch strategy that accepts the corresponding iterate as frequently as

possible, is presented in [3] as a successful idea to accelerate the convergence rate; its efficiency is then shown

by testing SPGM against the LANCELOT package on many test problems from the CUTE collection. In [3] it

is also observed that the convergence rate of the classical gradient projection method with linesearch along the

projection arc, both in monotone and nonmonotone versions, is very slow compared to SPGM. This confirms

that the spectral steplength (5) is an essential feature for accelerating gradient projection schemes.

Concerning the behavior of rule (6) in SPGM, no considerations or numerical results are given in [3]. On the

other hand, in the context of gradient methods for unconstrained problems, in [11] it is just claimed that (6)

often performs worse than (5) in the BB method for quadratic functions. For these reasons a wide numerical

experimentation on the behavior of both rules within SPGM is reported in section 3.

Here, as illustrative purpose only and to make easier the comparison with VPMs, we consider how SPGM

performs on the CUTE HARKERP2 test problem, a convex quadratic program sized 100 subject to nonnega-

tivity constraints. In what follows, we denote by SPGM(α(i)), i = 1, 2, the SPGM variant using α
(i)
k+1, i = 1, 2.

In Table I we report the number of iterations (it), the number of linesearches producing λk < 1 (ls), the

time in seconds and the best computed function value (fmin). The experiments are carried out in MATLAB

on a Digital Alpha personal workstation 500au. The upper part of Table I corresponds to the two SPGM

schemes just described, where the stopping rule is ‖PΩ(x(k)− (Gx(k) +q))−x(k)‖∞ < 10−5 and the parameter

settings are those suggested in [3] (αmin = 10−30, αmax = 1030, α0 = ‖PΩ(x(0) − (Gx(0) + q)) − x(0)‖−1
∞ ,

M = 10, γ = 10−4, σ1 = 0.1, σ2 = 0.9). In particular, we use the same linesearch procedure as in [3]: compute

λnew = arg minλ∈[0,1] f(x(k) +λd
(k)), if λnew ∈ [σ1, σ2λ] then λ← λnew else λ← λ/2. Figures 1 and 2 show the

5

0 20 40 60 80 100

10−4

10−3

10−2

10−1

100

101

 k (iterations)

α k

SPGM(α(1))
SPGM(α(2))
λ

 k
 < 1

Figure 1 Values of αk in SPGM(α(1)) and in SPGM(α(2)) for HARKERP2 test problem.

0 20 40 60 80 100

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

 k (iterations)

 f k

SPGM(α(1))
SPGM(α(2))

Figure 2 Values of fk = f(xk) in SPGM(α(1)) and in SPGM(α(2)) for HARKERP2 test problem.

values of αk and f(x(k)) in the first iterations of the two SPGM methods. In Figure 1 the mark “∗” denotes

iterations where the linesearch procedure implies a step reduction.

We observe the considerable differences that the two steplength selection rules produce. In particular, rule

(5) gives the typical nonmonotone behavior of the sequence {f(xk)}, which is also a characteristic property

6

of the BB method in unconstrained optimization (see e.g. [15]). In fact, after some iterations where f(x(k))

increases, a remarkable objective function descent follows, up to around iteration 30 where this behavior is well

emphasized. Of course, in order to exploit the effectiveness of the steplength rule (5), a linesearch procedure

able to accept nonmonotone steps is crucial. In this sense, the combination of nonmonotone linesearch and

rule (5) is considered a successful strategy in [3]. On the other hand, rule (6) seems to be unable to produce

nonmonotonicity in the sequence {f(xk)} and implies a very slow convergence. However, as shown in section

3, this is not always the case and sometimes SPGM(α(2)) outperforms SPGM(α(1)). These different behaviors

point out the SPGM strong sensitivity to the steplength selection and suggest that it is worthwhile to investigate

if improvements could be obtained by alternating between the two BB rules, as it seems the case in unconstrained

optimization [21] (see also [9, 10, 16, 32] for suggestions about other choices of the steplength). We numerically

compare some alternating strategies in section 3.

2.2 The Generalized Variable Projection Method

In this subsection we propose a generalized version of the variable projection methods introduced for convex

quadratic programs in [18, 33, 34]. These schemes are scaled gradient projection methods that use a limited

minimization rule as linesearch procedure (see e.g. [2]) and the BB rule (5) or (6) for the steplength selection.

For the general nonconvex QP problem (3), a description of the unscaled VPM steps is given in Algorithm

VPM.

Algorithm VPM (Variable Projection Method)

Step 1. Initialization. Let x(0) ∈ Ω, iα ∈ {1, 2}, 0 < αmin < αmax, α0 ∈ [αmin, αmax]; set k = 0.

Step 2. Projection. Terminate if x(k) satisfies a stopping criterion; otherwise compute the descent direction

d
(k) = PΩ(x(k) − αk(Gx(k) + q))− x(k).

Step 3. Linesearch. Compute
x(k+1) = x(k) + λkd

(k), λk ∈ (0, 1],

with λk given by
λk = arg min

λ∈[0,1]

f(x(k) + λd
(k)). (8)

Step 4. Updating. If d
(k)T

Gd
(k) ≤ 0 then

set αk+1 = αmax;

else
compute αk+1 = min

{

αmax, max
{

αmin, α
(iα)
k+1

}}

.

end.
Set k ← k + 1 and go to step 2.

The same considerations on the computational cost given for SPGM still hold for VPMs. The VPM conver-

gence properties are discussed in the next subsection where a convergence analysis of its generalized version is

presented.

From the performance viewpoint, numerical evidences of their higher effectiveness in comparison to classical

7

gradient projection methods (with constant steplength and limited minimization rule, or with Armijo-type

rule along the projection arc) are reported in [34]. See also [18] for an overview on VPMs for large convex

quadratic programs and for a description of how the steplength selections (5) and (6) may be derived by

heuristic arguments on f(x(k) + d
(k)) and ‖x∗ − (x(k) + d

(k))‖2 bounds, respectively. We also remark that

rule (6) may be considered a special case of a general steplength selection rule proposed in [13] for projection

methods in variational inequality problems, which was obtained by similar heuristic arguments.

Now, to better understand the generalized version of these methods, we show the numerical results obtained

by solving the HARKERP2 test problem with VPMs. We denote by VPM(α(1)) the version of VPM that uses

the steplength selection (5) (iα = 1) and by VPM(α(2)) the version that uses the rule (6) (iα = 2). The results

in the bottom half of Table I, as well as Figures 3 and 4, are obtained with x(0), α0, αmin, αmax and stopping

rule chosen as in the previous experiments with SPGM.

The behavior of VPM(α(2)) is very similar to that of SPGM(α(2)). In fact, in spite of the stronger request on

λk given by the limited minimization rule (8), also in this case the rule (6) produces steps that do not need to be

reduced by the linesearch procedure (indeed λk < 1 for k = 0 only). As for SPGM(α(2)), this steplength seems

to imply a too slow descent of the objective function. On the other hand, in VPM(α(1)) the poor performance

appears generated by an opposite phenomenon: here, the limited minimization rule implies too many linesearch

reductions and consequently too frequent rejections of the iterate corresponding to the steplength (5). This

fact does not prevent the method to produce iterations with a large objective function descent, but it delays

these iterations and reduces the descent magnitude, thus degrading the VPM(α(1)) performance with respect

to SPGM(α(1)).

Since these drawbacks are frequently observed in VPM applications (see the experiments in section 3),

we argue that, even if the steplength selections (5) and (6) allows VPMs to outperform other classical gradi-

ent projection methods, their combination with the linesearch procedure (8) cannot be considered completely

satisfactory.

In what follows, we suggest a generalized VPM version that overcomes the above drawbacks. The basic

idea consists in alternating cycles of iterations, where a cycle with one steplength selection rule follows a cycle

with the other rule. The purpose of the strategy is to attenuate the poor behavior observed in VPMs when the

BB rules are separately used. In practice, we try to use the rules alternation technique to avoid both the slow

descent produced by rule (6) and the frequent linesearch step reductions arising with rule (5).

Such an approach is expected to be effective on the basis of both the good performance obtained in [18, 19, 38],

where a VPM switches between (5) and (6) every three iterations, and the previously mentioned promising results

on alternating strategies for unconstrained problems.

In details, our alternating strategy is as follows. Let 0 < nmin ≤ nmax be the prefixed minimum and maximum

cycle lengths, respectively. Let nα be the number of consecutive iterations that use the same steplength selection

rule, (5) or (6). We switch from one rule to the other either (i) if nα ≥ nmax, or (ii) if nmin ≤ nα < nmax and

a changing criterion is satisfied. To present the changing criterion we introduce the following definitions.

8

Definition 2.1 (Separating steplength) Let x(k) ∈ Ω, d
(k) as in (4), d

(k)T
Gd

(k) > 0 and αk ∈ [αmin, αmax].

If

α
(2)
k+1 < αk < α

(1)
k+1

then αk is called a separating steplength.

Definition 2.2 (Bad descent generator) Let x(k) ∈ Ω, d
(k) as in (4), d

(k)T
Gd

(k) > 0, αk ∈ [αmin, αmax]

and

λopt = arg min
λ

f(x(k) + λd
(k)) =

−(Gx(k) + q)
T
d

(k)

d
(k)T

Gd
(k)

.

Given two constants λ` and λu such that 0 < λ` ≤ 1 ≤ λu, we say that αk is a bad descent generator if one of

the following conditions is satisfied:

(a) λopt < λ` and αk = α
(1)
k , (9)

(b) λopt > λu and αk = α
(2)
k . (10)

The changing criterion consists in verifying if the last steplength used is a separating steplength or is a bad

descent generator. The rationale of this criterion is the following:

– if αk is a separating steplength and at least nmin iterations with rule (5) was already performed, we switch

to rule (6) in order to reduce the chance of additional linesearch step reductions;

– if αk is a separating steplength and at least nmin iterations with rule (6) was already performed, we switch

to rule (5) in order to reduce the chance of additional small descents in the objective function;

– if αk is a bad descent generator, then the last steplength produced a descent direction d
(k) along which the

limited minimization rule forced a too short step (λk = λopt < λ`) or a too poor minimum approximation

(λk = 1 < λu < λopt). Hence we try to prevent the same drawback in the next iteration by switching to

the other steplength rule.

In this way we bind the rule changing to an empirical check on the “quality” of both the new available values

for αk+1 and the last steplength αk. We call the VPM version based on this changing criterion generalized

variable projection method (GVPM) and we state it in Algorithm GVPM.

It is easy to see that GVPM includes the previously discussed VPMs as special cases: VPM(α(1)) (respec-

tively VPM(α(2))) is obtained for iα = 1 (resp. iα = 2) and nmin “extremely” large, while the version used in

[38] is obtained for iα = 2 and nmin = nmax = 3. The computational cost per iteration is essentially the same

as that of VPM.

We now discuss the effects of the presented alternating strategy on the performances. Again the HARKERP2

test problem is used to illustrate the GVPM behavior. In Table II, we report the results obtained with nmax = 10

and different nmin values. We set iα = 2 in the first iteration, λ` = 0.1, λu = 5, while all the other parameters

9

Algorithm GVPM (Generalized Variable Projection Method)

Step 1. Initialization. Let x(0) ∈ Ω, iα ∈ {1, 2}, 0 < αmin < αmax, α0 ∈ [αmin, αmax], nmin, nmax ∈ N,
0 < nmin ≤ nmax, λ` ≤ 1 ≤ λu; set nα = 1, k = 0.

Step 2. Projection. Terminate if x(k) satisfies a stopping criterion; otherwise compute the descent direction

d
(k) = PΩ(x(k) − αk(Gx(k) + q))− x(k).

Step 3. Linesearch. Compute
x(k+1) = x(k) + λkd

(k), λk ∈ (0, 1],

with λk given by
λk = arg min

λ∈[0,1]

f(x(k) + λd
(k))

Step 4. Update. If d
(k)T

Gd
(k) ≤ 0 then

set αk+1 = αmax;

else
compute α

(1)
k+1, α

(2)
k+1 and λopt.

If (nα ≥ nmin) then
If (nα ≥ nmax) or (αk is a separating steplength or a bad descent generator)

set∗ iα ← mod(iα, 2) + 1, nα = 0;
end.

end.

Compute αk+1 = min
{

αmax, max
{

αmin, α
(iα)
k+1

}}

;

end.
Set k ← k + 1, nα ← nα + 1 and go to step 2.

∗Here mod(i, j) is the remainder of the integer ratio i/j.

Table II GVPM on the HARKERP2 test problem.

nmin iter ls time fmin

1 85 27 0.20 −5.000E−1
2 73 27 0.17 −5.000E−1
3 35 8 0.10 −5.000E−1
4 24 4 0.07 −5.000E−1
5 56 6 0.14 −5.000E−1
6 71 12 0.17 −5.000E−1
7 83 12 0.20 −5.000E−1

and the stopping rule are the same as in the previous experiments. For the case nmin = 4, in order to facilitate

a comparison with VPMs, we plot the values of αk and f(x(k)) in Figures 3 and 4, respectively.

These experiments suggest that the alternating strategy appears to be a very promising way to reduce the

disadvantages due to the use of a single BB rule in all the VPM iterations. In fact, the steplength alternation

allows large objective function descent to appear immediately after few iterations with a small descent (see Figure

4), similarly to what observed for SPGM(α(1)). Hence, this example shows how the GVPM can remarkably

improve the VPMs, as we expected; furthermore, note also that comparable performances with SPGM(α(1))

are now obtained (see for example the results for nmin = 3, 4 in Table II).

We refer to section 3 for a deeper insight into the above consideration and a comparison with VPMs and

10

0 50 100 150
10−5

100

α k

VPM(α(1))
λ

 k
 < 1

0 50 100 150
10−5

100

α k

VPM(α(2))
λ

 k
 < 1

0 50 100 150
10−5

100

α k

 k (iterations)

α(1)

α(2)

λ
 k

 < 1

GVPM

Figure 3 αk values in VPMs and in GVPM for HARKERP2 test problem.

0 50 100 150

−0.5

−0.4

−0.3

−0.2

−0.1

0

 k (iterations)

 f k

VPM(α(1))
VPM(α(2))
GVPM

Figure 4 fk values in VPMs and in GVPM for HARKERP2 test problem.

SPGMs on many other problems.

2.3 Convergence analysis for GVPM

In this subsection we prove that, as for both standard gradient projection methods and SPGMs, every accu-

mulation point of the sequence {x(k)} generated by GVPM is a constrained stationary point. To this end the

following two lemmas are useful.

11

Lemma 2.2 Let z ∈ Ω, α ∈ (0, αmax] and d = PΩ(z − α(Gz + q))− z. We have:

(a) (Gz + q)
T
d ≤ −

1

α
‖d‖22 ≤ −

1

αmax
‖d‖22 ,

(b) d = 0 if and only if z is a constrained stationary point, that is

(Gz + q)
T
(x− z) ≥ 0, ∀ x ∈ Ω.

Proof The two inequalities are well known characteristic properties of gradient projection schemes (see [2]

and [3, Lemma 2.1]). �

The previous Lemma ensures that in the GVPM, if d
(k) 6= 0 then d

(k) is a descent direction at x(k). This

basic property is used to prove the next result.

Lemma 2.3 Let x(k), d
(k) and x(k+1), k = 0, 1, . . ., be as in the GVPM algorithm. If x(k) is not a constrained

stationary point, then

(a) λk ≥ λmin =







min

{

1,
1

αmaxτmax(G)

}

if τmax(G) > 0

1 if τmax(G) ≤ 0

(b) f(x(k+1)) ≤ f(x(k)) + 1
2λk(Gx(k) + q)

T
d

(k)

where τmax(G) is the maximum eigenvalue of G.

Proof To prove (a) we observe that λk solves the problem

min
λ∈[0,1]

1

2
λ2d

(k)T
Gd

(k) + λ(Gx(k) + q)
T
d

(k)

where (Gx(k) + q)
T
d

(k) < 0. It is easy to show that

λk =















min

{

1,
−(Gx(k) + q)

T
d

(k)

d
(k)T

Gd
(k)

}

if d
(k)T

Gd
(k) > 0

1 if d
(k)T

Gd
(k) ≤ 0.

(11)

From Lemma 2.2 and d
(k)T

Gd
(k) ≤ τmax(G)‖d(k)‖22 the assertion (a) immediately follows.

In order to prove (b), we recall that

f(x(k+1)) = f(x(k)) +
1

2
(x(k+1) − x(k))T G(x(k+1) − x(k))

+ (Gx(k) + q)
T
(x(k+1) − x(k))

= f(x(k)) +
1

2
λ2

kd
(k)T

Gd
(k) + λk(Gx(k) + q)

T
d

(k).

(12)

Consider the case d
(k)T

Gd
(k) > 0; from (11) we have

λk = min

{

1,
−(Gx(k) + q)

T
d

(k)

d
(k)T

Gd
(k)

}

.

12

If λk = 1 then −(Gx(k) + q)
T
d

(k) ≥ d
(k)T

Gd
(k), so assertion (b) holds because of (12). On the other hand, if

λk = −(Gx(k) + q)
T
d

(k)/(d(k)T
Gd

(k))

then we have

f(x(k+1)) = f(x(k))−
1

2

(

(Gx(k) + q)
T
d

(k)
)2

d
(k)T

Gd
(k)

= f(x(k)) +
1

2
λk(Gx(k) + q)

T
d

(k).

Consider now the case d
(k)T

Gd
(k) ≤ 0: from (11) we have λk = 1 and by using (12) the inequality (b) easily

follows. �

Lemma 2.3 shows that in GVPM we have inf λk ≥ λmin > 0. Moreover, it gives an inequality for the

sequence {f(x(k))} which is a special case of the inequality required in the nonmonotone linesearch procedure

used in SPGM (corresponding to M = 1 and γ = 1/2). This allows to derive the following convergence result

for GVPM:

Theorem 2.1 Let {x(k)} be the sequence generated by the GVPM algorithm. Then every accumulation point

x of {x(k)} is a constrained stationary point.

Proof By using the assertions of Lemma 2.3, one proceeds exactly as in the case 2 of Theorem 2.4 in [3]. �

The conclusion of Theorem 2.1 also holds for VPMs, since they are special cases of GVPM, and it joins

the convergence results presented in [18, 34] for the convex case. For convex quadratic programs, an additional

result can be given for the GVPM convergence rate.

Theorem 2.2 Let the function f(x) in (3) be convex and bounded below on Ω. The sequence {x(k)} generated

by the GVPM algorithm converges at least R-linearly to a solution of (3).

Proof The theorem can be proved by following the proof of Theorem 2.1 in [34], where the R-linear convergence

of VPMs for convex problems is established. In fact, GVPM differs from VPMs only in the choice of the

steplength αk+1 ∈ [αmin, αmax] and the convergence analysis developed in [34] does not depend on the αk+1

choice within the interval [αmin, αmax]. �

13

3 Numerical Experiments

Here we analyse the behavior of the above gradient projection methods on three sets of QP test problems

with simple constraints: (i) some problems of the CUTE collection, (ii) randomly generated problems and (iii)

problems arising in training SVMs.

The aim of these experiments is to show the improvements that appropriate BB rules alternations can

produce in both monotone and nonmonotone gradient projection schemes.

Besides SPGM(α(1)) and SPGM(α(2)), we test SPGM versions where the steplength αk+1 ∈ [αmin, αmax] is

selected according to one of the following ways:

AL1-SPGM: start with rule (5) and switch the BB rules at each iteration;

AL3-SPGM: start with rule (5) and switch the BB rules every three iterations;

AD1-SPGM: adaptively alternate as in the GVPM with iα = 1, nmin = 1;

AD3-SPGM: adaptively alternate as in the GVPM with iα = 1, nmin = 3.

Analogously, besides VPM(α(1)) and VPM(α(2)), we consider VPM versions where the steplength is chosen

this way:

AL1-VPM: start with rule (6) and switch the BB rules at each iteration;

AL3-VPM: start with rule (6) and switch the BB rules every three iterations.

Furthermore, the GVPM versions with iα = 2 and nmin = 1 (GVPM1) or nmin = 3 (GVPM3) are used.

All the other parameters required by the methods are set as in the previous section and the limit of 30000

iterations is added to the stopping rule. Since both AD-SPGMs and GVPMs depend on the initial iα value,

we consider only those versions that generally give better performances. The same holds for AL-SPGMs and

AL-VPMs.

Some remarks on the choice of the above methods are useful. First of all, the interest for AL1-SPGM

and AL3-SPGM alternating strategies is motivated by the good results they produced in different contexts

[21, 38]. Second, while the adaptive alternation we propose is designed to overcome some of the typical mono-

tone linesearch drawbacks, one can reasonably expect that it does not imply remarkable improvements within

nonmonotone schemes; AD1-SPGM and AD3-SPGM give numerical evidence. Last, the analogous versions of

the monotone approach allow a complete comparison and emphasize the GVPM benefits.

We recall that in all the reported results the problem solution time is in seconds and it does not includes

data loading or generation. The experiments of the first two sets are carried out in MATLAB on a Digital

personal workstation 500au at 500MHz with 512MB of RAM.

The CUTE box constrained QP problems we consider are listed in Table III, together with the best computed

function value, which is the same for all methods. In TP1, where the starting point is not available in the CUTE

14

Table III Box constrained QP test problems from CUTE.

Test Problem Name n fmin

TP1 BIGGSB1 1000 1.590E−02

TP2 BQPGABIM 50 −3.790E−05

TP3 BQPGASIM 50 −5.520E−05

TP4 CHENHARK 1000 −2.000E+00

TP5 NCVXBQP2 10000 −1.334E+10

TP6 NCVXBQP3 10000 −6.558E+09

model, we use x
(0)
i = 0.5, i = 1, . . . , n, while in all the other cases we use the same starting point of the model.

The numerical results are reported in Table IV; here, and in the following tables the symbol “∗” means that

the 30000 iterations limit is reached.

For the second set of experiments we randomly generate strictly convex QP problems of the form (3) with

Ω =
{

x ∈ R
n, x = (x1, . . . , xn)T , −1 ≤ xi ≤ 1, i = 1, . . . , n

}

,

q = (q1, . . . , qn)T , qi = −1 + 2(i− 1)/(n− 1), i = 1, . . . , n,

G = QDQT ,

where Q is an orthogonal matrix and D = diag{τ1, τ2, . . . , τn} is a diagonal matrix with τi, i = 1, . . . , n, as

diagonal entries (eigenvalues of G). The matrix Q is obtained from the QR factorization of a random matrix

generated by the MATLAB rand command: [Q R] = qr(-1 + 2*rand(n)). Given τmax(G) and the spectral

condition number of G, K(G) = τmax(G)/τmin(G), let τ1 = τmin(G) and τn = τmax(G). Then the following

three eigenvalues distributions are considered:

A) uniform distribution:

τi = τ1 + θi(τn − τ1), θi ∈ (0, 1), i = 2, . . . , n− 1;

B) 90% of the eigenvalues close to τmin(G):

τ̄ = τ1K(G)0.2, τi = τ1 + θi(τ̄ − τ1), i = 2, . . . , b0.9nc,

τi = τ̄ + θi(τn − τ̄), i = b0.9nc+ 1, . . . , n− 1;

C) 90% of the eigenvalues close to τmax(G):

τ̄ = τ1K(G)0.9, τi = τ1 + θi(τ̄ − τ1), i = 2, . . . , b0.1nc,

τi = τ̄ + θi(τn − τ̄), i = b0.1nc+ 1, . . . , n− 1;

where each θi ∈ (0, 1) is given by the MATLAB function rand.

The behavior of SPGMs and VPMs on some problems generated in this way is shown in Tables V–VII. We

fix n = 200 and we consider different values for K(G) and τmax(G). For each value of K(G) and τmax(G), the

average results obtained by solving 30 random problems are reported (the null vector is the initial guess).

Considering the iteration counts in the two experiment sets, the following observations can be drawn:

15

1) SPGM behavior:

– SPGM(α(1)) does not definitively outperforms SPGM(α(2)): even if the former is better on CUTE

test problems, the second set of experiments shows that the opposite is true for particular eigenvalue

distributions (see the case with τmax = 104 in Tables V–VII).

– Between the two AL-SPGM versions, AL1-SPGM seems preferable. The BB rule alternation used in

AL1-SPGM often improves (sometimes significantly) the SPGM(α(1,2)) performance, as it is claimed

to happen in gradient methods for unconstrained problems [21]. However, the results for TP5,TP6

in Table IV and for K(G) = 104, τmax = 102 and K(G) = 106, τmax = 102, 104 in Table VI show that

this is not always the case. In particular, for some of these test problems the AL1-SPGM iteration

amount is largely increased with respect to SPGM(α(1)). In conclusion, a simple BB rule alternation

at each iteration appears promising to improve SPGM(α(1,2)), but cannot be considered a completely

satisfactory strategy.

– The best AD-SPGM results outperforms both SPGM(α(1,2)) and AL-SPGM1,3 only in two particular

cases: K(G) = 106, τmax = 104 in Tables V and VI. We remark that this adaptive alternating strategy

is designed to improve the VPM behavior and these poor performances on SPGMs are not surprising.

In order to introduce an effective adaptive alternating strategy also for SPGMs, further study will

be needed.

2) VPM behavior:

– As for SPGMs, one cannot suggest which BB rule works definitively better than the other within

VPMs. In both the test problem sets, there are cases where VPM(α(1)) is more efficient than

VPM(α(2)) and cases where the opposite happens.

– Also the AL-VPM schemes present behaviors that are strongly problem dependent and one version

is not always preferable to the other. In many cases, the best result given by AL1-VPM and AL3-

VPM is better than the result obtained with both VPM(α(1)) and VPM(α(2)). This confirms the

importance of BB rules alternations also in VPM schemes. However, the AL-VPM performances are

often significantly improved by the GVPMs.

– Concerning GVPMs we observe that, except two cases (TP6 in Table IV and K(G) = 106, τmax = 104

in Table VI), the best result produced by GVPM1 and GVPM3 is better than the results given by

both VPM and AL-VPM schemes, or comparable within a 10%. Furthermore, a deeper insight into

the comparison between AL1-VPM and GVPM1 (resp. AL3-VPM and GVPM3) shows how the

GVPM adaptive alternation can be an useful strategy to improve the behavior due to a switching

after a prefixed number of iterations. Finally, it is interesting to emphasize that the best GVPMs

results are always competitive with (and sometimes better than) the best SPGMs results

16

The next experiments on SVM QP problems reinforce all the above considerations and show how the GVPMs

can be a valuable alternative to both SPGM(α(1,2)) and AL-SPGMs.

To evaluate the above methods on some QP problems of the form (2) we train Gaussian SVMs on two

real-world data sets: the MNIST database of handwritten digits [24] and the UCI Adult data set [27].

These experiments are carried out on a Compaq XP1000 workstation at 667MHz with 1GB of RAM, with

standard C codes. All the considered methods compute the projection on the special feasible region of (2) by

solving the equivalent separable QP problem via the algorithm proposed in [30]. Since this is an O(n) algorithm,

the main computational cost of each iteration of all methods becomes the matrix-vector product Gd
(k). The

implementation of this product exploits the expected vector sparsity, often allowing a dramatic reduction of the

operation cost and a large performance improvement of the solvers. The parameters are set as in the previous

experiments, but a different stopping rule is used, which is based on the fulfilment of the KKT conditions within

10−3 (as it is usually the case in SVM applications [23, 31]). The equality constraint multiplier is computed as

suggested in [23] and the null vector is always the initial guess.

A first set of six test problems (Ti, i = 1, . . . , 6) sized n = 3700 is considered. These problems are obtained

as follows. We consider the whole MNIST database and we train a Gaussian classifier for digit “8” with SVM

parameters C = 10 and σ = 1800: this leads to a QP problem of the form (2) sized 60000. Then we face this

large problem with the decomposition technique introduced in [38] and briefly discussed in the next section. The

problems Ti, i = 1, . . . , 6, are the subproblems generated in the six iterations of the decomposition technique

(where the subproblem size is set to 3700).

The iterations required by both the VPM and SPGM approaches on these six test problems are reported

in Table VIII. Here we denote by SV and BSV the number of support vectors and bound support vectors,

respectively. We observe that generally GVPM3 yields the best performance, but for test problem T1 where AL3-

VPM, GVPM3 and SPGM(α(1)) show very similar results. In particular GVPM3 improves AL3-VPM, which

is the inner QP solver used in the decomposition technique [38]. The next section will show the decomposition

technique performance improvements due to this adaptive QP solver.

Now, we conclude this experiments by comparing the GVPM3 behavior with the packages used as QP inner

solvers in two well known decomposition techniques for problem (2) [23, 29] (we refer the reader to [3] for a

SPGM(α(1)) versus LANCELOT comparison on box constrained problems).

Two solvers are suggested in the Joachims’ SVM light package [23]: the Hildreth-D’Esopo method and a

version of the Vanderbei’s primal-dual infeasible interior point method [36], named pr LOQO and implemented

by Smola [35]. We use the latter because it appears more efficient when the problem size increases. Moreover,

we consider MINOS (ver. 5.5) [28], which is the solver used in [29]. A solution accuracy comparable with that

given by GVPM3 is obtained by setting sigfig max = 8 in pr LOQO and Optimality tolerance = 10−4

in MINOS, while for better performances Superbasics limit = 1000 is used in MINOS. Default settings are

otherwise used.

For these experiments, test problems of size n = 800, 1600 and 3200 are constructed from MNIST by

17

considering the first n/2 inputs of digit “8” and the first n/2 inputs of the other digits. From the UCI Adult

database, the versions with size n = 1605, 2265 and 3185 are considered. The following setting of the SVM

parameters is used: C = 10, σ = 2000 for the MNIST database and C = 1, σ2 = 10 for the UCI Adult data

sets.

Table IX reports the results obtained by the two packages and the GVPM3, run on the same Compaq

platform: it is evident that the considered gradient projection method allows a remarkable performance im-

provement with respect to both pr LOQO and MINOS, because of its low iteration cost and its good convergence

rate.

Finally, we also tested gradient projection schemes to train polynomial SVMs: in this case their convergence

rate appears strongly dependent on the data normalization and they generally show less encouraging results.

However, preliminary investigations reveal that the diagonally scaled [2] versions of gradient projection methods

can achieve equally appreciable performances. We will deal with this topic in a future work.

Summing up, the good GVPM3 effectiveness on medium-scale quadratic programs makes it an attractive

inner solver in decomposition techniques for large-scale SVMs, as we explain in the next section.

18

Table IV VPMs and SPGMs on CUTE test problems

SPGM(α(1)) SPGM(α(2)) AL1-SPGM AL3-SPGM AD1-SPGM AD3-SPGM
Problem it ls time it ls time it ls time it ls time it ls time it ls time

TP1 2051 383 10.14 4004 1 18.83 867 13 4.62 1690 278 9.68 1343 137 6.80 1901 318 9.92
TP2 24 2 0.06 33 1 0.07 29 1 0.10 31 1 0.10 26 2 0.07 33 2 0.08
TP3 33 2 0.07 37 1 0.08 31 1 0.10 32 1 0.10 33 1 0.08 31 2 0.08
TP4 3900 762 21.89 10576 0 59.24 1359 44 8.10 2649 421 17.11 2292 241 12.98 2149 364 12.77
TP5 83 4 4.44 ∗ 250 4 13.42 223 20 12.13 289 5 15.38 128 6 6.88
TP6 116 6 6.11 ∗ 888 62 46.87 839 22 44.97 1131 42 59.25 195 11 10.24

VPM(α(1)) VPM(α(2)) AL1-VPM AL3-VPM GVPM1 GVPM3

Problem it ls time it ls time it ls time it ls time it ls time it ls time
TP1 ∗ 3973 100 15.91 816 226 3.81 3135 974 14.56 777 191 3.02 1119 304 4.25
TP2 75 38 0.10 33 6 0.05 26 7 0.07 27 10 0.07 28 8 0.05 29 8 0.05
TP3 79 40 0.11 30 9 0.05 30 9 0.80 28 8 0.07 29 10 0.05 30 10 0.05
TP4 ∗ 10700 33 53.00 1639 436 8.63 2436 737 12.60 1545 323 7.01 2163 596 9.60
TP5 106 49 5.23 ∗ 245 6 12.30 119 30 6.01 196 10 9.82 117 21 5.86
TP6 612 304 29.46 ∗ 1228 4 60.65 198 43 9.80 1221 6 59.76 228 54 11.10

1
9

Table V Random QP test problems, eigenvalues distribution A (N = 200).

SPGM(α(1)) SPGM(α(2)) AL1-SPGM AL3-SPGM AD1-SPGM AD3-SPGM
K(G) τmax it ls time it ls time it ls time it ls time it ls time it ls time
102 1 16 0 0.07 22 0 0.10 17 0 0.09 16 0 0.09 17 0 0.08 17 0 0.08

104 83 9 0.34 76 2 0.31 80 4 0.40 78 8 0.40 79 6 0.34 83 7 0.35
1 16 0 0.07 23 0 0.10 18 0 0.09 16 0 0.09 18 0 0.08 17 0 0.08

104 102 301 51 1.27 528 3 2.13 205 7 1.02 269 41 1.38 254 27 1.11 290 49 1.27
104 1669 323 7.19 975 13 3.94 958 30 4.77 1171 186 6.08 1457 149 6.44 1702 302 7.70
1 16 0 0.07 23 0 0.10 18 0 0.10 16 0 0.09 18 0 0.08 18 0 0.08

106 102 267 45 1.12 547 2 2.22 192 7 0.96 264 40 1.35 233 25 1.02 258 42 1.13
104 3044 583 13.38 2720 8 11.97 2765 60 15.49 2818 450 15.49 2155 202 9.79 2534 417 11.98

VPM(α(1)) VPM(α(2)) AL1-VPM AL3-VPM GVPM1 GVPM3

K(G) τmax it ls time it ls time it ls time it ls time it ls time it ls time
102 1 21 10 0.09 22 0 0.09 17 3 0.09 16 3 0.08 18 3 0.08 17 3 0.07

104 466 234 1.65 81 18 0.29 72 24 0.33 84 30 0.38 75 24 0.28 81 25 0.30
1 22 10 0.09 23 0 0.09 17 3 0.08 16 4 0.08 18 3 0.07 18 3 0.07

104 102 1941 972 7.04 525 17 1.89 224 62 1.01 246 77 1.11 219 57 0.81 207 59 0.76
104 ∗ 1050 75 3.76 985 275 4.42 1198 352 5.39 832 202 3.10 1076 307 3.96
1 22 10 0.09 23 0 0.09 17 3 0.08 16 3 0.08 18 3 0.07 18 3 0.07

106 102 2121 1062 7.80 552 14 1.98 235 64 1.05 222 70 1.00 196 51 0.73 195 56 0.71
104 ∗ 2515 64 9.67 2695 732 13.94 3200 939 16.43 1938 425 7.76 2260 634 9.27

2
0

Table VI Random QP test problems, eigenvalues distribution B (N = 200).

SPGM(α(1)) SPGM(α(2)) AL1-SPGM AL3-SPGM AD1-SPGM AD3-SPGM
K(G) τmax it ls time it ls time it ls time it ls time it ls time it ls time
102 1 17 0 0.08 66 0 0.29 31 0 0.17 30 0 0.16 32 0 0.15 28 0 0.13

104 89 9 0.37 84 3 0.35 83 6 0.42 81 9 0.42 81 6 0.35 81 7 0.35
1 20 0 0.09 245 0 1.11 45 0 0.24 40 0 0.22 44 0 0.21 35 0 0.16

104 102 479 85 2.22 1150 3 5.19 2255 2 12.47 2540 56 14.16 916 31 4.37 561 58 2.67
104 2084 472 9.19 1195 19 4.90 1024 27 5.16 1275 204 6.72 1504 150 6.74 1844 324 8.47
1 20 0 0.09 255 0 1.15 46 0 0.25 40 0 0.22 43 0 0.20 36 0 0.17

106 102 158 4.05 9296 2 47.98 4950 2 28.72 6787 42 40.66 1715 38 8.31 1130 115 5.46
104 21641 4312 123.93 18222 32 97.59 ∗ ∗ 18990 369 107.97 13270 1381 71.52

VPM(α(1)) VPM(α(2)) AL1-VPM AL3-VPM GVPM1 GVPM3

K(G) τmax it ls time it ls time it ls time it ls time it ls time it ls time
102 1 22 10 0.09 66 0 0.26 31 0 0.15 26 5 0.13 29 1 0.12 25 5 0.10

104 318 160 1.12 87 19 0.31 79 26 0.36 84 30 0.38 78 26 0.29 83 27 0.30
1 27 12 0.11 245 0 0.97 48 1 0.24 32 6 0.16 42 2 0.17 30 6 0.12

104 102 2641 1321 10.62 1149 14 4.58 2214 9 10.99 541 127 2.64 2357 9 9.88 572 140 2.31
104 ∗ 1313 98 4.74 817 219 3.67 1105 328 4.99 778 179 2.90 834 239 3.07
1 27 11 0.10 255 0 1.01 48 1 0.24 32 6 0.16 42 1 0.17 30 6 0.12

106 102 5211 2605 22.19 9160 3 42.08 5989 9 31.67 943 213 4.62 5815 9 26.02 1018 238 4.16
104 ∗ 16721 90 79.07 ∗ 15853 3661 87.64 ∗ 17782 4229 87.19

2
1

Table VII Random QP test problems, eigenvalues distribution C (N = 200).

SPGM(α(1)) SPGM(α(2)) AL1-SPGM AL3-SPGM AD1-SPGM AD3-SPGM
K(G) τmax it ls time it ls time it ls time it ls time it ls time it ls time
102 1 15 0 0.06 25 0 0.11 18 0 0.10 15 0 0.08 18 0 0.08 17 0 0.08

104 80 8 0.33 72 2 0.29 73 4 0.36 75 7 0.38 73 6 0.32 73 7 0.31
1 14 0 0.06 21 0 0.09 16 0 0.09 15 0 0.08 17 0 0.08 16 0 0.07

104 102 232 40 0.97 299 2 1.19 168 6 0.84 185 27 0.94 203 19 0.87 239 37 1.05
104 2241 638 10.19 994 14 4.00 979 26 4.87 1002 158 5.19 1439 145 6.34 1658 294 7.48
1 15 0 0.07 21 0 0.09 16 0 0.08 15 0 0.08 16 0 0.07 16 0 0.07

106 102 464 85 2.02 430 2 1.73 201 6 1.00 264 39 1.35 237 22 1.03 248 38 1.08
104 3029 585 13.30 2362 9 9.99 1974 44 10.64 2993 477 16.41 2235 204 10.39 2142 349 10.06

VPM(α(1)) VPM(α(2)) AL1-VPM AL3-VPM GVPM1 GVPM3

K(G) τmax it ls time it ls time it ls time it ls time it ls time it ls time
102 1 21 9 0.08 25 0 0.10 18 1 0.09 16 4 0.08 18 2 0.07 17 3 0.07

104 268 134 0.95 77 16 0.28 68 21 0.31 76 27 0.34 71 23 0.27 73 23 0.27
1 20 9 0.08 21 0 0.08 17 2 0.08 16 3 0.08 17 2 0.07 16 3 0.07

104 102 2531 1266 10.98 310 14 1.11 184 47 0.83 184 59 0.83 166 40 0.62 174 48 0.65
104 ∗ 1074 74 3.88 898 248 4.04 1156 343 5.23 654 155 2.47 908 259 3.39
1 20 9 0.08 21 0 0.08 17 3 0.08 16 3 0.07 16 2 0.07 16 3 0.07

106 102 1642 829 6.11 430 14 1.56 280 76 1.27 251 77 1.14 255 60 0.97 272 77 1.02
104 ∗ 2305 56 8.86 2637 719 13.58 2713 795 13.61 1952 417 7.99 1864 522 7.37

2
2

Table VIII Iteration numbers on the SVM test problems from MNIST database.

VPM GVPM SPGM

test SV BSV α(1) α(2) AL1 AL3 1 3 α(1) α(2) AL1 AL3

T1 545 2 1150 1077 2088 347 605 377 360 1102 2113 1942

T2 1727 75 5863 3195 7900 966 910 793 1211 2259 8195 8692

T3 2262 95 7099 1967 6821 875 1007 764 1051 2123 6058 8032

T4 2694 32 7768 2171 6293 978 1325 769 1108 2244 6394 7886

T5 2963 5 12565 2812 9120 1444 1584 909 1521 2655 9479 12722

T6 2993 0 10015 2068 8596 1290 3200 1102 1501 2208 8059 11007

Table IX Results for pr LOQO, MINOS and GVPM3 on SVM test problems.

pr LOQO MINOS GVPM3

Prob. n it time SV BSV it time SV BSV it time SV BSV
800 14 9.42 283 1 622 6.84 281 1 161 0.50 281 1

MNIST 1600 15 112.38 458 9 1043 46.11 455 9 277 3.20 456 9
3200 15 1124.61 809 25 1894 337.24 806 25 513 21.27 808 25
1605 15 131.6 691 584 1066 33.8 691 585 153 1.00 691 584

UCI Adult 2265 15 383.9 1011 847 1580 101.3 1007 849 196 2.75 1011 847
3185 15 1081.4 1300 1109 2004 248.7 1294 1116 282 6.95 1299 1113

4 Gradient Projection Decomposition Techniques for SVMs

The most popular decomposition technique that use a numerical solver for the inner QP subproblems is the

SVM light algorithm introduced in [23] (see [25, 26] for its convergence properties). Unfortunately, this technique

is designed to be effective only when the subproblem size is very small (generally less than 102) and it is not suited

to benefit from high performance solvers for medium-scale QP problems. Thus, a different implementation is

proposed in [38], which is still based on the SVM light idea, but is appropriately designed to efficiently decompose

the problem into medium-scale subproblems. In [38], the AL3-VPM is used as the inner subproblem solver.

Here, since the good results obtained in the previous experiments by GVPM3, we evaluate the performances

improvement of the decomposition technique when the new solver is used. For completeness, also SPGM(α(1))

is considered as inner solver. In the following we call gradient projection-based decomposition technique (GPDT)

the decomposition technique [38] equipped with these inner solvers. To describe the next experiments, we briefly

recall in Algorithm DT the main decomposition steps for QP problems of the form (2). We refer the reader to

[23] and [38] for further details of the two implementations.

We compare the numerical results obtained on some large-scale test problems by GPDT and by the SVM light

software (version 3.5)1 equipped with pr LOQO. We consider the largest test problems available in the MNIST

and the UCI Adult data sets: the former is sized 60000 and is obtained as in [31] by training just the class “8”

classifier, while the latter is sized 32562. Gaussian SVMs are trained with C = 10, σ = 1800 for MNIST and

C = 1, σ2 = 10 for UCI Adult. The experiments are carried out with standard C codes on the above Compaq

workstation. Both softwares use a 500 MB caching area and the default SVM light stopping rule. The parameters

1We tested also the more recent version 5.0, but we get slightly worse performances.

23

Algorithm DT (SVM Decomposition Technique)

Step 1. Initialization. Let x(1) =
(

x
(1)
1 , . . . , x

(1)
n

)T
be a feasible point for (2), let nsp and nc be two integer

values such that n ≥ nsp ≥ nc > 0 and set k = 1. Arbitrarily split the indices of the variables x
(k)
i

into the set B of basic variables, with #B = nsp, and the set N of nonbasic variables. Arrange the
arrays x(k) and G with respect to B and N :

x(k) =

[

x
(k)
B

x
(k)
N

]

, G =

[

GBB GBN

GNB GNN

]

.

Step 2. QP subproblem. Compute the solution x
(k+1)
B of

min
1

2
xT
BGBBxB +

(

GBNx
(k)
N − (1, 1 . . . , 1)T

)T

xB

sub. to
∑

i∈B yixi = −
∑

i∈N yix
(k)
i ,

0 ≤ xi ≤ C ∀i ∈ B,

and set x(k+1) =
(

x
(k+1)
B

T

, x
(k)
N

T)T
.

Step 3. Gradient updating. Update the gradient ∇F(x(k+1)) and terminate if x(k+1) satisfies the KKT condi-
tions.

Step 4. Updating of B. Change at most nc elements of B. The entering indices are determined by a strategy
based on the Zoutendijk’s method. Set k ← k + 1 and go to step 2.

Table X SVM light package on SVMs test problems.

Problem nsp nc it time SV BSV
10∗ 10∗ 10007 4243.05 3156 160

4 2 17342 3338.00 3154 160
MNIST 8 4 9171 3193.14 3153 160

n = 60000 20 10 3874 3364.17 3152 160
40 20 1987 3573.68 3156 160
90 30 895 3791.08 3153 160

10∗ 10∗ 9930 881.19 11690 10602
4 2 14596 880.80 11572 10740

UCI Adult 8 4 10710 907.45 11623 10675
n = 32562 20 10 4459 850.82 11695 10594

40 20 2514 876.71 11750 10587
80 40 1267 926.87 11776 10560

∗Default parameter setting

setting for the GPDT inner solvers is the same as the previous experiments, while in SVM light software default

settings are used.

Tables X and XI report the results for different values of nsp (subproblem size) and nc (maximum number

of new variables entering the working set). For SVM light, these values are assigned to command line options

q and n, respectively. In both Tables, for each nsp value we report the results corresponding to an empirical

approximation of the optimal nc value, i.e. that giving the lowest computational time. The iteration numbers

(it) refer to the decomposition iterations.

The experiments confirm that SVM light achieves the best performance when very small nsp values are used

24

Table XI GPDT on SVMs test problems.

SPGM(α1) GVPM3 AL3-VPM
nsp nc it time SV BSV it time SV BSV it time SV BSV

MNIST n = 60000
2900 1100 10 2357.29 3157 159 9 1985.74 3157 159 9 2087.93 3157 160
3100 1200 7 1881.61 3158 159 7 1732.80 3157 159 7 1872.39 3158 159
3700 1500 6 2028.81 3157 160 6 1778.30 3157 159 6 1849.71 3156 159

UCI Adult n = 32562
1000 600 70 689.62 11738 10559 71 675.99 11742 10583 75 757.55 11757 10563
1300 750 42 590.68 11772 10566 42 590.81 11772 10564 42 621.80 11760 10544
1600 800 34 691.08 11757 10536 35 687.80 11753 10544 36 696.15 11759 10566

(nsp = 8 for MNIST and nsp = 20 for UCI Adult). For increasing nsp values each iteration becomes too

expensive and the effectiveness decreases. Since in these iterations the QP subproblem solution is a very cheap

task compared to the kernel evaluations required by the data and gradient updating, the use of an inner solver

better than pr LOQO does not reduce the training time enough.

On the opposite side, GPDT shows the lowest solution time when sufficiently large nsp values are used

(nsp = 3100 for MNIST and nsp = 1300 for UCI Adult). This is due to both the high performance of the inner

solvers and the special strategy described in [38] to reduce the kernel evaluations required by the GBB, GBN

and ∇F(x(k+1)) updating in each decomposition iteration.

Thanks to these two features, when nsp increases, the GPDT iterations does not become excessively expensive

and the good convergence rate of the decomposition technique can be fully exploited. On these test problems,

among the three inner QP solvers, GVPM3 appears the most effective one and in some cases yields significant

improvements with respect to the AL3-VPM solver used in [38].

Furthermore, a very important GPDT property must be mentioned: its easy parallelization. In fact, since

the computational burden is given by few expensive iterations where the heaviest parts are the matrix-vector

product in the inner solver and the kernel evaluations, a suitable data distribution allows a very effective

GPDT parallel implementation on distributed memory multiprocessor machines. Thus, the large computational

resources typically available on modern parallel computers can be fully exploited to solve large or even huge

problems of the form (2). We do not longer develop here this topic and we refer the interested reader to [38].

5 Conclusions and future developments

In this paper, gradient projection methods based on the two Barzilai-Borwein spectral steplengths are investi-

gated for QP problems with simple constraints, such as those coming from SVMs training. The nonmonotone

spectral projected gradient scheme [3] and the variable projection methods [33, 34] are considered. Both clas-

sical and alternated BB steplength selections are evaluated within the above approaches. Following the recent

suggestions in [18, 19, 21, 38] two alternating strategies are tested, that change the BB rule at each iteration

or every three iterations. Our experiments show that, when the BB rules are singly used, one rule does not

performs definitively better than the other, for both SPGM and VPM. Concerning the rule alternations, they

25

seem very promising strategies: in fact, they often remarkably reduce the iteration counts with respect to the

cases where a single BB rule is used. However, since this is not always the case, further improved strategies are

desirable.

In this work we present a generalized VPM (GVPM) that exploits a new adaptive steplength selection

between the BB rules and includes the other VPMs as special cases. The GVPM convergence analysis is

provided. A wide numerical experimentation is carried out on three test sets: some CUTE problems, some

randomly generated problems and some problems arising in SVM training. This computational experience

shows that GVPM performs generally better than VPMs and, further, it often appears a valuable alternative to

SPGMs. In the case of SVM problems, GVPM largely outperforms both pr LOQO and MINOS; furthermore,

it is successfully tested as inner solver in the decomposition technique proposed in [38].

Future work will include further extensions of the considered approaches, such as scaling and additional

improvements to the steplength selection strategies.

Acknowledgment

The authors are most grateful to Prof. Roger Fletcher for the valuable discussions and suggestions on the

Barzilai-Borwein method.

References

[1] J. Barzilai, J.M. Borwein (1988), Two Point Step Size Gradient Methods, IMA J. Numer. Anal. 8, 141–148.

[2] D.P. Bertsekas (1999), Nonlinear Programming, Athena Scientific, Belmont, MA.

[3] E.G. Birgin, J.M. Mart̀ınez, M. Raydan (2000), Nonmonotone Spectral Projected Gradient Methods on Convex
Sets, SIAM J. Optim. 10(4), 1196–1211.

[4] C.J.C. Burges (1998), A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge
Discovery 2(2), 121–167.

[5] C.C. Chang, C.J. Lin (2002), LIBSVM: a library for support vector machines, available at <www
http://www.csie.ntu.edu.tw/∼cjlin/libsvm>.

[6] R. Collobert, S. Benjo (2001), SVMTorch: Support Vector Machines for Large-Scale Regression Problems, Journal
of Machine Learning Research 1, 143–160.

[7] C. Cortes, V.N. Vapnik (1995), Support Vector Network, Machine Learning 20, 1–25.

[8] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and other Kernel-Based Learning
Methods, Cambridge University Press, (2000).

[9] Y.H. Dai (2001), Alternate Stepsize Gradient Method, AMSS-2001-041, Academy of Mathematics and Systems
Sciences, Chinese Academy of Sciences, China.

[10] Y.H. Dai, J. Yuan, Y. Yuan (2002), Modified Two-Point Stepsize Gradient Methods for Unconstrained Optimization,
Comput. Optim. and Appl. 22, 103–109.

[11] Y.H. Dai, L.Z. Liao (2002), R-linear convergence of the Barzilai and Borwein Gradient Method, IMA J. Numer.
Anal. 22, 1–10.

[12] M.C. Ferris, T.S. Munson (2000), Interior Point Methods for Massive Support Vector Machines, Data Mining
Institute Technical Report 00-05, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin.

[13] C. Fisk, S. Nguyen (1980), Solution Algorithms for Network Equilibrium Models with Asymmetric User Costs,
Transportation Sci. 16, 361–381.

[14] G.W. Flake, S. Lawrence (2002), Efficient SVM Regression Training with SMO, Machine Learning 46(1), 271-290,
available at <www http://www.neci.nec.com/homepages/flake/nodelib/html>.

26

[15] R. Fletcher (2001), On the Barzilai-Borwein Method, Numerical Analysis Report NA/207.

[16] A. Friedlander, J.M. Mart́ınez, B. Molina, M. Raydan (1999), Gradient Method with Retards and Generalizations,
SIAM J. Numer. Anal. 36, 275–289.

[17] G. Fung, O.L. Mangasarian (2001), Proximal Support Vector Machines Classifiers, Data Mining Institute Technical
Report 01-02, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin.

[18] E. Galligani, V. Ruggiero, L. Zanni (2000), Projection-Type Methods for Large Convex Quadratic Pro-
grams: Theory and Computational Experience, Monograph 5, Scientific Research Program “Numerical Anal-
ysis: Methods and Mathematical Software”, University of Ferrara, Ferrara, Italy, available at <www
http://www.unife.it/AnNum97/monografie.htm>.

[19] E. Galligani, V. Ruggiero, L. Zanni (2003), Variable Projection Methods for Large-Scale Quadratic Optimization in
Data Analysis Applications, Equilibrium Problems and Variational Models, P. Daniele, F. Giannessi and A. Maugeri,
eds., Nonconvex Optim. and Its Applic. 68, Kluwer Academic Publishers, Boston, 186–211.

[20] L. Grippo, F. Lampariello, S. Lucidi (1986), A Nonmonotone Line Search Technique for Newton’s Method, SIAM
J. Numer. Anal. 23, 707–716.

[21] L. Grippo, M. Sciandrone (2002), Nonmonotone Globalization Techniques for the Barzilai-Borwein Gradient
Method, Computational Optimization and Applications, 23, 143–169.

[22] C.W. Hsu, C.J. Lin (2002), A Simple Decomposition Method for Support Vector Machines, Machine Learning, 46,
291–314.

[23] T. Joachims (1998), Making Large-Scale SVM Learning Practical, Advances in Kernel Methods – Support Vector
Learning, B. Schölkopf, C.J.C. Burges and A. Smola, eds., MIT Press, Cambridge, Massachussets.

[24] Y. LeCun, MNIST Handwritten Digit Database, available at <www
http://www.research.att.com/∼yann/ocr/mnist>.

[25] C.J. Lin (2001), On the Convergence of the Decomposition Method for Support Vector Machines, IEEE Trans. on
Neural Networks 12(6), 1288–1298.

[26] C.J. Lin (2002), Linear Convergence of a Decomposition Method for Support Vector Machines, Technical Report,
Department of Computer Science and Information Engineering, National Taiwan University.

[27] P.M. Murphy, D.W. Aha (1992), UCI Repository of Machine Learning Databases, available at <www
http://www.ics.uci.edu/∼mlearn/MLRepository.html>.

[28] B. Murtagh, M. Saunders (1995), MINOS 5.4 User’s Guide, System Optimization Laboratory, Stanford University.

[29] E. Osuna, R. Freund, F. Girosi (1997), An Improved Training Algorithm for Support Vector Machines, Proceedings
of the IEEE Workshop on Neural Networks for Signal Processing, J. Principe, L. Giles, N. Morgan and E. Wilson,
eds., Amelia Island, FL, 276–285.

[30] P.M. Pardalos, N. Kovoor (1990), An Algorithm for a Singly Constrained Class of Quadratic Programs Subject to
Upper and Lower Bounds, Math. Programming 46, 321–328.

[31] J.C. Platt (1998), Fast Training of Support Vector Machines using Sequential Minimal Optimization, Advances in
Kernel Methods – Support Vector Learning, B. Schölkopf, C. Burges and A. Smola, eds., MIT Press, Cambridge,
Massachusets.

[32] M. Raydan, B.F. Svaiter (2002), Relaxed Steepest Descent and Cauchy-Barzilai-Borwein Method, Comput. Optim.
and Appl. 21, 155–167.

[33] V. Ruggiero, L. Zanni (2000), A Modified Projection Algorithm for Large Strictly Convex Quadratic Programs, J.
Optim. Theory Appl. 104(2), 281–299.

[34] V. Ruggiero, L. Zanni (2000), Variable projection methods for large convex quadratic programs, Recent Trends
in Numerical Analysis, D. Trigiante, ed., Advances in the Theory of Computational Mathematics 3, Nova Science
Publ., 299–313.

[35] A.J. Smola, pr LOQO optimizer, available at <www http://www.kernel-machines.org/code/prloqo.tar.gz>.

[36] R.J. Vanderbei (1998), LOQO: An Interior Point Code for Quadratic Programming, Technical Report SOR-94-15
Revised, Princeton University.

[37] V.N. Vapnik (1998), Statistical Learning Theory, John Wiley and sons, New York.

[38] G. Zanghirati, L. Zanni (2003), A Parallel Solver for Large Quadratic Programs in Training Support Vector Ma-
chines, Parallel Computing 29, 535–551, available at <www http://dm.unife.it/jango/reports>.

27

