Parallel Interior Point Solver

for Structured Quadratic Programs:

Application to Financial Planning Problems

Jacek Gondzio Andreas Grothey

April 15th, 2003
MS-03-001

For other papers in this series see http://www.maths.ed.ac.uk/preprints

Parallel Interior-Point Solver for Structured Quadratic Programs:
Application to Financial Planning Problems*

Jacek Gondzio! Andreas Grothey?

School of Mathematics
The University of Edinburgh
Mayfield Road, Edinburgh EH9 3JZ
United Kingdom.

April 15th, 2003

*Supported by the Engineering and Physical Sciences Research Council of UK, EPSRC grant GR/R99683/01.
"Email: J.Gondzio®ed.ac.uk, URL: http://maths.ed.ac.uk/ gondzio/
YEmail: A.Grothey@ed.ac.uk, URL: http://maths.ed.ac.uk/ agr/

Parallel Interior-Point Solver for Structured Quadratic Programs:
Application to Financial Planning Problems

Abstract

Issues of implementation of a library for parallel interior-point methods for quadratic pro-
gramming are addressed. The solver can easily exploit any special structure of the underlying
optimization problem. In particular, it allows a nested embedding of structures and by this
means very complicated real-life optimization problems can be modeled. The efficiency of
the solver is illustrated on several problems arising in the financial planning, namely in the
asset and liability management. The problems are modeled as multistage decision processes
and by nature lead to specially structured tree-sparse problems. By taking the variance of
the random variables into account the problems become nonseparable quadratic programs.
A reformulation of the problem is proposed which reduces density of matrices involved and
by these means significantly simplifies its solution by an interior point method. The object-
oriented parallel solver achieves high efficiency by careful exploitation of the block sparsity
of these problems. As a result a problem with 10 million decision variables is solved in less
than 2 hours on a serial computer. The approach is by nature scalable and the parallel
implementation achieves perfect speed-ups.

Parallel Interior-Point Solver for Structured Quadratic Programs 1

1 Introduction

We are concerned in this paper with a parallel structure exploiting interior-point solver to
tackle the convex quadratic programs (QPs). An advantage of interior point methods (IPMs)
is a consistent small number of iterations needed to reach the optimal solution of the problem.
Indeed, modern IPMs rarely need more than 20-30 iterations to solve a QP, and this number does
not increase significantly even for problems with millions of decision variables. However, a single
iteration of interior-point method may be costly because it involves solving large and potentially
difficult systems of linear equations. Indeed, the efficiency of interior point methods for quadratic
programming critically depends on the implementation of the linear algebra operations.

We deal with the primal-dual interior-point method in this paper. It is widely accepted [2, 27]
that the primal-dual algorithm is usually faster and more reliable than the pure primal or pure
dual method. The primal-dual method is applied to the primal-dual formulation of the quadratic
program

Primal Dual
min Lz + %xTQx max bly — %xTQx
s.t. Az =D, st. ATy+s—Qx=c,
x > 0; y free, x,s5 >0,

where A € R™*™, Q € R™™™ x,s,¢ € R" and y,b € R™. The main computational effort of this
algorithm consists in the computation of the primal-dual Newton direction. Applying standard
transformations [27] leads to the following linear system to be solved at each iteration

—Q—-06"1 AT Az | |r (1)
A 0 Ay | | h |’
where ©® = XS~! and X and S are diagonal matrices in R™*" with elements of vectors = and
s spread across the diagonal, respectively.

In this paper we are interested in the case where A and @) are large, block-sparse matrices,
indeed we assume them to be of a nested block-sparse structure. We note that an augmented
system matrix such as in (1) whose components A, @ are nested block-structured matrices can
be naturally reordered by symmetric row and column permutations (provided the structures
of A and @ are compatible), such that the resulting matrix is again a nested block-structured
matrix whose elementary blocks are of augmented system type. Thus the structures of A and
Q@ imply in a natural way a structure of the augmented system matrix.

The approach presented in this paper incorporates in a solver a set of routines that can support
any structure. These are used in an object-oriented implementation which is an extension of
[15, 13]. We assume that the structured matrices A and) are built of a nested set of blocks.
The hierarchy of blocks can be naturally represented as a tree: its root is the whole matrix,
intermediate nodes are block-structured submatrices and the leaves are the elementary blocks.

Our approach takes advantage of inclusion polymorphism: we define a general abstract Matrix
interface for matrix operations of which all other classes (one for each type of block-structured
matrix supported) are implementations. This abstract Matrix interface contains a set of virtual
functions (methods in the object-oriented terminology) that:

Parallel Interior-Point Solver for Structured Quadratic Programs 2

e provide all the necessary linear algebraic operations for an IPM, and

e allow self-referencing.

Among derived classes we define elementary ones for simple sparse and dense matrices as well
as classes for block-structured matrices such as block-diagonal, block-sparse, block-dense and
block bordered diagonal (which includes as special cases primal block-angular and dual block-
angular matrices). Definitions of block-structured matrices use only references to the abstract
Matrix interface . This self-referential property of our block-structured matrix classes allows us
to represent a variety of nested structures. Block-matrix operations are natural candidates for
parallelization. We have therefore implemented all higher-level matrix classes in parallel. The
parallelization is coarse-grained and so is well suited to large scale applications.

Further our implementation is effectively providing a linear algebra library for IPMs for QP. It
is therefore possible to completely separate the linear algebra part and the IPM logic part of
the algorithm.

To illustrate the potential of the new solver, we apply it to solve multistage stochastic quadratic
programs arising in financial planning problems, namely in asset liability management. Such
problems have drawn a lot of attention in the literature and have often been modeled as multi-
stage stochastic linear programs [7, 9, 10, 18, 20, 28, 29]. In this paper we consider an extension
in which the risk associated with the later stages is taken into account in the optimization prob-
lem. This is achieved by adding the variance term to the original objective of the problem and
leads to a QP formulation.

Multistage stochastic linear programs can be solved by the specialized decomposition algorithms
[3, 12, 14, 19, 22] or by the specialized interior point implementations [4, 17, 26]. Recently a
number of interesting specialized approaches have been proposed for multistage quadratic pro-
grams. Steinbach [23] exploits the tree-structure of such problems inherited from the scenario
tree of the multistage problem to implicitly reorder the computations in the context of interior
point method. Blomvall and Lindberg [5, 6] interpret the problem as an optimal control one
and derive the special order in which computations in IPMs should be executed. This approach
originates from differential equations and the authors call it the Riccati type method. Parpas
and Rustem [21] extend the nested Benders decomposition to handle stochastic quadratic pro-
gramming problems and use an IPM-based solver to solve all subproblems.

The origin of our approach is different: we assume that a QP problem is given with any block-
structure in it (the structure does not have to be the consequence of dynamics and/or uncer-
tainty) and we extend OOPS!, the object-oriented LP solver [15, 13] to tackle QP problems.
Multistage stochastic QPs are only one class of problems (among many others) which can be
efficiently dealt with the QP extension of OOPS.

The approach presented in this paper is an extension of that implemented in OOPS [15, 13]. The
main difference is that in OOPS [15] linear problems were considered so the augmented system
of linear equations (1) did not contain matrix () and was always reduced to normal equations

AOAT Ay = AOr + h. (2)

The acronym OOPS stands for Object-Oriented Parallel Solver
http://www.maths.ed.ac.uk/“gondzio/parallel/solver.html

Parallel Interior-Point Solver for Structured Quadratic Programs 3

This was a viable reduction step because matrix () was not present in the augmented system
and © was a diagonal matrix. In the context of quadratic programming such a reduction would
lead to almost completely dense normal equations A(Q+©~1)~! AT and would be likely to incur
prohibitively expensive computations (unless @ is a diagonal matrix). Hence in this paper and
more generally in the QP extension of OOPS we always deal with the augmented system (1).

Another contribution of our paper is the analysis of the influence of the QP problem formulation
on the efficiency of the solution process. We propose a nonconvex reformulation of the problem
which reduces density of matrices involved and is better suited to the use of IPMs.

The paper is organized as follows. In Section 2 we briefly discuss the linear algebraic opera-
tions required to implement the interior-point method for QP. We give examples of the types of
structures we wish to exploit and discuss how to exploit them. In Section 3 we introduce the
tree representation of the block-structured matrices and discuss certain features of the abstract
Matrix interface , the crucial object used in our design to support the notion of block. Section 4
reviews the Asset and Liability Management problem, which we use as an example to demon-
strate the efficiency of the code. Two different formulations are given, one convex and dense,
the other nonconvex but sparse. Section 5 states the actual computational results achieved with
our code both in serial and in parallel, while in the final Section 6 we draw our conclusions.

2 Linear Algebra Kernel in the QP Solver

2.1 Linear Algebra in the Interior Point Method for QP

The basis for our implementation is the primal-dual interior point algorithm with multiple
centrality correctors [1]. The main computational effort of this algorithm consists in the com-
putation of the primal-dual Newton direction. This requires solving the following linear system

—Q-X"15 AT Az | [&—-X1¢, 5
A O Ay - gp 9 ()
where
& = b— Az,

§e = c—Aly—s5+Qu,
& = pe—XSe.

The matrix involved in (3) is symmetric but indefinite (even for a convex problems when @) is
positive definite). For the sake of accuracy and efficiency, the matrix in the reduced Newton
system is regularized with diagonal terms R, and Ry

[-Q-Xx§ AT “R, 0
H = A 0]*[0 Rd])

to obtain a quasidefinite matrix [25]. The use of primal-dual regularization (4) guarantees the
existence of a Cholesky-like LDL™ factorization in which the diagonal D contains both positive
and negative elements. It avoids the need of using the 2 x 2 pivots required otherwise to
decompose an indefinite matrix [8, 11].

Parallel Interior-Point Solver for Structured Quadratic Programs 4

The matrix in the regularized augmented system (4) is symmetric and quasi-definite (with n
negative pivots, corresponding to the @) part of the matrix and m positive pivots, corresponding
to the A part). In our implementation of interior point method system (3) is regularized and
then solved in two steps: (i) factorization of the form LDL” and (ii) backsolve to compute
the directions (Ax,Ay). Since the triangular decomposition exists for any symmetric row and
column permutation of the quasidefinite matrix [25], the symbolic phase of the factorization
(reordering for sparsity and preparing data structures for sparse triangular factor) can be done
before the optimization starts.

2.2 Block-Structured Matrices

In this section we give an example of exploitable structures in matrices Q and A. We show how
by rearranging linear algebra operations a large structured linear system can be reduced to a
sequence of small linear systems.

Assume that matrices A and @ are of the structure displayed in Figures 1 and 2, that is a
combination of primal-dual block angular, border diagonal and diagonal structures. Then the
—Q—-071 AT

A 0
nested bordered diagonal form (the tilde in Cs1 for example denotes that this is a part of the
original C3; matrix). This reordering is generic, i.e. not depending on the particular structure
of A and Q. In fact it can be seen that the matrix @ in Figure 3 can be obtained directly from
A/AT and Q in Figures 1/2 by interleaving the matrices. Since © is a diagonal matrix and it
does not change the sparsity pattern, we do not display it in Figure 3.

matrix ¢ = can be reordered into the form displayed in Figure 3, i.e. a

It is worth noting that since we use a tree structure to represent our matrices, we need no further
memory to store the reordered augmented system matrix ®. Its leaf node matrices are identical
to those already present in A and (). Hence the reordered augmented system is represented by a
new tree, reusing the same leaf node matrices that make up A and Q. Of course, due to this, no
physical reordering of memory entries has to be done to obtain the reordered augmented system
matrix.

2.3 Symmetric Bordered Block-Diagonal Structure

Suppose a block of the augmented system ® has the symmetric bordered block-diagonal struc-
ture.

O BY
®,y BT
¢ = I) (5)
®, Bl
By By .-+ B, %

where ®; € R"*" i = 0,...,n and B; € R"*™ ¢ =1,...,n. Matrix ® has then N = >""" jn;
rows and columns. Such blocks will appear as seen in Figure 3 as diagonal blocks or root blocks
of the augmented system matrix if its component A and @ blocks are of block-diagonal and/or
block-angular structure.

Parallel Interior-Point Solver for Structured Quadratic Programs 5

sppif

Figure 3: Example of Block-Structured Augmented System ®.

Parallel Interior-Point Solver for Structured Quadratic Programs 6

With
Ly D,
LQ D2
L: s D:
Ly, D,
Ln,l Ln,Q Ln,n Lc Dc
and
®;, = L;D;LT (6a)
Ln; = B,L;'D;? (6b)
n
C = ®-Y» B 'Bf (6¢)
=1
= L.D.LT (6d)

matrix ® can be decomposed as
®=LDLT. (7)
Because of this (7) can be seen as a (generalized) Cholesky factorization of ®.

We can use this to compute the solution to the system

dxr =0,
where x = (z1,... ,2n,20)%, b= (b1,... ,bn,by)” by the following operations:
zo= L', i=1,...,n (8a)
0 = L;l(bo - ZLn,izi) (Sb)
i=1
yi = D;lzi, i=0,...,n (8¢)
zo = L. yo (8d)
x; = LT (y;— Lg}ixo), i=1,...,n (8e)

It is worth noting that the order in which matrix multiplications are performed in (6) and (8) may
have a significant influence on the overall efficiency of the solution of equation ®x = b. The sum
to compute C'in (6¢) is best calculated from terms (L; ' BI)TD; 1 (L; ' BT), which in turn is best
calculated as sparse outer products of the sparse rows of L;lBiT . Also the matrices L, ; are best
not calculated explicitly. Instead L, ;z; in (8b) is most efficiently calculated as B;(L; * (D; *2;))
and similarly for Lg,ixo in (8e). For these reasons we refer to complex factorizations such as

(6/8) as implicit factorizations.

Summing up, important savings can be achieved in the storage requirements as well as in the
efficiency of computations if the linear algebraic operations exploit the block structure of matrix
®. Last but not least, exploiting block structure allows an almost straightforward parallelization
of many of the computational steps when computing the decomposition of ® and when solving
equations with its factorization.

Parallel Interior-Point Solver for Structured Quadratic Programs 7

(0 » @ @

DOOHE® OO ® HEE

Figure 4: Tree Representation of Blocks.
3 Object-Oriented Design

The exploitation of a particular structure could be done with a traditional implementation of
IPMs. Then however the code is not easily reusable for other structures. To achieve generality
in our design we have followed [15].

There are many structures that can be exploited by an interior-point solver. We restrict our
discussion to those in which the matrices A and @ are built of blocks and are compatible so that
they imply a block structure for the reordered matrix ®. There are two reasons for that. First,
such structures are most often met in practice because they reflect the presence of dynamics,
uncertainty, space distribution or other similar factors in the optimization problem. Secondly,
block matrix structures can and should be exploited in any optimization algorithm that heavily
involves linear algebraic operations, and the interior-point method is such an algorithm.

3.1 Tree Representation of Block-Structured Matrices

With a given block-structured matrix we associate a tree that defines the embedding of blocks.
Every node in this tree corresponds to a block of the matrix. An arc indicates the embedding of
blocks. The root of the tree is the whole matrix, and its leaves correspond to elementary blocks
that are not partitioned into smaller entities. Any intermediate node of the tree corresponds to
some submatrix that is further partitioned into blocks; the nodes corresponding to these blocks
are children of a given node. Figure 4 shows the tree corresponding to the constraints matrix A
in Figure 1.

The tree provides a complete description how the matrix is partitioned. In the example of Fig-
ures 1 and 4 the matrix is first partitioned into blocks D1, Ds, D39, C31 and Css corresponding
to dual block-angular structure. Blocks D; and Dy have primal block-angular structure: they
are partitioned into subblocks DH, Dlg, Dl(), BH, Blg and Dgl, DQQ, D23, DQ(), Bgl, BQQ, ng, re-
spectively.

With every node of the tree we associate the type of the block-structure. We will say for
example that A is a dual block-angular matrix with 2 diagonal blocks, D; and Dy are primal

Parallel Interior-Point Solver for Structured Quadratic Programs 8

block-angular matrices with 2 respectively 3 diagonal blocks, and all the remaining nodes are
elementary matrices. Every type of the block structure corresponds in our layout to a particular
implementation of the abstract Matrix interface .

Observe that the type of the node determines how the linear algebraic operations for the corre-
sponding block of the matrix should be executed. Consider one of the simplest operations such
as the matrix-vector product computed with A. The type of node A in the tree implies that
the operation will be split into 5 subblocks D1, Do, D3p, C'31 and Css, corresponding to children
of this node. In cases of nodes D3y, C3; and Cso that correspond to elementary blocks, this
operation would invoke a routine appropriate for the given type of the node. For nodes D; and
D5 the same operation will have to be split further into subblocks — children of nodes D; and
Ds. As seen in Section 2.2 the tree representation of matrices A,) implies a tree decomposition
of the augmented matrix ®.

3.2 Matrix Interface for Augmented System Computations

We use object oriented principles to exploit the structure of matrices A,Q and ® in the linear
algebra operations needed within the interior point method for these matrices. The idea is that
linear algebra operations are reduced to operations on nodes of the tree. Every operation for a
particular type of matrix is reduced to a combination of operations on the children of this matrix.
We have outlined above how this works for matrix-vector products and have given details of the
more complex ComputeCholesky and Solve operations for bordered block-diagonal structure in
Section 2.3.

Every type of matrix will correspond to a particular implementation of the abstract Matrix
interface with its particular implementation of the linear algebra methods. In the rest of this
section we will discuss the layout of the abstract Matrix interface .

The abstract Matrix interface provides a general interface to linear algebraic operations sup-
ported by any type of matrix. It ensures that every type of matrix supports the same linear
algebraic operations and that they can be invoked in a generic way, i.e. without knowing the
particular type of the matrix. Every particular type of matrix corresponds to an implementation
of this abstract Matrix interface , i.e. it provides its specialized implementation of the abstract
operations defined in the interface.

To implement an interior point method the following operations with the matrices A, Q) and ®
are needed:

e Matrix-vector products Mz, Mz for A,Q and ®.

e Given A,(Q and © compute P.

e Calculate factors ® = LDL”.

e Solve systems Lz =g, Dz =g and LTz = g.

These operations are an integral part of the abstract Matrix interface used in our solver. It
is worth noting that an interior-point algorithm does not need to know how these operations

Parallel Interior-Point Solver for Structured Quadratic Programs 9

are executed; it needs to access only their results. However this set of routines is not sufficient.
This is because the most efficient implementation of some of these fundamental methods might
require further methods to be supported by its child node matrices. E.g. the formation of
implicit Cholesky factors by Schur complement (see Section 2.3) requires a method that returns
a row or column of the matrix in question.

We therefore introduce a set Fy of methods supported by the abstract Matrix interface : it has
to satisfy a closure condition: any method in Fx can be implemented for any supported matrix
structure by only using methods also in Fy on its subblocks.

Below we list the set Fx of methods supported by the abstract Matrix interface :

e compute the product Mz = g,
e compute the product M1z = g,
e retrieve column j of M,

e retrieve row j of M,

—Q _ @,1 AT

e compute ® = reorder ([A 0

]) for given A, @ and O,

e compute the inverse representation LDLT = &,
e compute the solution of equation ®z = g,
e compute the solution of equation Lz = g,
e compute the solution of equation Dz = g,

e compute the solution of equation LTz = g.

Note that all these operations can be performed by only requiring the results of operations in
Fx from the subblocks ®;, B;.

Not all these methods can be sensible used for a particular structure in all circumstances. The
“compute ®” method will only be used if the block is used as part of the constraint matrix A.
Similarly the “Compute LDL™” and “Solve” methods will only be applied for blocks used in
the augmented system.

3.3 Parallel Implementation

One of the main advantages of an object-oriented linear algebra design is that it lends itself
naturally to parallelization. Almost all linear algebra operations for the block-structured matrix
types mentioned (e.g. block-bordered diagonal, primal/dual block-angular) can be efficiently
computed in parallel, by distributing the blocks among different processors. The object ori-
ented design provides a layout that can be adapted for parallel implementation with only minor
changes.

Parallel Interior-Point Solver for Structured Quadratic Programs 10

Note that we only exploit this coarse grain parallelism: In block-structured matrices operations
on child-matrices are distributed among processors. No attempt has been made to implement
elementary matrices (sparse, dense) in parallel.

4 Asset and Liability Management Problems

There are numerous sources of structured linear programs. Although we have developed a gen-
eral structure exploiting IPM solver, we have tested it in the first instance only on Asset /Liability
Management (ALM) problems. This section will briefly summarize the structure of these prob-
lems. We will follow the problem description of [23, 24] and we refer the reader to [29] and the
references therein for a detailed discussion of these problems.

Assume we are interested in finding the optimal way of investing into assets j = 1,... ,J. The
returns on assets are uncertain. An initial amount of cash b is invested at ¢ = 0 and the portfolio
may be rebalanced at discrete times t = 1,... ,T. The objective is to maximize the final value
of the portfolio at time T+ 1 and minimize the associated risk measured with the variance of the
final wealth. To model the uncertainty in the process we use discrete random events w; observed
at times t = 0,... ,T; each of the w; has only a finite number of possible outcomes. For each
sequence of observed events (wp, ... ,w;), we expect one of only finitely many possible outcomes
for the next observation w;y1. This branching process creates a scenario tree rooted at the initial
event wy. Let L; be the level set of nodes representing past observations (wo, ... ,w;) at time
t, Lt the set of final nodes (leaves) and L = |J, L the complete node set. In what follows a
variable ¢ € L will denote nodes, with ¢ = 0 corresponding to the root and 7 (i) denoting the
predecessor (parent) of node i. Further p; is the total probability of reaching node i, i.e. on
each level set the probabilities sum up to one. We draw the reader’s attention to the important
issue of scenario tree generation [16].

Let v; be the value of asset j, and ¢; the transaction cost. It is assumed that the value of the
assets will not change throughout time and a unit of asset j can always be bought for (1 + ¢;)v;
or sold for (1 — ¢;)v;. Instead a unit of asset j held in node i (coming from node 7r()) will
generate extra return r; ;. Denote by xh the units of asset j held at node ¢ and by :1:z j»xi; the
transaction volume (buying, selling) of thls asset at this node. We assume that we start w1th
zero holding of all assets but with funds b to invest. Further we assume that one of the assets
represents cash, i.e. the available funds are always fully invested.

We will now present two slightly different versions of the model resulting from these assumptions.
One of them is convex but has a dense () matrix. The other which is obtained by introducing
an extra variable and constraint has a sparse () matrix at the expense of a nonconvex problem
formulation. However the problem is still convex on the null space of the constraints, which is
why we use this second formulation due to its sparsity benefits. The non-convexity of the model
does not seem to adversely affect the performance of the interior point algorithm.

The objective of the ALM problem is to maximize final wealth while minimizing risk. Final
wealth y is simply expressed as the expected value of the final portfolio converted into cash

J
y=FE((1-c) Zv]xT] (1—ct) Epizvjx?,jv

i€Lp 7j=1

Parallel Interior-Point Solver for Structured Quadratic Programs 11

while risk is expressed as its variance

J
Var((1—ctz xT] = sz 1—c) ZUJ ij

i€ELp
J
= D= alD vl =2 (U =a) D pid vl +y* D p
i€ELp 7 i€ELp 7j=1 i€Lp
——
=y =1
= 2 pll—c) Z% wi)
ZGLT

The actual objective function of the problem is a linear combination of these two terms as in
the Markowitz model [24]. The ALM problem can then be expressed as

R
s.t. (L =) Xier, Pid; ”J J - Y
(1+7“m) oY x?,j_ —i—x”, Vi#0,j
> (14 c)vjz fd >_;(1 Ct)”ﬂ Ty ViFED
> +e)uag; = b

If we denote z; = (7, ZL‘?}I, ZL‘Z}-tl, A e xgj, ZL‘Zh’J), and define matrices
1 -1 1 0 01 + T‘,L'71
1 -1 1 0 0 1+my
-5 & 0 - =5 B0 00 0 00 0
and
Q' c R3J><3J . (Qi)3j,3k = pz(l - Ct)Q’UjUk, jv k= 17 v aJ7 1€ LT
‘ . QZ = 07 [Q Lt
di € RV 2 (di)s; = (1 — cr)pivj,
where cJ (1+ct)vj, ¢i = (1 — ct)v;, we can rewrite problem (9) as
max y—p[y @ Qiri—y’) st Ty, dii =y (10)
v 1€LT BT('(Z) (i) = ALUZ Vi 75 0
Aﬂfo = b€J+1.
Now if we assemble the vectors z;,i € L and y into a big vector = = (Y, Z5(0); To(1)s - -+ > To(|L|-1))
where o is a permutation of the nodes 0,... ,|L| — 1 in a depth-first order, the problem can be

written with a nested block-diagonal Q matrix of the form Q = diag(—1,Q,(1),--- , Qo(r|-1))

Parallel Interior-Point Solver for Structured Quadratic Programs 12

and a constraint matrix A of the form

1 0 d; - di - 0 d - d
A
B; A
0 B, A
0 B; A (11)
B; A
0 B, A
0 B; A

which is of nested primal/dual block-angular form, resulting in a QP of the form displayed in
Figures 1/2/3. However due to the —1 term in the diagonal of) (while all other); — being
variance-covariance matrices — are positive semi-definite) this formulation of the problem is not
convex.

We can however substitute for the y term in this formulation, using

v o= D (I —c)pi Y vjaly]’
€Ly =1
JoJ

= (1=c)® Y. Y DD pipwjuralaly,

i€LrleLly j=1 k=1

resulting in a block-dense () matrix with |L| x |L| blocks of the form

(Qi,l)3j,3k = _(1 - Ct)QPiplUj’Uka jv k= 17 s 7Ja Z7l € LTai 7& l
Qir: X (Qii)sjsk = [pi(l —c)> — (1 — c)*pivjug, Jk=1,...,J, i€ Lp
Qiy =0, i¢ Lyorl¢Lr.

As mentioned before this formulation of the problem is convex (@ now being a variance-
covariance matrix) but dense.

Since our algorithm cannot currently exploit the dense @ in this second formulation, we have
used the first formulation in our numerical tests. The non-convexity of the problem does not
seem to adversely affect the performance of the algorithm.

5 Numerical Results

We shall discuss in this section computational results that illustrate the efficiency of our structure
exploiting interior point code for quadratic programming, enabling it to solve QP problems with
millions of variables and constraints. Further we demonstrate that the code parallelizes well
obtaining almost perfect speed-ups on 2-6 processors.

Parallel Interior-Point Solver for Structured Quadratic Programs 13

Problem | Stages Blocks Assets Total Nodes | constraints variables
ALM1 5 10 5 11111 66.667 166.666
ALM?2 6 10 5 111111 666.667 1.666.666
ALMS3 6 10 10 111111 1.222.222 3.333.331
ALM4 5 24 5 346201 2.077.207 5.193.016
ALMS5 4 64 12 266305 3.461.966 9.586.981
UNS1 5 35 5 360152 2.160.919 5.402.296

Table 1: Asset and Liability Management Problems: Problem Statistics.

Problem | iteration Time (s)
ALM1 12 75.6
ALM?2 19 1528
ALM3 29 7492
ALM4 31 5434
ALM5 16 6842
UNS1 26 5252

Table 2: Asset and Liability Management Problems: Serial Implementation.

All computations were done on the Sunfire 6800 machine at Edinburgh Parallel Computing
Centre (EPCC). This machine features 24 750MHz UltraSparc-III processors and 48GB of shared
memory.

In Table 1 we summarize problem statistics of our test-problems. Further we give solution times
and statistics of the serial implementation in Table 2, and finally solution time and speed-up of
the parallel implementation is reported in Table 3. While problems ALM1-ALMS5 correspond to
symmetric scenario trees, problem UNS1 is an example of an unsymmetric scenario tree. In this
case the subblocks are distributed among processors by a greedy algorithm (assigning largest
subblocks first).

All problems can be solved in a reasonable time and with a reasonable amount of interior point
iterations. The speed-up of the parallel implementation is near perfect, due to the exact balance
of the blocks treated by each processor and the by far major computational task being distributed
amongst the processors. In fact we achieve superlinear speed-up on quite a few problems: we
believe this to be the effect of more efficient use of cache when each processor only has to deal
with a smaller part of the matrix and the corresponding vectors.

6 Conclusion

We have presented a structure exploiting implementation of an interior point method for quad-
ratic programming. Unlike other such implementations which are geared towards one particular
type of structure displayed by one particular type of problem, our approach is general enough to
exploit any structure and indeed any nested structure. We achieve this flexibility by an object-
oriented layout of the linear algebra library used by the method. An additional advantage of

Parallel Interior-Point Solver for Structured Quadratic Programs 14

Problem ‘ 1 proc 2 procs
k procs

time (s) speed-up ‘ time (s) speed-up ‘ time (s) speed-up
JIZLMl 72.8 -] 352 207 122 5.97
gLM2 1528 - 758 201 | 309 4.95
5ALM3 7492 -] 3661 204 | 1464 5.12
5ALM4 5434 - 2nr 2.00 | 905 6.00
gLM5 6842 -| 3480 197 | 1150 5.95
%NSl 5252 -] 2823 1.86 | 1108 4.74
5

Table 3: Asset and Liability Management Problems: Parallel Implementation.

this layout is that it lends itself naturally to efficient parallelization of the algorithm.

We have given computational results of our algorithm on a selection of randomly generated
Asset and Liability Management problems. These problems can be formulated as nonconvex
sparse quadratic programs and can be solved very efficiently and with near-perfect speed up in
the parallel implementation, enabling us to solve a problem of 10 million variables in about 20
minutes on 6 processors.

References

[1]

2]

A. ALTMAN AND J. GONDZIO, Regularized symmetric indefinite systems in interior point
methods for linear and quadratic optimization, Optimization Methods and Software, 11-12

(1999), pp. 275-302.

E. D. ANDERSEN, J. GoNDz10, C. MESZAROS, AND X. XU, Implementation of interior

point methods for large scale linear programming, in Interior Point Methods in Mathematical
Programming, T. Terlaky, ed., Kluwer Academic Publishers, 1996, pp. 189-252.

J. R. BIRGE, Decomposition and partitioning methods for multistage stochastic linear pro-
grams, Operations Research, 33 (1985), pp. 989-1007.

J. R. BIRGE AND L. Q1, Computing block-angular Karmarkar projections with applications
to stochastic programming, Management Science, 34 (1988), pp. 1472-1479.

J. BLOMVALL AND P. O. LINDBERG, A Riccati-based primal interior point solver for mul-

tistage stochastic programming, European Journal of Operational Research, 143 (2002),
pp. 452-461.

, A Riccati-based primal interior point solver for multistage stochastic programming -
extensions, Optimization Methods and Software, 17 (2002), pp. 383-407.

S. BRADLEY AND D. CRANE, A dynamic model for bond portfolio management, Manage-
ment Science, 19 (1972), pp. 139-151.

Parallel Interior-Point Solver for Structured Quadratic Programs 15

8]

[24]

[25]

J. R. BuncH AND B. N. PARLETT, Direct methods for solving symemtric indefinite systems
of linear equations, SIAM Journal on Numerical Analysis, 8 (1971), pp. 639-655.

D. CariNO, T. KENT, D. MYERS, C. STACY, M. SYLVANUS, A. TURNER, K. WATANABE,
AND W. ZIEMBA, The Russel-Yasuda Kasai model: an asset/liability model for Japanese

insurance company using multistage stochastic programming, Interfaces, 24 (1994), pp. 29—
49.

G. CoNSIGLI AND M. DEMPSTER, Dynamic stochastic programming for asset-liability man-
agement, Annals of Operations Research, 81 (1998), pp. 131-162.

I. S. Durr, A. M. ERISMAN, AND J. K. REID, Direct methods for sparse matrices, Oxford
University Press, New York, 1987.

H. I. GASSMANN, MSLiP: A computer code for the multistage stochastic linear programming
problems, Mathematical Programming, 47 (1990), pp. 407-423.

J. GonDzIOo AND A. GROTHEY, Reoptimization with the primal-dual interior point method,
STAM Journal on Optimization, 13 (2003), pp. 842-864.

J. GoNDzIO AND R. KOUWENBERG, High performance computing for asset liability man-
agement, Operations Research, 49 (2001), pp. 879-891.

J. GONDZIO AND R. SARKISSIAN, Parallel interior point solver for structured linear pro-
grams, Mathematical Programming, 96 (2003), pp. 77-77?

K. HoyLAaND, M. KAUT, AND S. W. WALLACE, A heuristic for moment-matching scenario
generation, Computational Optimization and Applications, 24 (2003), pp. 169-186.

E. R. JEssupr, D. YANG, AND S. A. ZENIOS, Parallel factorization of structured matrices
arising in stochastic programming, SIAM Journal on Optimization, 4 (1994), pp. 833-846.

M. Kusy AND W. ZIEMBA, A bank asset and liability model, Operations Research, 34
(1986), pp. 356-376.

J. LINDEROTH AND S. J. WRIGHT, Decomposition algorithms for stochastic programming

on a computational grid, Computational Optimization and Applications, 24 (2003), pp. 207—
250.

J. MULVEY AND H. VLADIMIROU, Stochastic network programming for financial planning
problems, Management Science, 38 (1992), pp. 1643—-1664.

P. PARPAS AND B. RUSTEM, Decomposition of multistage stochastic quadratic problems in
financial engineering, tech. report, Department of Computing, Imperial College, 2003. Pre-
sented at the International Workshop on Comutational Management Science, Economics,
Finance and Engineering, Cyprus, 28-30 March, 2003.

A. RuszczyNsKI, A regularized decomposition method for minimizing a sum of polyhedral
functions, Mathematical Programming, 33 (1985), pp. 309-333.

M. STEINBACH, Hierarchical sparsity in multistage convex stochastic programs, in Stochastic
Optimization: Algorithms and Applications, S. Uryasev and P. M. Pardalos, eds., Kluwer
Academic Publishers, 2000, pp. 363-388.

, Markowitz revisited: Mean variance models in financial portfolio analysis, STAM
Review, 43 (2001), pp. 31-85.

R. J. VANDERBEI, Symmetric quasidefinite matrices, STAM Journal on Optimization, 5
(1995), pp. 100-113.

Parallel Interior-Point Solver for Structured Quadratic Programs 16

[26] H. VLADIMIROU AND S. A. ZENIOS, Scalable parallel computations for large-scale stochastic
programming, Annals of Operations Research, 90 (1999), pp. 87-129.

[27] S. J. WRIGHT, Primal-Dual Interior-Point Methods, STAM, Philadelphia, 1997.

[28] S. ZENIOS, Asset/liability management under uncertainty for fized-income securities, An-
nals of Operations Research, 59 (1995), pp. 77-97.

[29] W. T. ZIEMBA AND J. M. MULVEY, Worldwide Asset and Liability Modeling, Publications
of the Newton Institute, Cambridge University Press, Cambridge, 1998.

