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1. Introduction

The mathematical program with equilibrium constraints (MPEC) has extensive appli-

cations in areas such as engineering design and economic modelling. It has been an active

research topic in recent years. In this paper, we consider the following mathematical

program with linear complementarity constraints (MPCC), which is a special case of the

MPEC:

min f(x, y) (1.1)

s.t. Cx+Dy ≤ c, (1.2)

Ax+By = b, (1.3)

Nx+My − w = q, (1.4)

0 ≤ w ⊥ y ≥ 0, (1.5)

where f : �n+m → � is a twice continuously differentiable real-valued function, C ∈ ��×n,

D ∈ ��×m, A ∈ �p×n, B ∈ �p×m, N ∈ �m×n, M ∈ �m×mare given matrices, c, b, q are

given �, p, m-dimensional vectors respectively.

Research work on the MPEC includes the monograph [19] that provides a comprehen-

sive study on the MPEC, such as the exact penalization theory, optimality conditions,

and some iterative algorithms. Based on different formulations including the piecewise

smooth formulation and certain regularization scheme, in a series of papers [22, 23, 24]

Scholtes et al. made an extensive study on stationarity and optimality of the MPEC,

and presented some algorithms. Fukushima, Luo and Pang [8] presented a sequential

quadratic programming (SQP) algorithm for the MPCC that is based on reformulating

the complementarity constraints into a system of semismooth equations by using the

Fischer-Burmeister function. The feasibility issues on the subproblems in SQP for MPEC

were studied by Fukushima and Pang [9]. Ralph [21], Jiang and Ralph [12, 13] presented

some SQP methods for MPCC and reported numercial results on implementations of their

algorithms. Very recently, Fukushima and Tseng [11] proposed an active-set algorithm

for MPCC.

It is noted that the global convergence results of all aforementioned algorithms are

based on certain assumptions on the matrices in the problem and/or the nondegeneracy

(strict complementarity) of the complementarity constraints. For example, Fukushima,

Luo and Pang [8] assumed that M is a P0-matrix with one of its principle submatrix being

nondegenerate and that strict complementarity holds for the complementarity constraints.

Fukushima and Tseng [11] assumed that a linearly independent constraint qualification

for MPEC (MPEC-LICQ for short) holds. Similar assumptions are also needed in Jiang

and Ralph [13].

There have been some algorithms with locally rapid convergence, e.g., [1, 5, 7, 16, 20].

Numerical results showed that they have good performances on some test problems such as

MacMPEC (see [15]). However, it remains open to demonstrate their global convergences.

The following example indicates that the MPEC-LICQ and nondegeneracy may not
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hold for simple problems. Consider

min x+ y (1.6)

s.t. −1 ≤ x ≤ 1, (1.7)

1 + x− w = 0, (1.8)

0 ≤ w ⊥ y ≥ 0. (1.9)

The optimal point is (−1, 0, 0), at which both the MPEC-LICQ and nondegeneracy do

not hold. Thus, it would make sense to develop a globally convergent algorithm that does

not require the problem to satisfy the MPEC-LICQ or the nondegenracy assumption.

Our target in this paper is to develop a globally convergent SQP method that does not

require these assumptions. The algorithm is based on an inequality relaxation of the

complementarity constraints. Some interesing features of the algorithm are as follows.

1. The feasibility of the problem is not required in advance, and the algorithm starts

from an infeasible point which satisfies some linear constraints.

2. All SQP subproblems specified by the algorithm are feasible. Thus, a search

direction always exists before termination.

3. Convergence results are proved without assuming the MPEC-LICQ or the nonde-

generacy of complementarity constraints. The algorithm may find some point with certain

strong or weak stationary properties.

The paper is organized as follows. In the next section, we describe a relaxation of

MPCC and give some related results. We introduce a decomposed SQP technique and

present a new SQP algorithm for MPCC in Section 3. We discuss stationary properties

associated with the algorithm in Section 4 and prove the global convergence results of the

algorithm in Section 5. Preliminary numerical results are reported in the last section.

For reader’s convenience, we list some notations used in the paper. For any vectors

u ∈ �s and v ∈ �t, we have that (u, v) = [u� v�]� ∈ �s+t, where � is the transpose.

Suppose that R ∈ �s×t is any s × t matrix, S is any subset of the indices {1, 2, . . . , t},
then RS represents a submatrix of R consisting of its columns indexed by S. A vector

with supscript k and a matrix with subscript k corresponds to the iterate k, whereas a

vector with subscript i represents its i-th component. The letter I stands for the identity

matrix, whose size may be identified in the context. At last, “◦” is the Hardamat product

of vectors, that is, for u ∈ �s and w ∈ �s, u ◦ w is a vector in �s with (u ◦ w)i = uiwi.

2. An inequality relaxation of MPCC

Let z̄ = (x̄, ȳ, w̄) be a feasible point of MPCC (1.1)-(1.5). A well-known relaxation of

problem (1.1)-(1.5) associated with z̄ is defined by

min f(x, y) (2.1)

s.t. Cx+Dy ≤ c, (2.2)

Ax+By = b, (2.3)
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Nx+My − w = q, (2.4)

yj ≥ 0, j ∈ {j : w̄j = 0}, (2.5)

yj = 0, j ∈ {j : w̄j 
= 0}, (2.6)

wj ≥ 0, j ∈ {j : ȳj = 0}, (2.7)

wj = 0, j ∈ {j : ȳj 
= 0}. (2.8)

We denote problem (2.1)-(2.8) by R(z̄). This kind of relaxed problems have played an

important role in the development of theories and algorithms for MPECs, see [11, 19].

The following theorem is a crucial result (Theorem 2.1 of [11]).

Theorem 2.1 Let z̄ be a feasible solution of MPCC (1.1)-(1.5) such that the MPEC-

LICQ holds at z̄. Then z̄ is a KKT point of the relaxed problem R(z̄) if and only if z̄ is

a Bouligand stationary point of the MPCC.

In this paper we consider another relaxation, denoted by N (τ), of the problem (1.1)-

(1.5):

min f(x, y) (2.9)

s.t. Cx+Dy ≤ c, (2.10)

Ax+By = b, (2.11)

Nx+My − w = q, (2.12)

y ≥ 0, (2.13)

w ≥ 0, (2.14)

y ◦ w ≤ τe, (2.15)

where τ ≥ 0 is a scalar, e = (1 . . . 1)�. The complementarity constraints in (1.1)-(1.5)

are relaxed by inequalities (2.15). If τ = 0, then problem (2.9)-(2.15) is equivalent to the

MPCC. Here and below, to simplify the notation, we denote the primal variable by z with

z = (x, y, w) and denote the dual variables by u = (λ, µ, ν, ξ, ζ, η) where λ, µ, ν, ξ, ζ, η are

the dual multiplier vector associated with the constraints (2.10)-(2.15), respectively.

This kind of relaxation has been proposed in [22]. Some newly developed locally

convergent algorithms (e.g., see [5, 16, 20]) also used this relaxation. Suppose τ > 0 and

(xτ , yτ , wτ) is a feasible point of N (τ).

Since the proposed algorithm aims to find a point with certain stationary properties

(discussed later) of problem (1.1)-(1.5) by relaxation problem N (τ), we must study how

the KKT point of N (τ) is related to the original problem, which is the purpose of this

section. The way we do it is to relate problem N (τ) to R(z̄) and to apply Theorem 2.1.

It is well known that a KKT pair of N (τ), denoted by (zτ , uτ ), must satisfy

∇xfτ + C�λτ + A�µτ + N�ντ =0, (2.16)

∇yfτ +D�λτ +B�µτ +M�ντ − ξτ +Wτητ =0, (2.17)

−ντ − ζτ + Yτητ =0, (2.18)

λτ
�(Cxτ +Dyτ − c) = 0, ξτ

�yτ = 0, ζτ
�wτ = 0, ητ

�(yτ ◦ wτ − τe) = 0. (2.19)
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where zτ = (xτ , yτ , wτ ), uτ = (λτ , µτ , ντ , ξτ , ζτ , ητ ). Then we have the following result.

Theorem 2.2 Suppose that {(zk, uk)} is an infinite sequence, where zk is a feasible point

of N (τk), and (zk, uk) satisfies the KKT conditions (2.16)-(2.19) of N (τk). If {uk} is

bounded, and τk → 0 as k → ∞, then any limit point z∗ of {zk} is a KKT point of the

relaxed problem R(z∗).

Proof. Since {uk} is bounded, there exists a subsequence {uk : k ∈ K} and a vector u∗

such that uk → u∗ for k ∈ K and k → ∞. The limit point z∗ is a feasible point of problem

(1.1)-(1.5) because zk is a feasible point of N (τk). Let

I1 = {i : y∗i > w∗
i = 0}, I2 = {i : y∗i = w∗

i = 0}, I3 = {i : 0 = y∗i < w∗
i }. (2.20)

It follows from (2.16)-(2.19) that

∇xf
∗ + C�λ∗ + A�µ∗ +N�ν∗ = 0, (2.21)

∇yf
∗ +D�λ∗ +B�µ∗ +M�ν∗ = π∗, (2.22)

λ∗i (Cix
∗ +Diy

∗ − ci)= 0, i = 1, . . . , �, (2.23)

π∗
i = 0, ν∗i =−ζ∗i + y∗i η

∗
i , i ∈ I1, (2.24)

π∗
i = ξ∗i , ν∗i =−ζ∗i , i ∈ I2, (2.25)

π∗
i = ξ∗i − w∗

i η
∗
i , ν∗i = 0, i ∈ I3, (2.26)

where ξ∗i ≥ 0, ζ∗i ≥ 0, η∗i ≥ 0, and λ∗i ≥ 0.

A point z∗ = (x∗, y∗, w∗) is a KKT point of the relaxed problem R(z∗) if the point is

feasible to the problem and there exist λ∗ ∈ ��
+, π∗ ∈ �m, µ∗ ∈ �p and ν∗ ∈ �m such

that

∇xf
∗ + C�λ∗ + A�µ∗ +N�ν∗ = 0, (2.27)

∇yf
∗ +D�λ∗ +B�µ∗ +M�ν∗ = π∗, (2.28)

λ∗i (Cix
∗ +Diy

∗ − c)= 0, i = 1, . . . , �, (2.29)

π∗
i ≥ 0, π∗

i y
∗
i = 0, i ∈ {i : w∗

i = 0}, (2.30)

ν∗i ≤ 0, ν∗i w
∗
i = 0, i ∈ {i : y∗i = 0}. (2.31)

By comparing equations (2.21)-(2.26) with equations (2.27)-(2.31), we can see that z∗ is

also a KKT point of problem R(z∗).

We now formally define the MPEC-LICQ for problem (1.1)-(1.5).

Definition 2.3 The MPEC-LICQ holds at point z∗ for problem (1.1)-(1.5) if the coeffi-

cient matrix 


(C�)S∗
0

A� N�

(D�)S∗
0

B� M� IS∗
y

I IS∗
w


 (2.32)

has full column rank, where S∗
0 = {i : Cix

∗ + Diy
∗ = ci}, S∗

y = {i : y∗i = 0} and

S∗
w = {i : w∗

i = 0}.
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The nondegeneracy condition of problem (1.1)-(1.5) holds if and only if y ◦w = 0 and

y + w > 0. Then we have the following result on the boundedness of {uk}.

Lemma 2.4 Suppose that {(zk, uk)} is an infinite sequence, where zk is a feasible point

of N (τk), and (zk, uk) satisfies the KKT conditions (2.16)-(2.19) of problem N (τk). If

τk → 0 and zk → z∗ as k → ∞, both the MPEC-LICQ and the nondegeneracy hold at z∗,
then {uk} is bounded.

Proof. We prove it by the contrary. Assume ‖uk‖∞ → ∞ for k ∈ K, where K is an infinite

index set. By dividing ‖uk‖∞ on both sides of equations (2.16)-(2.18) and taking limit as

k → ∞, combining with the nondegeneracy at z∗, we derive the system of equations which

shows that the column vectors of matrix (2.32) are linearly dependent, thus contradicts

the MPEC-LICQ. The contradiction indicates that the result holds.

The asymptotically weak nondegeneracy has been introduced by Fukushima and Pang

[10] to substitute for the nondegeneracy condition in the convergence analysis of a smooth-

ing continuation method for MPCC, which is described as follows.

Definition 2.5 The infinite sequence {zk} has asymptotically weak nondegeneracy at z∗

if there exist an infinite subsequence {zk : k ∈ K} and two constants β1 > β2 > 0 such

that zk → z∗ as k ∈ K and k → ∞, and for sufficiently large k ∈ K and for any

i ∈ {i : y∗i = w∗
i = 0}⋂{i : yk

i w
k
i = τk}, there holds

β2 ≤ yk
i /w

k
i ≤ β1. (2.33)

The condition on asymptotically weak nondegeneracy is weaker than the nondegener-

acy (strictly complementarity) condition. If the nondegeneracy holds at z∗, then {i : y∗i =

w∗
i = 0} = ∅. Thus the condition on asymptotically weak nondegeneracy holds naturally.

Lemma 2.6 Suppose that {(zk, uk)} is an infinite sequence, where zk is a feasible point

of N (τk), and (zk, uk) satisfies the KKT conditions (2.16)-(2.19) of problem N (τk). Fur-

thermore, we assume that d�∇2
zL(zk, uk)d ≥ 0 for all k, where ∇2

zL(zk, uk) is the Hessian

of Lagrangian of problem N (τk) at point (zk, uk) and d is in the set

S =



d ∈ �n+2m :

Cidx +Didy = 0, i ∈ Sk
0 = {i : Cix

k +Diy
k = ci},

Adx +Bdy = 0,

Ndx +Mdy − dw = 0,

(dy)j = 0, j ∈ Sk
y = {j : yk

j = 0, wk
j > 0},

(dw)j = 0, j ∈ Sk
w = {j : wk

j = 0, yk
j > 0},

yk
j (dw)j + wk

j (dy)j = 0, j ∈ Sk
c = {j : yk

jw
k
j = τk}.



.

If τk → 0 and zk → z∗ as k → ∞, both the MPEC-LICQ and the asymptotically weak

nondegeneracy hold at z∗, then {uk} is bounded.
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Proof. If {i : yk
i w

k
i = τk} = ∅, then ηk = 0. We suppose that {i : yk

i w
k
i = τk} 
= ∅ for all

k ≥ 0. Two cases need to be considered: (i) {i : y∗i = w∗
i = 0} ∩ {i : yk

i w
k
i = τk} = ∅ for

all sufficiently large k; (ii) for sufficiently large k, {i : y∗i = w∗
i = 0}∩{i : yk

i w
k
i = τk} 
= ∅.

Case (i). In this case, for all sufficiently large k, if i0 ∈ {i : yk
i w

k
i = τk}, then y∗i0w

∗
i0 = 0

and y∗i0 + w∗
i0
> 0. Thus, the result follows from the proof of Lemma 2.4.

Case (ii). We first prove that {ηk} is bounded. If ‖ηk‖∞ → ∞ as k ∈ K and k → ∞,

by the MPEC-LICQ, there exists i0 ∈ {i : y∗i = w∗
i = 0} ∩ {i : yk

i w
k
i = τk} such that

ηk
i0 → ∞ as k ∈ K and k → ∞.

We select dk ∈ S as follows: (dk
w)i = 1 and (dk

y)i = −(yk
i /w

k
i ) for i ∈ {i : y∗i = w∗

i =

0} ∩ {i : yk
i w

k
i = τk}; (dk

y)i = 0, i ∈ {i : yk
i = 0}; (dk

w)i = 0, i ∈ {i : wk
i = 0}; (dk

y)i = 0

and (dk
w)i = 0 for {i : yk

i w
k
i = τk}\{i : y∗i = w∗

i = 0}. For sufficiently large k, this selection

is guaranteed by the MPEC-LICQ. It is noted that ‖dk
w‖ 
→ 0 as k → ∞. Since

d�∇2
zL(zk, uk)d = d�x ∇2

xfkdx + 2d�x ∇2
xyfkdy + d�y ∇2

yfkdy + 2d�y diag(ηk)dw, (2.34)

by the asymptotically weak nondegeneracy, if ‖ηk‖∞ → ∞ as k ∈ K and k → ∞, then

dk�∇2
zL(zk, uk)dk → −∞ as k ∈ K and k → ∞, which contradicts that d�∇2

zL(zk, uk)d ≥
0 ∀d ∈ S, ∀k. This contradiction implies that {ηk} is bounded. By equations (2.16)-(2.19)

and the MPEC-LICQ, we have the desired result.

The following result can be derived directly from Theorem 2.1, Theorem 2.2, Lemma

2.4 and Lemma 2.6.

Theorem 2.7 Suppose that {(zk, uk)} is an infinite sequence, where zk is a feasible point

of problem N (τk), and (zk, uk) satisfies equations (2.16)-(2.19). Let τk → 0 as k → ∞,

z∗ is any limit point of {zk}. If either the MPEC-LICQ and the nondegeneracy, or the

MPEC-LICQ, the asymptotically weak nondegeneracy hold at z∗ and d�∇2
zL(zk, uk)d ≥ 0

∀k ≥ 0 and ∀d ∈ S, then z∗ is a Bouligand stationary point of MPCC (1.1)-(1.5).

Moreover, we have the following result under the MPEC-LICQ and the nondegeneracy.

Corollary 2.8 Suppose that {(zk, uk)} is an infinite sequence, where zk is a feasible point

of problem N (τk), and (zk, uk) satisfies equations (2.16)-(2.19). Let τk → 0 as k → ∞,

z∗ is any limit point of {zk}. If both the MPEC-LICQ and the nondegeneracy hold at z∗,
then there exist multipliers (λ∗, µ∗, ν∗, η̄) such that (z∗, λ∗, µ∗, ν∗, η̄) satisfies the following

stationary conditions

∇xf(x∗, y∗) + C�λ∗ + A�µ∗ +N�ν∗ =0, (2.35)

∇yf(x∗, y∗) +D�λ∗ +B�µ∗ +M�ν∗ +W ∗η̄=0, (2.36)

−ν∗ + Y ∗η̄ =0, (2.37)

λ∗ ≥ 0, (λ∗)�(Cx∗ +Dy∗ − c) = 0. (2.38)
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Proof. By Lemma 2.4, for any z∗, there exists a u∗ = (λ∗, µ∗, ν∗, ξ∗, ζ∗, η∗) which is a limit

point of {uk} such that

∇xf(x∗, y∗) + C�λ∗ + A�µ∗ +N�ν∗ =0, (2.39)

∇yf(x∗, y∗) +D�λ∗ +B�µ∗ +M�ν∗ − ξ∗ +W ∗η∗ =0, (2.40)

−ν∗ − ζ∗ + Y ∗η∗ =0, (2.41)

λ∗ ≥ 0, (λ∗)�(Cx∗ +Dy∗ − c) = 0. (2.42)

Under the nondegeneracy condition, we can select ξ̄, ζ̄ such that ξ∗ = (W ∗)2ξ̄, ζ∗ =

(Y ∗)2ζ̄ as follows. If ξ∗i = 0, let ξ̄∗i = 0, otheriwse if ξ∗i 
= 0, we have y∗i = 0 by (2.19),

which implies that w∗
i 
= 0 by the nondegeneracy, thus ξ̄i = (w∗

i )
−2ξ∗i , it is similar for the

selection of ζ̄. Let η̄ = η∗ −W ∗ξ̄ − Y ∗ζ̄ , then, by (2.39)-(2.42), we have (2.35)-(2.38).

Under assumptions of MPEC-LICQ and nondegeneracy, Fukushima, Luo and Pang

[8] proposed an algorithm converging to the point satisfying equations (2.35)-(2.38).

3. The algorithm

The SQP methods for MPECs presented in the literature such as [8, 12, 13, 21] replace

the complementarity constraints with some smoothing equations, and then the MPECs

are approximated by a new nonlinear programming with some constraint functions being

asymptotically nonsmooth. Our algorithm is based on the above inequality relaxation

(2.9)-(2.15). Some techniques originated from SQP for nonlinear programming, e.g., [3,

4, 17, 18, 25], are introduced to circumvent the possible inconsistency of subproblems.

Assumption 3.1

G ≡ {(x, y, w) ∈ �n × �m
+ ×�m

+ : Cx+Dy ≤ c,

Ax+By = b,

Nx+My − w= q} 
= ∅.

If G = ∅, then the MPCC has no solution. However, the nonempty of G does not neces-

sarily imply the existence of the solution of problem (1.1)-(1.5) since the complementarity

constraints may not hold.

Suppose that G 
= ∅. We do not require that the relaxation problem N (τ) is feasible.

For any z ≡ (x, y, w) ∈ G, applying the SQP approach to the problem N (τ), we derive

the QP subproblem:

min ψ(d) = ∇f(x, y)�
(
dx

dy

)
+

1

2
(d�x d�y d�w)H



dx

dy

dw


 (3.1)

s.t. Cdx +Ddy ≤ −(Cx+Dy − c), (3.2)
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Adx +Bdy = 0, (3.3)

Ndx +Mdy − dw = 0, (3.4)

y + dy ≥ 0, w + dw ≥ 0, (3.5)

Wdy + Y dw ≤ −(WY e− τe), (3.6)

where H is an approximate Lagrangian Hessian at z and is supposed to be positive

definite. It is noted that z is a feasible point of problem (2.9)-(2.15) if and only if

d ≡ (dx, dy, dw) = 0 is a feasible point of the QP subproblem (3.1)-(3.6).

Problem (3.1)-(3.6) may have no feasible solution if z is not a feasible point for problem

(2.9)-(2.15). In order to avoid this bad case, we introduce some decomposition technique

in [3, 4, 17, 18, 25]. We firstly solve the problem A(z, τ) as follows.

min ‖(Wdy + Y dw +WY e− τe)+‖1 (3.7)

s.t. Cdx +Ddy ≤ −(Cx+Dy − c), (3.8)

Adx +Bdy = 0, (3.9)

Ndx +Mdy − dw = 0, (3.10)

y + dy ≥ 0, w + dw ≥ 0, (3.11)

where ‖ · ‖1 is the so-called �1 norm. By introducing additional variables v ∈ �m
+ , this

problem can be equivalently transformed to the following linear program B(z, τ):

min e�v (3.12)

s.t. Cdx +Ddy ≤ −(Cx+Dy − c), (3.13)

Adx +Bdy = 0, (3.14)

Ndx +Mdy − dw = 0, (3.15)

y + dy ≥ 0, w + dw ≥ 0, (3.16)

Wdy + Y dw + (WY e− τe) − v ≤ 0, v ≥ 0. (3.17)

The problem (3.12)-(3.17) is always feasible since z ∈ G, and d = 0 together with v =

(WY e− τe)+ is its feasible solution. The problem is bounded because of its equivalence

to problem (3.7)-(3.11).

Let (d̃, ṽ) be the solution. Then ‖ṽ‖1 ≤ ‖(WY e − τe)+‖1. The search direction is

generated by solving the modified QP problem

min ψ(d) (3.18)

s.t. Cdx +Ddy ≤ −(Cx+Dy − c), (3.19)

Adx +Bdy = 0, (3.20)

Ndx +Mdy − dw = 0, (3.21)

y + dy ≥ 0, w + dw ≥ 0, (3.22)

Wdy + Y dw ≤ max{Wd̃y + Y d̃w,−(WY e− τe)}, (3.23)

where d = (dx, dy, dw) and ψ(d) is defined by (3.1).
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If ṽ = 0 then problem (3.18)-(3.23) is precisely the same as problem (3.1)-(3.6). How-

ever, in general situation, there is an essential difference between them since problem

(3.18)-(3.23) is always feasible.

Since problem (3.18)-(3.23) is a strictly convex quadratic program, it has the unique

solution if and only if it has feasible solutions. The following result suggests a stopping

criterion of the algotihm:

Proposition 3.2 Assume that d is the unique solution of problem (3.18)-(3.23). If either

d = 0 or ∇xf
�dx + ∇yf

�dy ≥ 0, and ‖(WY e − τe)+‖1 = 0, then z is a KKT point of

problem N (τ).

Proof. d ∈ �n+2m is the solution of problem (3.18)-(3.23) if and only if d is feasible to the

constraints (3.19)-(3.23) and there exist λ ∈ ��
+, µ ∈ �p, ν ∈ �m, ξ ∈ �m

+ , ζ ∈ �m
+ and

η ∈ �m
+ such that




∇xf

∇yf

0


+H



dx

dy

dw


+



C�

D�

0


λ+



A�

B�

0


µ+



N�

M�

−I


 ν

−




0

I

0


 ξ −




0

0

I


 ζ +




0

W

Y


 η = 0 (3.24)

and

λ�(C(x+ dx) +D(y + dy) − c) = 0, ξ�(y + dy) = 0, ζ�(w + dw) = 0, (3.25)

η�(Wdy + Y dw − max{Wd̃y + Y d̃w, −(WY e− τe)}) = 0. (3.26)

We prove that

max{Wd̃y + Y d̃w, −(WY e− τe)} = −(WY e− τe) (3.27)

if ‖(WY e− τe)+‖1 = 0. Suppose that wi(d̃y)i + yi(d̃w)i > −(wiyi − τ) for some i. Then

wi(d̃y)i + yi(d̃w)i + wiyi − τ > 0. (3.28)

Since ‖(WY e− τe)+‖1 = 0, it follows that ṽ = 0 and

Wd̃y + Y d̃w +WY e− τe ≤ ṽ, (3.29)

which contradicts (3.28). Thus, (3.27) holds. If d = 0, then the result follows immediately

from (3.24)-(3.27).

By the fact that ‖(WY e− τe)+‖1 = 0 and (3.23), d = 0 is feasible to problem (3.18)-

(3.23), which implies that

∇xf
�dx + ∇yf

�dy +
1

2
d�Hd ≤ 0. (3.30)

9



Since ∇xf
�dx + ∇yf

�dy ≥ 0, we have that d�Hd ≤ 0 and hence d = 0. The proof is

completed.

We define the merit function

φ(z, τ ; ρ) = f(x, y) + ρ‖(y ◦ w − τe)+‖1, (3.31)

where z = (x, y, w) ∈ �n+2m, τ > 0 is the relaxation parameter, ρ > 0 is the penalty

parameter, and ‖ · ‖1 is the �1 norm. This function is the �1 penalty function, which plays

a key role in globalizing the algorithm and helps to decide the stepsize in the derived

search direction.

We are now ready to state the algorithm.

Algorithm 3.3 (The algorithm for problem (1.1)-(1.5))

Step 1. Give τ0 > 0, ρ0 > 0, σ ∈ (0, 1
2
), δ ∈ (0, 1), and H0 ∈ �(n+2m)×(n+2m), presd = 1

(termination parameter). Give z0 ≡ (x0, y0, w0) ∈ G, ε > 0. Let k := 0;

Step 2. Solve the LP subproblem B(zk, τk). Let (d̃k
x, d̃

k
y, d̃

k
w, ṽ

k) be the solution. Then

solve the modified QP subproblem (3.18)-(3.23) to obtain the search direction

dk ≡ (dk
x, d

k
y, d

k
w), and the multiplier vector uk ≡ (λk, µk, νk, ξk, ζk, ηk);

Step 3. If either ‖dk‖ ≤ ε or ∇f�
k d

k ≥ −0.1ε, and ‖(WkYke − τke)+‖1 ≤ ε, then set

zk+1 = zk, ρk+1 = ρk, presd = 0 and go to Step 5; Else if

ψk(d
k) − ρk(‖(WkYke− τke)+‖1 − ‖ṽk‖1) ≤ 0, (3.32)

then ρk+1 = ρk, else set

ρk+1 = max{2ρk,
ψk(d

k)

‖(WkYke− τke)+‖1 − ‖ṽk‖1
}; (3.33)

Step 4. Compute ∆k(d
k) = ∇f�

k d
k + ρk+1(‖ṽk‖1 − ‖(WkYke − τke)+‖1). Select the

stepsize αk ∈ (0, 1] by backtracking such that

φ(zk+1, ρk+1; τk) ≤ φ(zk, ρk+1; τk) + σαk∆k(d
k), (3.34)

where zk+1 = zk + αkd
k;

Step 5. If τk ≤ ε and either presd = 0 or ‖(WkYke − τke)+‖1 − ‖ṽk‖1 ≤ 10−6ε, or

‖y ◦w‖∞ ≤ ε and presd = 0, we terminate the algorithm; Otherwise if τk > ε,

then τk+1 = δτk, else τk+1 = τk. Update Hk to Hk+1 by some given procedure.

Let k := k + 1 and go to Step 2.

We make some remarks on the algorithm.
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• The relaxation parameter τk is updated in each iteration, which is the same as that

of Fukushima, Luo and Pang [8] and is different from the global convergent SQP

methods for general MPECs such as those in [6, 13].

• The penalty parameter ρk is updated to ρk+1 so that ∆k(d
k) ≤ −1

2
dk�Hkd

k (see

Proposition 3.4), in which case, the stepsize is selected so that the penalty function

is decreased “sufficiently” along dk for fixed parameters ρk+1 and τk.

• It is noted that we do not incorporate the information on uk in the update procedure

of the penalty parameter, a general technique used in SQP methods for MPECs

[6, 8, 13]. In this case, it is unnecessary that ρ∗ ≥ ‖uk‖∞ for all k.

• There are two stopping criteria in the algorithm. The first case is based on the result

of Proposition 3.2 and that the relaxation parameter τk or the maximum of residues

of complementarity constraints is small enough, whereas the other case is when τk
is small enough and the equation ‖(WkYke− τke)+‖1 = ‖ṽk‖1 holds approximately.

The next result is related to the penalty update of the algorithm.

Proposition 3.4 If ρk+1 ≥ ‖uk‖∞, then

ψk(d
k) − ρk+1(‖(WkYke− τke)+‖1 − ‖ṽk‖1) ≤ 0. (3.35)

Consequently, ∆k(d
k) ≤ −1

2
dk�Hkd

k.

Proof. Since dk solves problem (3.18)-(3.23), then dk satisfies equations (3.24)-(3.26).

With some further reductions,

∇f�
k d

k + dk�Hkd
k = λk�(Cxk +Dyk − c) − ξk�yk − ζk�wk

−ηk� max{Wkd̃
k
y + Ykd̃

k
w, −(WkYke− τke)} (3.36)

≤−ηk� max{Wkd̃
k
y + Ykd̃

k
w, −(WkYke− τke)}.

Let I be the index set such that max{wk
i (d̃

k
y)i + yk

i (d̃
k
w)i, −(wk

i y
k
i − τk)} ≤ 0 for i ∈ I.

By problem (3.12)-(3.17), we have ṽk = (Wkd̃
k
y + Ykd̃

k
w +WkYke− τke)+. Thus, for i ∈ I,

if wk
i (d̃

k
y)i + yk

i (d̃
k
w)i + wk

i y
k
i − τk ≤ 0, then wk

i y
k
i − τk ≥ 0, ṽk

i = 0 and

max{wk
i (d̃

k
y)i + yk

i (d̃
k
w)i, −(wk

i y
k
i − τk)} = ṽk

i − (wk
i y

k
i − τk)+; (3.37)

otherwise, wk
i y

k
i − τk ≥ 0, ṽk

i = wk
i (d̃

k
y)i + yk

i (d̃
k
w)i + wk

i y
k
i − τk, which implies that (3.37)

also holds. Since ‖ṽk‖1 ≤ ‖(WkYke− τke)+‖1, by (3.36) we have

ψk(d
k) ≤ ‖ηk‖∞(‖(WkYke− τke)+‖1 − ‖ṽk‖1). (3.38)

Thus, the result follows from that ‖ηk‖∞ ≤ ‖uk‖∞.
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4. Stationary properties

Since we do not assume the MPEC-LICQ for the MPCC and the nondegeneracy of

complementarity constraints, the algorithm may terminate at some points other than the

Bouligand stationary point of problem (1.1)-(1.5). We present definitions on some points

with generalized stationary properties in this section.

Definition 4.1

(1) A point z∗ ≡ (x∗, y∗, w∗) is called a strong stationary point of problem (1.1)-(1.5)

if the point is feasible to the problem and there exist λ∗ ∈ ��
+, µ∗ ∈ �p, ν∗ ∈ �m, and

π∗ ∈ �m such that equations (2.27)-(2.31) hold.

(2) A point z∗ is called a weak stationary point of problem (1.1)-(1.5) if it is a feasible

point to the problem, and there exist λ∗ ∈ ��
+, µ∗ ∈ �p, ν∗ ∈ �m, and π∗ ∈ �m such that

equations (2.27)-(2.29) hold.

(3) A point z∗ is called a singular stationary point of problem (1.1)-(1.5) if it is a

feasible point to the problem, and the MPEC-LICQ does not hold at z∗.

(4) A point z∗ is called an infeasible stationary point of problem (1.1)-(1.5) if it is

infeasible to the problem and is a KKT point of problem

min y�w (4.1)

s.t. Cx+Dy ≤ c, (4.2)

Ax+By = b, (4.3)

Nx+My − w = q, (4.4)

y ≥ 0, w ≥ 0. (4.5)

The strong and some weak stationarities on MPEC have been defined in Scholtes [22].

Under the MPEC-LICQ, a strong stationary point of problem (1.1)-(1.5) is a Bouligand

stationary point of the problem. A weak stationary point may not satisfy (2.30) and

(2.31), which must hold for a strong stationary point.

The concepts on singular and infeasible stationary points are originated from nonlinear

programming, e.g., see [3, 4, 17, 18, 25]. For completeness, we restate their definitions.

Definition 4.2 Consider the standard nonlinear program

min f(x) s.t. g(x) ≤ 0, h(x) = 0, (4.6)

where f : �n → �, g : �n → �m1 and h : �n → �m2 are twice continuously differentiable

functions.

(1) x∗ is a singular stationary point of problem (4.6) if x∗ is feasible to the problem and

the LICQ does not hold at x∗.
(2) x∗ is an infeasible stationary point of problem (4.6) if x∗ is infeasible to the problem and

is a stationary point of problem minx∈�n ‖(g(x)+, h(x))‖, where g(x)+ = max{g(x), 0}
and ‖ · ‖ is the �2 norm.
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The following results show the relations of singular and infeasible stationary points

between the MPCC and its NLP relaxation problems.

Proposition 4.3

(i) Suppose that z∗ is feasible to the problem (1.1)-(1.5). Then for any τ > 0, z∗ is a

singular stationary point of problem (1.1)-(1.5) if and only if z∗ is a singular stationary

point of the relaxation problem N (τ).

(ii) If for every k zk ∈ G is a singular stationary point of the relaxation problem N (τk),

z∗ is a limit point of {zk} as τk → 0, then z∗ is a singular stationary point of problem

(1.1)-(1.5).

(iii) Suppose that for every k zk ∈ G is an infeasible stationary point of the relaxation

problem N (τk), z
∗ is a limit point of {zk} as τk → 0. If z∗ is an infeasible point of problem

(1.1)-(1.5), then z∗ is an infeasible stationary point of the problem.

Proof. (i) Since z∗ is feasible to the problem (1.1)-(1.5), constraints (2.15) are inactive.

Then the result follows immediately from Definition 2.3 and Definition 4.1 (3).

(ii) For zk sufficiently close to z∗, the linear dependence of gradients of active con-

straints of N (τk) implies that the MPEC-LICQ does not hold at z∗. Then the result

follows from Definition 2.3 and Definition 4.1 (3).

(iii) Since zk ∈ G, if zk is an infeasible stationary point of N (τk), then it is an infeasible

point of N (τk) and is a KKT point of minimizing ‖(y ◦w− τke)+‖ subject to constraints

(4.2)-(4.5), that is, for some i ∈ {1, . . . , m}, yk
i w

k
i > τk, and there exist bounded multipli-

ers λk ∈ ��
+, µk ∈ �p, νk ∈ �m, ξk ∈ �m

+ , and ζk ∈ �m
+ such that

C�λk + A�µk +N�νk =0, (4.7)

Wkη
k +D�λk +B�µk +M�νk − ξk =0, (4.8)

Ykη
k − νk − ζk =0, (4.9)

where ηk = ∂‖v‖|v=(yk◦wk−τke)+ , (λk)�(Cxk+Dyk−c) = 0, (ξk)�yk = 0, and (ζk)�wk = 0.

Thus, if z∗ is infeasible to the problem (1.1)-(1.5), then the result follows by taking limit

on both sides of (4.7)-(4.9) as k ∈ K and k → ∞, where is some infinite subset.

In what follows, we will discuss some properties of the singular and infeasible stationary

points of the original problem.

Proposition 4.4 If the point z∗ is a singular stationary point of problem (1.1)-(1.5),

then

(i) z∗ is a Fritz-John point of the relaxed problem R(z∗), where R(z) is defined by problem

(2.1)-(2.8);

(ii) d∗ = 0 is a solution of problem A(z∗, 0), where A(z, τ) is defined by problem (3.7)-

(3.11).

Proof. (i) By the theory of nonlinear programming (e.g., see [2]), a point (x, y, w) is

a Fritz-John point of the relaxed problem R(z∗), if it is a feasible point of the relaxed
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problem, and there exist multipliers λ ∈ ��
+, µ ∈ �p, ν ∈ �m, ξ ∈ �m and ζ ∈ �m such

that

C�λ+ A�µ+N�ν = 0, (4.10)

D�λ+B�µ+M�ν − ξ = 0, (4.11)

−ν − ζ = 0, (4.12)

λ�(Cx+Dy − c) = 0; ξiyi = 0, i ∈ {i : w∗
i = 0}; ζiwi = 0, i ∈ {i : y∗i = 0}. (4.13)

Since z∗ is a feasible point of problem (1.1)-(1.5), it is a local minimum point of problem

(4.1)-(4.5). Thus, it is also a KKT of problem (4.1)-(4.5) because all constraints of this

problem are linear constraints. Hence, there exist λ∗ ∈ ��
+, µ∗ ∈ �p, ν∗ ∈ �m, ξ∗ ∈ �m

+

and ζ∗ ∈ �m
+ such that

C�λ∗ + A�µ∗ +N�ν∗ =0, (4.14)

D�λ∗ +B�µ∗ +M�ν∗ − ξ∗ =−w∗, (4.15)

−ν∗ − ζ∗ =−y∗, (4.16)

λ∗�(Cx∗ +Dy∗ − c) = 0, ξ∗�y∗ = 0, ζ∗�w∗ =0, (4.17)

and y∗�w∗ = 0. Moreover, that the MPEC-LICQ does not hold implies that at least one

of the multipliers is non-zero vector. Then the result follows immediately from the above

two system of equations.

(ii) z∗ is feasible to the problem (4.1)-(4.5). Thus, d∗ = 0 is a feasible solution of

problem A(z∗, 0). Since y∗ ◦w∗ = 0, it is obvious that d∗ = 0 is also the optimal solution

of problem A(z∗, 0).

Proposition 4.5 If the point z∗ is an infeasible stationary point of problem (1.1)-(1.5),

then d∗ = 0 is an optimal solution of problem A(z∗, 0).

Proof. Since A(z, τ) is a convex programming problem, a feasible point d of problem

A(z, τ) is its optimal solution if and only if there exist multipliers λ ∈ ��
+, µ ∈ �p,

ν ∈ �m, ξ ∈ �m
+ , and ζ ∈ �m

+ such that

C�λ+ A�µ+N�ν =0, (4.18)

Wη +D�λ+B�µ+M�ν − ξ =0, (4.19)

Y η − ν − ζ =0, (4.20)

where

η = ∂‖v‖1|v=(Wdy+Y dw+WY e−τe)+,

λ�(C(x+ dx) +D(y + dy) − c) = 0,

ξ�(y + dy) = 0, and ζ�(w + dw) = 0.
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Since W ∗Y ∗e ≥ 0, ∂‖v‖1|v=(W ∗Y ∗e)+ = e. Because z∗ is a feasible point of problem

(4.1)-(4.5), by comparing (4.18)-(4.20) with (4.14)-(4.17), if z∗ is a KKT point of problem

(4.1)-(4.5), then d∗ = 0 is an optimal solution of problem A(z∗, 0).

The following result is useful in the next section.

Proposition 4.6 Let z∗ ∈ G and let (d∗, v∗) be a solution of the linear programming

problem B(z∗, 0), where B(z, τ) is defined by problem (3.12)-(3.17). If ‖v∗‖1 = (y∗)�w∗,
then z∗ is a KKT point of problem (4.1)-(4.5).

Proof. It is easy to note that d̄ ≡ (d̄x, d̄y, d̄w) = 0 and v̄ = y∗ ◦ w∗ satisfy the constraints

of problem B(z∗, 0). Thus, (d̄, v̄) is an optimal solution of B(z∗, 0) since ‖v̄‖1 = (y∗)�w∗.
Hence, the KKT conditions for problem B(z∗, 0) hold at (d̄, v̄), that is, there exist multi-

pliers λ̄ ∈ �p
+, µ̄ ∈ �m, ν̄ ∈ �m, ξ̄ ∈ �m

+ , ζ̄ ∈ �m
+ , η̄ ∈ �m

+ , and β̄ ∈ �m
+ such that

C�λ̄+ A�µ̄+N�ν̄ =0, (4.21)

D�λ̄+B�µ̄+M�ν̄ − ξ̄ +W ∗η̄ =0, (4.22)

−ν̄ − ζ̄ + Y ∗η̄ =0, (4.23)

e− η̄ − β̄=0, (4.24)

(λ̄)�(Cx∗ +Dy∗ − c) = 0, (ξ̄)�y∗ = 0, (ζ̄)�w∗ = 0, (β̄)�v̄=0. (4.25)

By substituting η̄ = e− β̄ into equations (4.22) and (4.23), and selecting λ∗ = λ̄, µ∗ = µ̄,

ν∗ = ν̄, ξ∗ = ξ̄ + W ∗β̄ and ζ∗ = ζ̄ + Y ∗β̄, we have equations (4.14)-(4.17). Thus, the

result is obtained.

5. Global convergence

Suppose that ε = 0 in Algorithm 3.3 and {zk} is an infinite sequence generated by the

algorithm. Then zk ∈ G for all k ≥ 0. Moreover, τk → 0 as k → ∞.

We need the following general assumption throughout this section.

Assumption 5.1

(1) G 
= ∅;
(2) Sequence {(xk, yk)} and sequence {d̃k} are bounded;

(3) There exist constants γ1 ≥ γ2 > 0 such that, for all nonnegative integer k and

d ∈ �n+m+�, γ2‖d‖2 ≤ d�Hkd ≤ γ1‖d‖2.

Assumption 5.1 (1) can be checked easily by phase-I algorithm of linear programming,

(2) implies that {wk} is bounded since the point zk satisfies the equation (2.12). Under

the assumption, ṽk is bounded.

In order to guarantee the boundedness of the solutions {d̃k} of problem B(zk, τk), we

may either add some simple box constraints on d to the problem, or transform the linear
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program to the quadratic program by adding some coercive quadratic terms on d. These

changes will not alter the convergence results developed for the algorithm. Thus, we make

the boundedness of {d̃k} an assumption for flexibility in the algorithmic design.

Problem B(zk, τk) is a simple linear program, it has the following property.

Lemma 5.2 Let (d̄k, v̄k) be a feasible solution of problem B(zk, τk), where B(z, τ) is de-

fined by problem (3.12)-(3.17). Then for any t ∈ [0, 1], (td̄k, tv̄k + (1− t)(WkYke− τke)+)

is also feasible to the problem.

Proof. Since zk ∈ G, we have that Cxk+Dyk−c ≤ 0. Thus, the result follows immediately

from that WkYke− τke ≤ (WkYke− τke)+.

Lemma 5.3 The sequence {dk} is bounded.

Proof. Since d̃k is feasible to the subproblem (3.18)-(3.23) at zk for all k, we have that

ψ(dk) ≤ ψ(d̃k). Thus,

ψ(dk)/‖dk‖2 ≤ ψ(d̃k)/‖dk‖2, (5.1)

If ‖dk‖ → ∞ as k ∈ K and k → ∞, by taking limit on both sides of (5.1), we have γ2 ≤ 0

(where γ2 is a constant in Assumption 5.1), which is a contradiction.

In what follows, we prove that the stepsizes are bounded away from zero, thus the line

search procedure is well-defined.

Lemma 5.4 If ρk+1 ≤ ρ (ρ > 0 is a constant), there exists a constant α0 ∈ (0, 1] such

that for all k,

φ(zk + αdk, ρk+1; τk) ≤ φ(zk, ρk+1; τk) + σα∆k(d
k) (5.2)

holds for all α ∈ [0, α0].

Proof. Note that

f(xk + αdk
x, y

k + αdk
y) − f(xk, yk) − α∇f�

k (dk
x, d

k
y) ≤

1

2
θα2‖dk‖2 (5.3)

for some positive constant θ.

By (3.17) and (3.23), we have

(Wkd
k
y + Ykd

k
w +WkYke− τke)+ ≤ (Wkd̃

k
y + Ykd̃

k
w +WkYke− τke)+ ≤ ṽk. (5.4)

Since

‖((yk + αdk
y) ◦ (wk + αdk

w) − τke)+‖1 − (1 − α)‖(yk ◦ wk − τke)+‖1

≤ α‖(yk ◦ wk − τke+ Ykd
k
w +Wkd

k
y)+‖1 + α2‖dk

y ◦ dk
w‖, (5.5)
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combining with (5.4) and that ‖dk
y ◦ dk

w‖ ≤ 1
2
‖dk‖2, we have that

φ(zk + αdk, ρk+1; τk) − φ(zk, ρk+1; τk) − α∆k(d
k) ≤ 1

2
(ρk+1 + θ)α2‖dk‖2. (5.6)

By Proposition 3.4 and Assumption 5.1 (3),

∆k(d
k) ≤ −1

2
γ2‖dk‖2. (5.7)

Selecting α0 = min{1, (1 − σ)γ2/(ρ+ θ)}, then for all α ≤ α0, since ρk+1 ≤ ρ,

φ(zk + αdk, ρk+1; τk) − φ(zk, ρk+1; τk) − σα∆k(d
k)

≤ 1

2
(ρk+1 + θ)α2‖dk‖2 − 1

2
(1 − σ)αγ2‖dk‖2 ≤ 0, (5.8)

which is the desired result.

Based on the above lemmas, we have the following result.

Theorem 5.5 Suppose that the penalty parameter sequence {ρk} is bounded. Let {zk} be

an infinite sequence generated by Algorithm 3.3, z∗ is any limit point of this sequence.

(i) If (y∗)�w∗ = 0, then z∗ is a strong stationary point of problem (1.1)-(1.5). Moreover,

if MPEC-LICQ holds at z∗, then z∗ is a Bouligand stationary point of problem (1.1)-(1.5);

(ii) If (y∗)�w∗ 
= 0, then z∗ is an infeasible stationary point of problem (1.1)-(1.5).

Proof. (i) By the boundedness of {ρk}, without loss of generality, we may suppose that

ρk = ρ0 for all k ≥ 0. It follows from (3.34) that φ(zk+1, ρ0; τk) ≤ φ(zk, ρ0; τk). It is easy

to derive that

φ(zk, ρ0; τk) − φ(zk, ρ0; τk−1) ≤ ρ0m(1 − δ)τk−1 (5.9)

by the fact that

‖(wk ◦ yk − τke)+‖1 ≤ ‖(wk ◦ yk − τk−1e)+‖1 +m(1 − δ)τk−1. (5.10)

Since ∞∑
k=0

τk =
τ0

1 − δ
, (5.11)

we have

lim sup
k→∞

φ(zk, ρ0; τk) < +∞, (5.12)

together with (5.9), we can deduce that {φ(zk, ρ0; τk)} is convergent. Similarly, the se-

quence {φ(zk, ρ0; τk−1)} is also convergent.

Again by (3.34) and Lemma 5.4, we have

−1

2
dk�Hkd

k ≥ ∆k(d
k) → 0, (5.13)

which implies that limk→∞ dk = 0. Since dk is the unique solution of problem (3.18)-

(3.23), d = 0 is the solution of problem (3.18)-(3.23) at z∗. Thus, by Proposition 3.2, z∗
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is a KKT point of problem N (0). Then, by Definition 4.1, z∗ is a strong stationary point

of problem (1.1)-(1.5).

If MPEC-LICQ holds at z∗, then the result follows from Definition 4.1 and Theorem

2.1.

(ii) Without loss of generality, we suppose that {zk : k ∈ K} → z∗. In order to prove

this result, we need only to prove that ‖v∗‖1 = (y∗)�w∗, where v∗ is a limit point of

{ṽk : k ∈ K}. Then the result follows from Proposition 4.6 and Definition 4.1 (4). We

assume the contrary. Then there is some i0 ∈ {1, . . . , m} such that y∗i0w
∗
i0 > v∗i0 ≥ 0 since

v∗i ≤ y∗iw
∗
i for any i ∈ {1, . . . , m}. By (i), limk→∞ dk = 0, then by taking limit at both

sides of (3.23) as k → ∞, we have max{W ∗d̃∗y + Y ∗d̃∗w,−y∗ ◦w∗} ≥ 0, which implies that

w∗
i0
(d̃∗y)i0 + y∗i0(d̃

∗
w)i0 ≥ 0. (5.14)

Taking limit on both sides of (3.17) as k → ∞, we have

w∗
i0
(d̃∗y)i0 + y∗i0(d̃

∗
w)i0 ≤ v∗i − w∗

i0
y∗i0 < 0, (5.15)

which contradicts (5.14). The contradiction shows that ‖v∗‖1 = (y∗)�w∗.

The following rsult is implied by the above theorem.

Corollary 5.6 Suppose that {zk} is an infinite sequence generated by the algorithm, {ρk}
is the automatically generated penalty parameter sequence. If there is a limit point of {zk}
which is a singular stationary point or a weak stationary point of problem (1.1)-(1.5), then

ρk → ∞.

In the rest of this section, we consider the case where ρk is unbounded. Since the

sequence {ρk} is monotonically nondecreasing, ρk → ∞.

Lemma 5.7 If ρk → ∞, then

(i) limk→∞ ‖(yk ◦ wk − τke)+‖1 exists;

(ii) limk→∞ ‖(yk+1 ◦ wk+1 − τke)+‖1 exists;

(iii) limk→∞(‖ṽk‖1 − ‖(yk ◦ wk − τke)+‖1) = 0.

Proof. (i) By (3.34), φ(zk+1, ρk+1; τk) ≤ φ(zk, ρk+1; τk). Thus,

‖(yk+1 ◦ wk+1 − τke)+‖1 − ‖(yk ◦ wk − τke)+‖1 ≤ 1

ρk+1
(fk − fk+1), (5.16)

where fk = f(xk, yk) and fk+1 = f(xk+1, yk+1). Since

‖(yk+1 ◦ wk+1 − τke)+‖1 ≥ ‖(yk+1 ◦ wk+1 − τk+1e)+‖1 −m(1 − δ)τk, (5.17)

we obtain

‖(yk+1 ◦wk+1 − τk+1e)+‖1 − ‖(yk ◦wk − τke)+‖1 ≤ 1

ρk+1
(fk − fk+1) +m(1− δ)τk. (5.18)
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By Algorithm 3.3, we have either ρk+1 = ρk or ρk+1 ≥ 2ρk, ∀k. Without loss of

generality, assume that there is a sequence of numbers {kj} with k0 = 0 such that ρkj
<

ρkj+1
and ρi+1 = ρi if kj ≤ i < kj+1 − 1, ∀j. Moreover, by the assumption, there exists a

constant M > 0 such that |fk| < M for all k. Thus,

∞∑
k=0

1

ρk+1
(fk − fk+1) =

∞∑
j=0

1

ρkj

(fkj
− fkj+1

) ≤ 4M/ρ0. (5.19)

Together with (5.11), we have

lim sup
k→∞

‖(yk+1 ◦ wk+1 − τk+1e)+‖1 < +∞, (5.20)

by (5.18), we can obtain the desired result.

(ii) The result follows from (5.16) and (5.17), since limk→∞ 1
ρk+1

(fk − fk+1) = 0 and

limk→∞ τk = 0.

(iii) By Lemma 5.3, if {d̃k} is bounded, then {dk} is bounded. Thus by Assumption

5.1, {ψk(d
k)} is bounded. Dividing ρk+1 on both sides of (3.35), then

1

ρk+1

ψk(d
k) ≤ ‖ṽk‖1 − ‖(WkYke− τke)+‖1. (5.21)

On the other hand, ‖ṽk‖1 ≤ ‖(WkYke − τke)+‖1. Thus, the result follows from that

ρk+1 → ∞.

Since (yk)�wk −mτk ≤ ‖(yk ◦ wk − τke)+‖1 ≤ (yk)�wk +mτk, then

‖(yk ◦ wk − τke)+‖1 −mτk ≤ (yk)�wk ≤ ‖(yk ◦ wk − τke)+‖1 +mτk. (5.22)

Thus, by Lemma 5.7 (i), limk→∞(yk)�wk exists. Since zk ∈ G for all k, if limk→∞(yk)�wk =

0, then any limit point of {zk} is a feasible point of problem (1.1)-(1.5); otherwise, any

limit point of {zk} is an infeasible point of problem (1.1)-(1.5).

Theorem 5.8 Suppose that ρk → ∞ as k → ∞. Assume that {zk} is an infinite sequence

generated by Algorithm 3.3, and {uk} is the corresponding dual multiplier sequence.

(i) The sequence {uk} is unbounded;

(ii) The sequence {((yk)�wk)} is convergent. Moreover, if limk→∞(yk)�wk 
= 0, then all

limit points of the sequence {zk} are infeasible stationary points of problem (1.1)-(1.5).

Proof. (i) By Proposition 3.4, that ρk → ∞ implies that there exists an infinite sub-

sequence {uk, k ∈ K} such that uk → ∞ as k → ∞ and k ∈ K. Thus, we have the

result.

(ii) The existence of limk→∞(yk)�wk is derived by the former discussions. It follows

from Lemma 5.7 that limk→∞ ‖ṽk‖1 exists. Let v∗ be any limit point of {ṽk}. Then

‖v∗‖1 = (y∗)�w∗, where z∗ = (x∗, y∗, w∗) is any limit point of the sequence {zk}. Thus,

by Proposition 4.6, z∗ is a KKT point of problem (4.1)-(4.5). Since limk→∞(yk)�wk 
= 0,
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z∗ is infeasible to the problem (1.1)-(1.5). Thus, z∗ is an infeasible stationary point of

problem (1.1)-(1.5).

6. Numerical results

We coded the algorithm in MATLAB and run the code under version 6.5 on a COM-

PAQ personal computer with pentium III processor 450 MHz and WINDOWS 98 system.

The initial paramters are selected as σ = 0.01, δ = 0.1. The initial relaxation parame-

ter is chosen as τ0 = max{(y0)�w0/m, 1} ≥ 1 so that we can observe how the algorithm

with large relaxation parameter performs. The initial penalty parameter ρ0 = 1. The

tolerance for termination is ε = 5 × 10−7. The initial approximate Hessian H0 is the

(n + 2m)-order identity matrix. We generate the initial iteration point by the quadratic

programming:

min
1

2
y�y +

1

2
w�w (6.1)

s.t. Cx+Dy ≤ c, (6.2)

Ax+By = b, (6.3)

Nx+My − w = q, (6.4)

y ≥ 0, w ≥ 0, (6.5)

which is solved by the M-function quadprog.m in MATLAB toolbox. Generally the derived

point is not a feasible point of the original problem (1.1)-(1.5).

Note that the solution of problem (3.12)-(3.17) may not be feasible to problem (3.18)-

(3.23) due to termination errors in solving problem (3.12)-(3.17) in a practical imple-

mentation of the algorithm. Hence in our implementation, instead of using problem

(3.18)-(3.23) directly, at iterate k, we solve the subproblem

min ψk(d) (6.6)

s.t. Cdx +Ddy ≤ max{Cd̃k
x +Dd̃k

y, −(Cxk +Dyk − c)}, (6.7)

Adx +Bdy = Ad̃k
x +Bd̃k

y, (6.8)

Ndx +Mdy − dw = Nd̃k
x +Md̃k

y − d̃k
w, (6.9)

dy ≥ min{−yk, d̃k
y}, dw ≥ min{−wk, d̃k

w}, (6.10)

Wkdy + Ykdw ≤ max{Wkd̃
k
y + Ykd̃

k
w, −(WkYke− τke)}. (6.11)

The subproblems (3.12)-(3.17) and (6.6)-(6.11) are solved by the M-functions linprog.m

and quadprog.m in MATLAB toolbox, respectively. We use the zero vector as the initial

iterate in linprog.m and its solution is taken as the initial approximation of quadprog.m

for each iteration. The approximate Hessian is updated by

Hk+1 = Hk − Hk∆zk∆z
�
k Hk

∆z�k Hk∆zk
+

∆̄sk∆̄sk
�

∆̄sk
�
∆zk

, (6.12)
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where ∆zk = zk+1 − zk, ∆sk = ∇fk+1 −∇fk and

∆̄sk =

{
∆sk, ∆z�k ∆sk ≥ 0.2∆z�k Hk∆zk,

θk∆sk + (1 − θk)Hk∆zk, otherwise
(6.13)

with θk = 0.8∆z�k Hk∆zk/(∆z
�
k Hk∆zk − ∆s�k ∆zk).

Similar to [11], our test problems include mathematical programs with quadratic and

non-quadratic objective functions. The MPCCs with quadratic objective functions are

generated by a Generator QPECgen presented in [12]. The non-quadratic objective func-

tions are derived by adding a cubic function 1
3
{∑n

i=1 x
3
i +

∑m
i=1 y

3
i }, which is an approach

presented by Fukushima and Tseng [11]. It should be noted that the random number

generator of MATLAB version 6.0 or 6.5 can be different from that of MATLAB version

5.3 although we use the same seed 0. Hence the solution (xgen, ygen) and its objective

value fgen for the randomly generated test problems may be different from those reported

in [11, 12].

We report our results on the QPECgen problems in Table 1, where second deg is

the cardinality of the second-level degenerate index set, mono M=1 indicates that M is

monotone and mono M=0 not necessarily monotone (both of them are defined in [12]), iter

stands for the number of iterations, fgen, f0 and f ∗ are the values of objective functions at

(xgen, ygen), the initial point and the solution point, respectively. It is noted that f ∗s are

almost the same as fgen for 9 test problems, but they are different obviously for problems

TP9, TP10, TP12. In Table 2, we report some results on these problems, including the

penalty parameter at the solution ρ∗, the norms of differences and residues, respectively,

defined by

Norm1 = ‖(x0, y0) − (xgen, ygen)‖∞,
Norm2 = ‖(x∗, y∗) − (xgen, ygen)‖∞,
Norm3 = ‖((Cx+Dy − c)+, Ax+By − b, Nx +My − w − q, y+, w+)‖,
Norm4 = �2-norm of residues of KKT conditions of N (τ ∗),

Norm5 = ‖y ◦ w‖∞.

In order to further observe the performance of the algorithm in solving TP9, TP10

and TP12, we select x0 = xgen, y0 = ygen and w0 = Nx0 + My0 − q. Thus, f0 = fgen,

Norm1 = 0. The results are reported in Table 3. It is noted that for TP9 and TP10, the

algorithm terminates at the solution which is much close to the given point (xgen, ygen),

but for TP12, the algorithm finds an approximately feasible solution with less value of

objective function.

We report our results on the MPCCs with non-quadratic objective (NP1-12) in Table

4. The initial points are the same as for problems TP1-12. For NP1-12, the values of

‖u∗‖∞ are respectively 24.3691, 10.4147, 50.4726, 66.4546, 397.7876, 16.0829, 24.7346,

101.1405, 51.7503, 1.6443e+ 03, 467.9976, 131.9828.

Since Norm5 = 1.0000e− 07 for almost all problems except Norm5 = 1.0047e − 07

for TP1 and Norm5 = 1.0001e− 07 for NP12, we do not list them in all tables.
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Table 1. Numerical results on QPECgen problems

Problem (n,m, �) second deg mono M iter fgen f0 f∗

TP1 (8,50,4) 0 1 17 -176.644510 -165.505699 -176.644514
TP2 (8,100,4) 0 1 15 -663.293629 -660.049153 -663.293634
TP3 (8,150,4) 0 1 15 -581.974063 -579.649556 -581.974080
TP4 (8,200,4) 0 1 19 14.216617 14.412386 14.216597
TP5 (8,50,4) 4 1 19 -108.553062 -101.177468 -108.553066
TP6 (8,100,4) 4 1 15 -614.683018 -608.424829 -614.683024
TP7 (8,150,4) 4 1 12 -562.634084 -556.554199 -562.634095
TP8 (8,200,4) 4 1 17 126.844637 128.139324 126.844622
TP9∗ (8,50,4) 4 0 23 -227.360868 -115.879956 -210.542637
TP10∗ (8,100,4) 4 0 30 -262.606441 -156.170331 -253.296704
TP11 (8,150,4) 4 0 16 -454.065823 -432.013508 -454.065831
TP12∗ (8,200,4) 4 0 13 -8.433461 -5.864383 -7.622670

(For problems with superscript ∗, f∗ is not close to fgen obviously)

Table 2. Penalty parameter and residues on QPECgen problems

Problem ρ∗ Norm1 Norm2 Norm3 Norm4 ‖u∗‖∞
TP1 1 0.4867 1.0157e-05 3.6566e-11 8.8891e-04 6.9936
TP2 1 0.1850 6.7750e-06 3.2570e-11 5.5434e-04 11.6470
TP3 2 0.2431 1.3548e-06 7.2246e-11 4.8193e-05 51.0818
TP4 2.9933 0.1433 1.1278e-04 4.7458e-11 2.3847e-04 39.0432
TP5 1 0.3999 1.3954e-05 1.6278e-11 0.0044 8.5664
TP6 1 0.3069 3.7609e-05 4.2932e-11 0.0011 15.3464
TP7 1 0.4152 2.8656e-05 3.3947e-11 0.0012 24.9688
TP8 4 0.2087 1.3471e-04 5.8273e-11 2.2272e-04 15.8659
TP9∗ 139.6098 0.7565 0.4114 2.7743e-11 9.8778e-04 927.1287
TP10∗ 100.3116 0.6991 0.3292 6.3196e-11 7.9732e-04 1.1609e+03
TP11 1 0.3179 9.3904e-06 6.2766e-11 6.2302e-04 14.9197
TP12∗ 48.7850 0.3234 0.2235 3.7794e-10 1.2252e-06 261.0823

Table 3. Using (xgen, ygen) as the initial point for TP9, TP10 and TP12

Problem iter f∗ ρ∗ Norm2 Norm3 Norm4
TP9 19 -227.360871 1 1.9085e-05 5.0641e-12 0.0015
TP10 18 -262.606445 1 1.4596e-05 3.7482e-11 0.0017
TP12 19 -8.524468 4.9981 0.0958 8.7796e-11 0.0176
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Table 4. Results on MPCC with non-quadratic objective

Problem iter f0 f∗ ρ∗ Norm3 Norm4
NP1 18 -162.753582 -174.182414 1 3.3770e-11 7.0585e-04
NP2 17 -653.592089 -656.880841 1 2.7578e-11 3.6231e-04
NP3 15 -569.324057 -571.632008 1 6.2597e-11 3.0102e-04
NP4 20 18.126318 17.919837 4 4.7013e-11 4.0734e-04
NP5 14 -98.927034 -106.408978 1 1.4906e-11 0.0015
NP6 15 -602.047401 -608.356983 1 3.1594e-11 0.0017
NP7 14 -546.259927 -552.370597 1 3.4027e-11 0.0015
NP8 16 131.709758 130.437858 4 4.6082e-11 3.6516e-04
NP9 27 -115.282412 -223.821337 149.4795 8.8084e-12 3.3461e-04
NP10 24 -155.096790 -249.908320 120.7078 4.8927e-11 0.0017
NP11 17 -424.833679 -442.946746 1 4.9029e-11 9.0709e-04
NP12 32 -5.148464 -7.069625 2.3161e+04 1.2333e-10 2.4291e-04

Tables 1-4 show that we have obtained the approximate strong stationary points of

all test problems. They are also the KKT points of the relaxed problems (2.9)-(2.15)

with the relaxation parameter τ ≤ 5 × 10−7. It is noted that the numbers of iterations

of the algorithm are not very sensitive to the changes of the second-level degeneracy and

the monotonity of a coefficient matrix, these parameters are proved to be important in

global convergences of some existing algorithms. Moreover, comparing to the results for

QPECgen, we also note that the numbers of iterations of the algorithm do not increase

prominently for MPCC with non-quadratic objective functions. Another point of signif-

icance is that the algorithm just solves one quadratic programming subproblem at each

iteration, which is different from the algorithm of Fukushima and Tseng [11], in which

several quadratic programming subproblems may be solved in each iteration.

To observe the performance of the algorithm in comparing with the direct nonlinear

programming approach, we also implement the algorithm by selecting τk = τ ∗ for all

k, where τ ∗ = Norm5 which is derived together with the results in Tables 1 and 2.

The algorithm is terminated when the �2 norm of the residues of KKT conditions of

N (τ ∗)≤ Norm4 + ε and the �∞ norm of the complementarity constraints≤ Norm5 + ε,

where Norm4 and Norm5 are derive from the tests in Tables 1 and 2. Some results are

reported in Table 5, where the speed-up is calculated by 1−the ratio of the computational

time of Algorithm 3.3 to that of the algorithm with fixing τk = τ ∗.

Although the speed-up is not a very stable indicator in MATLAB enviroment and

the errors may be changed with different tests, it may still give us the approximate

understanding on the algorithm. It is noted that Algorithm 3.3 needs apparently less

computational time and number of iterations as m is larger, whereas the the algorithm

with fixing at a very small relaxation parameter seems to perform a little better as m is

relatively small.
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Table 5. Numerical results with τk = τ∗ ∀ k ≥ 0.

Problem iter ρ∗ f∗ speed-up
TP1 16 1 -176.644514 3.07%
TP2 13 1 -663.293634 -13.81%
TP3 14 2 -581.974080 4.80%
TP4 19 2 14.216597 15.01%
TP5 14 1 -108.553066 -17.08%
TP6 13 2 -614.683024 -3.80%
TP7 15 4 -562.634095 30.75%
TP8 18 1 126.844622 10.69%
TP9∗ 18 1.2882e+03 -75.976175 -14.56%
TP10∗ 26 1.1597e+03 -257.182827 -6.27%
TP11∗ 22 212.5942 -441.110011 29.55%
TP12∗ 21 206.8722 -5.508203 40.51%

(For problems with superscript ∗, f∗ is not close to fgen obviously)

We also apply our algorithm to some special examples. The first example is problem

(1.6)-(1.9) presented in the introduction. We select the initial point (0, 1, 1). The algo-

rithm terminates at (−1.0000, 0, 0.0000) in 3 iterations. τ ∗ = 0.01, ρ∗ = 2, Norm3=1.5904e−
12, Norm4=3.9267e− 13, Norm5=0, ‖u∗‖∞ = 1. It is noted that the solution is a strong

stationary point, although both the MPEC-LICQ and the nondegeneracy do not hold at

this solution.

The second example is presented by Leyffer [14] to demonstrate a failure of PIPA:

min x+ y (6.14)

s.t. x ∈ [−1, 1], (6.15)

1 − x− w = 0, (6.16)

0 ≤ w ⊥ y ≥ 0. (6.17)

The standard starting point is (0, 0.02, 1), the optimal solution is (−1, 0, 2). The al-

gorithm terminates at (−1.0000,−0.0000, 2.0000) in 3 iterations. τ ∗ = 0.01, ρ∗ = 2.

Norm3=1.5543e− 15, Norm4=8.6456e− 15, Norm5=6.9389e− 18, ‖u∗‖∞ = 1.

The third example is an infeasible MPEC:

min
1

2
(x2 − y2) + x+ y (6.18)

s.t. x ∈ [−1, 1], (6.19)

2 ≤ x+ y ≤ 3, (6.20)

x+ y + w = 4, (6.21)

0 ≤ w ⊥ y ≥ 0. (6.22)
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The initial points are (0.5, 2, 1.5) and (0, 2.5, 1.5), respectively. It is easy to deduce that

points (1, 2, 1) and (1, 1, 2) are minimizers of problem (4.1)-(4.5), which are also infeasible

stationary points of the MPCC. The algorithm terminates at point (1.0000, 2.0000, 1.0000)

in 8 iterations, ρ∗ = 108.8951 and 15.0923, Norm3=1.4253e − 13 and 1.2091e − 13,

Norm4=3.5736e−14 and 3.5230e−14, respectively. ‖u∗‖∞ = 10.9972 and Norm5=2.0000

for both cases. These results show us that Algorithm 3.3 may obtain certain points with

weak stationary properties when other methods may fail to find meaningful solutions.
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