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Abstract

Recently, tools from algebraic geometry have been successfully applied
to develop solution schemes for new classes of optimization problems.
A central idea in these constructions is to express a polynomial that is
positive on a given domain in terms of polynomials of higher degree so
that its positivity is readily revealed. This resembles the “lifting” phase
of the lift-and-project procedures for 0–1 programming.

We propose an enhancement to these solution schemes via a construc-
tion that is reminiscent of the “projecting” phase of the lift-and-project
procedures. Our construction applies to domains that can be represented
as the intersection of a set and an affine variety.

To illustrate the power of our approach, we provide novel derivations
of some of the lift-and-project procedures for 0–1 programming due to
Balas, Ceria and Cornuéjols; Sherali and Adams; Lovász and Schrijver;
and Lasserre. These derivations add new insight into this interesting
subject, and suggest a number of variations and extensions.

∗Supported by NSF grants CCR-0092655 and DMI-0098427. lzuluaga@andrew.cmu.edu
†Supported by NSF grant CCR-0092655. jvera@andrew.cmu.edu
‡Supported by NSF grant CCR-0092655. jfp@andrew.cmu.edu

1



1 Introduction

The motivation for this work is to provide a connection between two major
trends in optimization. One of these trends is the lift-and-project procedures
for 0–1 programming. The other one is the recent research activity in opti-
mization that draws on tools from real algebraic geometry to devise solution
schemes for polynomial optimization problems, whose objective and constraints
are multivariate polynomials. The first trend includes the relaxation schemes
of Balas-Ceria-Cornuéjols [1], Sherali-Adams [20], Lovász-Schrijver [12], and in
more generality, the so-called Reformulation Linearization Techniques and Con-
vexification Techniques (for surveys see [21] and [25]). The second trend includes
the recent work by de Klerk [4], Kojima et al. [7], Laurent [11], Lasserre [8, 9, 10]
and Parrilo [16, 17, 18], along with previous work by Shor [22, 23] and Nes-
terov [13], among others.

The first trend, lift-and-project procedures, originally aims to describe the
convex hull of the 0–1 points inside a given polyhedron. The fundamental ideas
underlying these procedures are: 1) lift the problem to a higher dimensional
space where the structure of the 0–1 polyhedron is more clearly revealed, and
valid inequalities can be inferred; 2) project the problem back to the original
space.

The second trend relies on representation theorems from real algebraic ge-
ometry to derive solution schemes for polynomial optimization problems. Such
representation theorems characterize the set of polynomials that are positive
on a given domain. This typically involves writing a given polynomial p(x) in
terms of polynomials of higher degree, so that the positivity of p(x) is readily
revealed. This resembles the lifting phase of the lift-and-project procedures
mentioned above.

Our central goal is to enhance the solution schemes for polynomial opti-
mization problems by incorporating a construction that is reminiscent of the
projecting phase of the lift-and-project procedures. Specifically, we consider
polynomial optimization problems over a domain S of the form S = D ∩ V ,
where D is a set and V is an affine variety (i.e., a set defined by a finite system
of polynomial equations). We formalize the following basic idea: use informa-
tion about the (conceivable simpler) set of polynomials that are positive over D
to infer information about the (more complicated) set of polynomials that are
positive over D ∩ V .

Our results yield novel derivations from a dual viewpoint of the lift-and-
project procedures of Balas-Ceria-Cornuéjols [1]; Sherali-Adams [20]; Lovász-
Schrijver [12]; and Lasserre [8]. The unified derivation of these results is similar
in spirit to the work by Ceria [2] and Laurent [11]. However, in contrast to
Ceria’s lift-and-project approach [2] and Laurent’s combinatorial approach [11],
we follow an algebraic-geometric approach similar to the one introduced by
Parrilo in [18]. This adds new insight into this interesting subject, and suggests
a number of variations and extensions.

The rest of the paper is organized as follows. In Section 2, we present
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the relevant problem, terminology, and notation. We also formally state our
central objective; namely, to obtain information about the set of polynomials
that are positive over a domain S, by exploiting the particular decomposition
structure S = D ∩ V of such domain. Section 3 presents the first formalization
of the above idea. We show that under suitable assumptions, a modulo-ideal
construction takes information about the set of polynomials that are positive
over D, and yields information about the set of polynomials that are positive
over D ∩ V . Sections 4 and 5 refine the results of Section 3. In particular,
we obtain new derivations for certain known hierarchies of relaxations for 0–1
programming via the modulo-ideal construction. Finally, in Section 6 we discuss
an issue of crucial algorithmic relevance: We show that if a set of polynomials
has a computable description, e.g., as a polyhedron or as a system of linear
matrix inequalities (LMI), then the modulo-ideal constructions yield a set of
polynomials with the same property.

2 Preliminaries

2.1 Problems and notation

The following optimization problem is our central object of study:

ρ = inf f(x)
s.t. x ∈ S,

(1)

where f(x) is a given polynomial in n variables and S ⊆ Rn is a given set. We
can rephrase this problem as

ρ = sup λ
s.t. f(x)− λ ≥ 0 for all x ∈ S.

(2)

As it has been recognized by several researchers (see, e.g., [7, 8, 13, 16, 22]),
the latter formulation suggests working with a dual object; namely, the set of
polynomials that are non-negative in the domain S. Specifically, let Hn :=
R[x1, . . . , xn] be the set of polynomials in n variables with real coefficients, and
consider the cones of polynomials Pn(S), Po

n(S), Σn defined as follows.
Let Pn(S) be the cone of polynomials in Hn that are positive semidefinite

(non-negative) in the domain S ⊆ Rn; that is,

Pn(S) = {p ∈ Hn : p(x) ≥ 0 for all x ∈ S}.

Let Po
n(S) be the cone of polynomials in Hn that are positive definite in the

domain S ⊆ Rn; that is,

Po
n(S) = {p ∈ Hn : p(x) > 0 for all x ∈ S}.

Finally, let Σn be the cone of polynomials in Hn that are sum of squares of
polynomials; that is,

Σn = conv{q(x)2 : q ∈ Hn}.
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We will also work with the subsets of Hn, Pn(S),Po
n(S) and Σn obtained

by considering only polynomials of bounded degree: For a positive integer m,
let Hn,m be the set of polynomials in Hn with degree at most m, Pn,m(S) :=
Pn(S) ∩Hn,m, Po

n,m(S) := Po
n(S) ∩Hn,m and Σn,m := Σn ∩Hn,m.

2.2 Approximation schemes

Consider problem (2) above and let m = deg(f). Notice that for any K satis-
fying

Po
n,m(S) ⊆ K ⊆ Pn,m(S), (3)

we have
ρ = sup λ

s.t. f(x)− λ ∈ K.
(4)

Also, given a sequence Kr, r = 0, 1, . . . satisfying

Kr ⊆ Kr+1 ⊆ Pn,m(S), r = 0, 1, . . . and Po
n,m(S) ⊆

∞⋃
r=0

Kr ⊆ Pn,m(S), (5)

consider the sequence ρr, r = 0, 1, . . . , defined by

ρr = sup λ
s.t. f(x)− λ ∈ Kr.

(6)

Observe that ρr ↑ ρ. In other words, for a fixed r, (6) yields an approximation
to (2).

Throughout the sequel, we use the following notational convention. We write
K ≈ Pn,m(S) to indicate that K satisfies (3), and Kr ↑ Pn,m(S) to indicate
that the sequence Kr, r = 0, 1, . . . satisfies (5). Likewise for K ≈ Pn(S) and
Kr ↑ Pn(S).

As the examples in Section 2.3 below show, for certain domains S ⊆ Rn,
representation results from real algebraic geometry can be used to obtain K ≈
Pn,m(S) or Kr ↑ Pn,m(S) with computable descriptions. In such cases problem
(4) or (6) can be cast as a linear, second order cone or semidefinite program,
and hence be amenable to modern optimization technology. These types of
approximation schemes underlie some of the main constructions in [4, 8, 9, 16].

Our central goal is to enhance these approximation schemes by exploiting
the particular structure of the domain S. Specifically, we consider domains of
the form S = D ∩ V , where D is a set and V is an affine variety, that is,

V = V (f1, . . . , fv) := {x ∈ Rn : fk(x) = 0, k = 1, . . . , v} (7)

for some given fk ∈ Hn, k = 1, . . . , v.

A particular case of a domain with this form, and central to integer pro-
gramming, is

S = {x ∈ Rn : Ax ≥ b} ∩ {0, 1}n,
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which can be written as D ∩ V for

D = {x ∈ Rn : Ax ≥ b}, V = {x ∈ Rn : xi(xi − 1) = 0, i = 1, . . . , n}.

In the sequel we develop several constructions that formalize the following
basic idea: use information about the (conceivable simpler) set Pn,m(D) (or
Pn(D)) to describe Pn,m(D ∩ V ). We illustrate these constructions by pro-
viding alternative derivations of some known hierarchies of relaxations for 0–1
programming.

2.3 Computable descriptions

Observe that a polynomial p(x) ∈ Hn,m can be identified with its (finite-
dimensional) vector of coefficients. We shall use p to denote this vector of
coefficients, assuming some ordering of the monomials in Hn,m is set. With this
identification in mind, we shall say that K ⊆ Hn,m has a computable description
if K can be written in the form

K = {p ∈ Hn,m : Ap = Bz, z ∈ C}, (8)

where A,B are suitable linear maps, and C is a cone amenable to modern
optimization technology, e.g., modern interior-point methods. This is known to
be the case if C is the non-negative orthant, the positive semidefinite cone, or
the second order cone. These are indeed special cases of the broader class of
self-scaled cones (also known as symmetric cones), for which there are interior-
point algorithms (see [14, 15]). We use the term “computable description”
because such a description for K ≈ Pn,m(S) yields conceptual algorithms for
problem (4). This is illustrated by Examples 1, 2, and 3 below.

Example 1 Let S = {x : Ax ≥ b} be a non-empty polyhedron. Then by Farkas
Lemma it follows that

p(x) = cTx+d ∈ Pn,1(S) if and only if
[
c
d

]
=

[
AT 0
−bT 1

] [
z
τ

]
for some

[
z
τ

]
≥ 0.

(9)
Furthermore, if in addition {x : Ax ≥ −b} = ∅ then, again by Farkas Lemma

p(x) = cTx+d ∈ Pn,1(S) if and only if
[
c
d

]
=

[
AT

−bT

]
z for some z ≥ 0. (10)

Example 2 Let S = {x ∈ Rn : xTMx + 2dTx + e ≥ 0}, where M ∈ Sn, d ∈
Rn, e ∈ R. Then by the S-lemma [26, 24]

p(x) = xTQx + 2bTx + c ∈ Pn,2(S) if and only if[
Q b
bT c

]
− t

[
M d
dT e

]
� 0 for some t ≥ 0.
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(X � 0 denotes that X is a positive semidefinite matrix.)

Example 3 Let S = R. Using the fact that an univariate polynomial is non-
negative if and only if it is a sum of squares (see, e.g., [13]) it follows that

p(x) = a0 + a1x + . . . + a2mx2m ∈ P1,2m(S) if and only if

ak =
∑

i+j=k

yij , k = 0, . . . , 2m for some Y =


y00 y01 . . . y0m

y01 y11 . . . y1m

...
...

. . .
...

y0m y1m . . . ymm

 � 0.

In a similar fashion, the following example illustrates a case where there
exists an inner approximation Kr ↑ Pn,m(S), where each Kr has a computable
description.

Example 4 Let S = {x ∈ Rn
+ : x1 + · · ·+ xn = 1}. Then by Pólya’s Theorem,

Kr ↑ Pn,m(S), where

Kr = {p ∈ Hn,m : (x1 + · · ·+ xn)rp(x) has non-negative coefficients}.

3 Approximation schemes for Pn(D ∩ V )

Throughout the sequel we shall make the following assumption.

Blanket Assumption: D ⊆ Rn is a given set, and V is an affine variety as
in (7).

We next present a modulo-ideal construction that yields approximations for
Pn(D ∩ V ), given approximations for Pn(D).

First recall some basic terminology and notation from algebraic geometry
(for an excellent reference on the subject see [3]). Given an affine variety V
in Rn, I(V ) is the ideal of V , in other words, I(V ) = {f ∈ Hn : f(x) =
0 for all x ∈ V }. Also, given g1, . . . , gl ∈ Hn, let 〈g1, . . . , gl〉 be the ideal gener-
ated by {g1, . . . , gl}, i.e., 〈g1, . . . , gl〉 = {p ∈ Hn : p(x) =

∑l
i=1 hi(x)gi(x), hi ∈

Hn, i = 1, . . . , l}. Given p, q ∈ Hn, the notation p ≡ q mod I(V ) indicates that
p and q are congruent modulo I(V ); that is, p− q ∈ I(V ).

Lemma 1 Given K ⊆ Pn(D), let Q = {p ∈ Hn : ∃q ∈ K, p ≡ q mod I(V )}.
Then Q ⊆ Pn(D ∩ V ).

Proof. Let p ∈ Q. Then there exists q ∈ K such that p ≡ q mod I(V ).
Thus p(x) − q(x) = 0 for any x ∈ V . Therefore, since K ⊆ Pn(D), we have
p(x) = q(x) ≥ 0 for all x ∈ D ∩ V , i.e., p ∈ Pn(D ∩ V ).

2

The following theorem shows how to obtain a one-step approximation Q ≈
Pn(D ∩ V ) given a one-step approximation K ≈ Pn(D).
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Theorem 2 (one-step approximation) Assume D is compact. Given K ≈
Pn(D), let Q = {p ∈ Hn : ∃q ∈ K, p ≡ q mod I(V )}. Then Q ≈ Pn(D ∩ V ).

Proof. If D = ∅ then D = D ∩ V = ∅ and there is nothing to show. Hence
assume D 6= ∅. The inclusion Q ⊆ Pn(D ∩ V ) follows from Lemma 1. For the
other inclusion, take p ∈ Po

n(D ∩ V ) and let f(x) =
∑v

k=1 fk(x)2 (recall (7)). It
suffices to show that there exists c ≥ 0 such that p(x) + cf(x) ∈ Po

n(D) ⊆ K.
If D ∩ V = ∅ take c > |min{p(x) : x ∈ D}|/ min{f(x) : x ∈ D}. Otherwise let
µ = min{p(x) : x ∈ D ∩ V } > 0, and fix ε > 0 such that x ∈ D and d(x, V ) < ε
implies p(x) > µ/2, where d(x, V ) is the distance from x to the set V . Notice
that if f(x) = 0, then x ∈ V . Let σ = min{f(x) : x ∈ D, d(x, V ) ≥ ε} > 0. To
finish, take c > 1

σ |min{p(x) : x ∈ D}|.
2

The following theorem shows how to obtain a sequential approximation Qr ↑
Pn(D ∩ V ), given a sequential approximation Kr ↑ Pn(D),

Theorem 3 (sequential approximation) Assume D is compact. Given Kr ↑
Pn(D), let Qr = {p ∈ Hn : ∃q ∈ Kr, p ≡ q mod I(V )}. Then Qr ↑ Pn(D∩V ).

Proof. This follows by putting together Lemma 1 and Theorem 2. 2

Given an approximation for the set Pn(D), Theorems 2 and 3 yield theo-
retical tools that yield an approximation for Pn(D ∩ V ). However, their state-
ments concern polynomials in Hn, which is an infinite-dimensional space, as
the polynomials in Hn have unrestricted degree. In the subsequent sections
we provide refinements of these results that concern the relevant subsets of the
finite-dimensional space Hn,m. Furthermore, as we show in Section 6, these
refinements have an important property; namely, if the starting cone K (or se-
quence Kr) has a computable description, then the resulting cone Q (or sequence
Qr) has a computable description as well.

4 Refining the one-step approximation scheme

We next provide refinements of the one-step approximation in Theorem 2 to
construct Q ≈ Pn,m(D ∩ V ) given K ≈ Pn,m(D) or, more generally, given
K ⊆ Pn(D).

4.1 Restricted-degree modulo-ideal construction

The first natural attempt to obtain Q ≈ Pn,m(D∩V ) given K ≈ Pn,m(D) is to
restrict the construction in Theorem 2 to polynomials of degree bounded by m.
Although this simple idea does not always work, it does work when the degree
m satisfies a suitable lower bound. The next corollary follows from the proof of
Theorem 2.
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Corollary 1 Assume D is compact and m ≥ deg(f), where f(x) =
∑v

k=1 fk(x)2

(recall (7)). Given K ≈ Pn,m(D), let Q = {p ∈ Hn,m : ∃q ∈ K, p ≡ q
mod I(V )}. Then Q ≈ Pn,m(D ∩ V ).

Furthermore, if each fk ∈ Pn(D), k = 1, . . . , v then the same holds under
the weaker condition m ≥ max{deg(fk) : k = 1, . . . , v}.

Corollary 1 yields a direct derivation, via the S-lemma [26, 24], of one of the
main results presented by Sturm and Zhang in [24]: Let V = {x : r(x) = 0} and
D = {x : r(x) ≥ 0}, where r is a strictly concave quadratic polynomial. The
latter condition ensures that D is compact. By the S-lemma [26, 24], the set
K = {ϕ(x) + tr(x) : t ≥ 0, ϕ ∈ Σn,2} satisfies K ≈ Pn,2(D). Thus Corollary 1
yields Q = {p ∈ Hn,2 : ∃q ∈ K s.t. p ≡ q mod I(V )} ≈ Pn,2(D ∩ V ). But
I(V ) = 〈r(x)〉, thus Q = {p ∈ Hn,2 : ∃q ∈ K s.t. p(x)− q(x) = t′r(x), t′ ∈ R} =
{ϕ(x) + t′r(x) : t′ ∈ R, ϕ ∈ Σn,2}, which is equivalent to [24, Thm. 2].

For a second application of Corollary 1, consider the affine variety

Va,b = {x ∈ Rn : aTx− b = 0},

where a ∈ Rn, b ∈ R are given. Define the operator Za,b as follows: Given
K ⊆ Hn,m, let

Za,b(K) = {p ∈ Hn,m : p ≡ q mod I(Va,b), q ∈ K}.

(Notice that I(Va,b) = 〈aTx− b〉.)
The following result follows from Corollary 1.

Corollary 2 Let a ∈ Rn, b ∈ R, D be a compact set and m > 1. If K ≈
Pn,m(D), then Za,b(K) ≈ Pn,m(D ∩ Va,b).

Without the lower bound condition on m, the statement in Corollary 1 may
not hold. For example, when m = 1 and V = {x ∈ Rn : xj ∈ {0, 1}} it is easy to
see that for any given K ⊆ Hn,1, {p ∈ Hn,1 : ∃q ∈ K, p ≡ q mod I(V )} = K.
Hence in this case this restricted-degree modulo-ideal construction does not yield
anything new.

We next present several constructions that give one-step approximations for
Pn,m(D ∩ V ) for any m. The tradeoff for dropping the condition on m is to
apply a “lifting” step to K ≈ Pn,m(D) to get a richer subset of Pn(D). The
restricted-degree modulo-ideal operation is then applied to such set. The latter
operation can be seen as a “projecting” step. The following lemma provides the
core of the constructions presented in the subsequent sections.

Lemma 4 Assume K ⊆ Pn(D) and let Q = {p ∈ Hn,m : ∃q ∈ K, p ≡ q
mod I(V )}. Then Q ⊆ Pn,m(D ∩ V ). Furthermore, if K is such that for all
p ∈ Po

n,m(D ∩ V ) there exists q ∈ K with p− q ∈ I(V ), then Q ≈ Pn,m(D ∩ V ).

Proof. The inclusion Q ⊆ Pn,m(D ∩ V ) readily follows from Lemma 1. For the
second part, let p ∈ Po

n,m(D ∩ V ). Then q − p ∈ I(V ) for some q ∈ K. Thus
p ∈ Q. This shows Po

n,m(D ∩ V ) ⊆ Q as well. 2
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4.2 Some relaxations for 0–1 programming

We next present some refinements of the one-step approximation scheme for
the following particular variety, which plays a central role in 0–1 programming:
Given j ∈ {1, . . . , n}, let

Vj = {x ∈ Rn : xj ∈ {0, 1}}.

The constructions in this section give alternative derivations and extensions
of some well-known relaxation hierarchies for 0–1 programming.

4.2.1 Balas-Ceria-Cornuéjols

In the same spirit as the lift-and-project operator Pj of Balas, Ceria and Cornué-
jols [1], the following construction yields a one-step approximation for Pn,m(D∩
Vj) given a one-step approximation for Pn,m(D). Given j ∈ {1, . . . , n} and
K ⊆ Hn,m, let

Bj(K) = {p ∈ Hn,m : ∃q, q′ ∈ K s.t. p(x) ≡ (xjq(x)+(1−xj)q′(x)) mod I(Vj)}.

(Notice that I(Vj) = 〈xj(1− xj)〉.)

Theorem 5 Let j ∈ {1, . . . , n}. Assume D is compact and D ⊆ {x ∈ Rn : 0 ≤
xj ≤ 1}. If K ≈ Pn,m(D), then Bj(K) ≈ Pn,m(D ∩ Vj).

Proof. By Lemma 4, it suffices to show that given p ∈ Po
n,m(D∩Vj) there exist

q, q′ ∈ K such that xjq(x) + (1 − xj)q′(x) − p(x) ∈ I(Vj). If p ∈ Po
n,m(D) or

D = ∅, then simply take q = q′ = p. Otherwise let ε = min{1−xj : p(x) ≤ 0, x ∈
D} > 0, ε′ = min{xj : p(x) ≤ 0, x ∈ D} > 0, and µ = |min{p(x) : x ∈ D}|. Put
q(x) = p(x) + c(1− xj), q′(x) = p(x) + c′xj where c > µ

ε and c′ > µ
ε′ . It follows

that q, q′ ∈ Pn,m(D) and xjq(x) + (1− xj)q′(x)− p(x) ∈ I(Vj). 2

For J = {j1, . . . , jk} ⊆ {1, . . . , n} and K ⊆ Hn,m define

BJ(K) = Bjk
(Bjk−1(· · · (Bj1(K)) · · · )),

and
VJ =

⋂
j∈J

Vj .

The next corollary follows by induction from Theorem 5.

Corollary 3 Let J ⊆ {1, . . . , n}. Assume D is compact and D ⊆
⋂

j∈J{x ∈
Rn : 0 ≤ xj ≤ 1}. If K ≈ Pn,m(D), then BJ(K) ≈ Pn,m(D ∩ VJ).

Notice that under the conditions of Corollary 3, we obtain a finite sequential
approximation of Pn,m(D∩VJ). That is, if Ji = {j1, . . . , ji}, i = 1, . . . , |J |, then

K ⊆ BJ1(K) ⊆ BJ2(K) ⊆ · · · ⊆ BJ(K) ≈ Pn,m(D ∩ VJ).
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Remark 1 The compactness hypothesis on D in Theorem 5 is only used to
ensure that ε, ε′ and µ are attained and finite. When m = 1 and D is a poly-
hedron, this compactness hypothesis is not necessary, as in this case ε, ε′ and µ
are simply the optimal values of feasible bounded linear programs. As a conse-
quence, in this case the operator Bj is precisely the dual of the lift-and-project
operator Pj in [1]. We next discuss this in more detail.

The operator Bj defined above is closely related to the operator Pj in [1].
Indeed, for linear polynomials, i.e., for m = 1 and D a polyhedron, the operator
Bj is the dual counterpart of Pj . Specifically, for D = {x : Ax ≥ b} with
D ⊆ {x : 0 ≤ xj ≤ 1} and K = Pn,1(D), Theorem 5 together with Remark 1
imply that the polynomials in Bj(K) are precisely the set of valid inequalities of
the convex hull of D∩{x : xj ∈ {0, 1}}, which is denoted P ∗

j (D) in [1]. Observe
that in this case, by (10),

Pn,1(D) = {cTx + d : ∃z ≥ 0 s.t. c = ATz, d = −bTz}.

Hence for K = Pn,1(D), it follows that αTx + β ∈ Bj(K) if and only if there
exist u, v ≥ 0 such that

αTx + β ≡ xj((ATu)Tx− bTu) + (1− xj)((ATv)Tx− bTv) mod I(Vj).

This in turn holds if and only if β = −bTv, αi = (ATv)i = (ATu)i, i 6= j, and
αj = (ATu)j + bTu− bTv. In other words, αTx+β ∈ Bj(K) if and only if there
exist u, v ≥ 0 and u0, v0 ∈ R such that

α = ATu + u0ej

α = ATv + v0ej

β = −bTu− u0

β = −bTv.

So we recover the characterization of P ∗
j (D) in [1, Thm 2.10].

In the case D ⊆ {x ∈ Rn : 0 ≤ xj ≤ 1, j ∈ J}, Theorem 5 and Corollary 3
extend some of the central properties of the lift-and-project constructions in [1,
2]. Furthermore, when m = 1 and D is a polyhedron, the identity (9) readily
yields a polyhedral representation for Pn,m(D). In contrast, for m > 1, imposing
the linear constraints 0 ≤ xj ≤ 1, j ∈ J on D poses a difficulty as there is no
current result analogous to (9) that yields a computable description for Pn,m(D).
Fortunately, when m > 1 this extra condition on D is no longer necessary.

Theorem 6 Let j ∈ {1, . . . , n}, and D be a compact set. Assume m > 1. If
K ≈ Pn,m(D), then Bj(K) ≈ Pn,m(D ∩ Vj).

Proof. Modify the proof of Theorem 5 by using x2
j instead of xj and (1− xj)2

instead of (1− xj) in the construction of q, q′, ε, and ε′. 2

It thus follows that the condition D ⊆ {x ∈ Rn : 0 ≤ xj ≤ 1, j ∈ J} can
also be omitted in Corollary 3 when m > 1.

To see how Theorem 6 and Corollary 3 extend the range of application of
the ideas developed in [1], consider the following example.
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Example 5 For Q ∈ Sn+1, consider the following pure 0–1 quadratic program:

% = min (1, xT)Q(1, xT)T

s.t. x ∈ {0, 1}n.

Let D = {x ∈ Rn : (1, xT)M(1, xT)T ≥ 0}, where

M =
[

0 1
2e

1
2e −I

]
.

Here, e = (1, . . . , 1)T ∈ Rn and I ∈ Rn×n is the identity matrix.
Let Ji = {1, . . . , i}, i = 1, . . . , n. Since D is the n-dimensional sphere of

radius
√

n/2 centered at 1
2e, it follows that

% = sup λ
s.t. (1, xT)(Q− λδ00)(1, xT)T ∈ Pn,2(D ∩ VJn),

where δ00 ∈ Sn+1 is the matrix with all zeros except for a 1 in position (0, 0).
Notice that D is compact, and by the S-lemma [26, 24], K = {(1, xT)Z(1, xT)T :
Z − tM � 0, t ≥ 0} ≈ Pn,2(D). Therefore, the sequence

%Ji
= sup λ

s.t. (1, xT)(Q− λδ00)(1, xT)T ∈ BJi
(K),

for i = 1, . . . , n satisfies %J1 ≥ · · · ≥ %Jn
= %. Furthermore, since K has an

LMI description, each problem in the sequence %Ji
, i = 1, . . . , n is a semidefinite

program.

Notice that in Example 5 we have used an important feature common to
both the one-step and sequential approximation schemes; namely, that if we are
interested in approximating Pn(D′ ∩ V ), there is a lot of freedom to choose a
compact set D such that D′ ∩ V = D ∩ V . In turn, this provides room towards
obtaining the necessary K or sequence Kr, r = 0, 1, . . . in Theorems 2 and 3, or
their corresponding refinements.

Other authors have already recognized that the lift-and-project procedure
of Balas, Ceria and Cornuéjols can be generalized in various ways (see, e.g., [6]
and [25]). Our goal in this presentation is to emphasize a novel perspective to
these generalizations via simple algebraic-geometric tools.

4.2.2 Sherali-Adams

The lift-and-project procedure of Balas, Ceria, Cornuéjols is related to the hie-
rarchy of relaxations by Sherali and Adams [20]. The latter inspires the following
sequential approximation scheme for P(D ∩ VJ).

11



Assume J ⊆ {1, . . . , n} and K ⊆ Hn,m are given. For t = 0, 1, . . . , |J |, put
Γ(t) = {(J1, J2) : J1, J2 ⊆ J, J1 ∩ J2 = ∅, |J1 ∪ J2| ≤ t} and let

W t
J(K) =

{
p ∈ Hn,m : ∃ qJ1,J2 ∈ K, (J1, J2) ∈ Γ(t) s.t.

p(x) ≡
∑

(J1,J2)∈Γ(t)

qJ1,J2(x)
∏

j1∈J1

xj1

∏
j2∈J2

(1− xj2) mod I(VJ)

}
,

with the convention
∏

j1∈∅ xj1 =
∏

j2∈∅(1− xj2) = 1.

Notice that for t = 0, 1, . . . , |J |, if (J1, J2) ∈ Γ(t) and j ∈ J \ (J1 ∪ J2) then∏
j1∈J1

xj1

∏
j2∈J2

(1−xj2) =
∏

j1∈J1∪{j}

xj1

∏
j2∈J2

(1−xj2)+
∏

j1∈J1

xj1

∏
j2∈J2∪{j}

(1−xj2).

Therefore, W t
J(K) ⊆ W t+1

J (K) for t = 0, 1, . . . , |J |. Also, K ⊆ W 0
J (K).

Theorem 7 Let J ⊆ {1, . . . , n} and D be a compact set. If K ≈ Pn,m(D),
then

K ⊆ W 0
J (K) ⊆ · · · ⊆ W

|J|
J (K) ≈ Pn,m(D ∩ VJ).

Proof. From the discussion above and by Lemma 4, it suffices to show that
given p ∈ Po

n,m(D ∩ VJ) there exist qJ1,J2 ∈ Po
n,m(D), (J1, J2) ∈ Γ(|J |) such

that
p−

∑
(J1,J2)∈Γ(|J|)

qJ1,J2

∏
j1∈J1

xj1

∏
j2∈J2

(1− xj2) ∈ I(VJ). (11)

Fix (J1, J2) ∈ Γ(|J |). Let qJ1,J2(x) be the polynomial obtained by fixing the
variables xj , j ∈ J in p(x) as follows: xj1 = 1, j1 ∈ J1 and xj2 = 0, j2 ∈ J2.
Since p ∈ Po

n,m(D ∩ VJ), it follows that each qJ1,J2 ∈ Po
n,m(D). Furthermore,

this construction ensures that (11) holds. 2

For the special case m = 1, and proceeding as in Section 4.2.1, it can
be shown that the operator W t

J defined above is the dual counterpart of the
operator in the hierarchy of relaxations for 0-1 programming by Sherali and
Adams [20].

4.2.3 Lovász-Schrijver

The lift-and-project construction by Balas, Ceria and Cornuéjols [1] and the
hierarchy of relaxations by Sherali and Adams [20] are related to a third class of
relaxations for 0–1 linear programming proposed by Lovász and Schrijver [12].
Again, the latter inspires a third finite sequential approximation of Pn,m(D∩VJ).
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Given J ⊆ {1, . . . , n} and K ⊆ Hn,m, let

LJ(K) =

{
p ∈ Hn,m : ∃qj , q

′
j ∈ K, j ∈ J s.t.

p(x) ≡
∑
j∈J

xjqj(x) + (1− xj)q′j(x) mod I(VJ)

}
,

and for t = 2, 3, . . ., define

Lt
J(K) = LJ(Lt−1

J (K)).

Notice that K ⊆ LJ(K); therefore Lt
J defines an increasing sequence; that is,

Lt
J(K) ⊆ Lt+1

J (K) for t ≥ 1. Also, from their explicit constructions, it is easy
to see that for J ′ ⊆ J with |J ′| = t

BJ′(K) ⊆ Lt
J(K) ⊆ W t

J(K).

Hence the following result readily follows.

Theorem 8 Let J ⊆ {1, . . . , n} and D be a compact set. Assume either D ⊆⋂
j∈J{x ∈ Rn : 0 ≤ xj ≤ 1} or m > 1. If K ≈ Pn,m(D), then

K ⊆ LJ(K) ⊆ · · · ⊆ L
|J|
J (K) ≈ Pn,m(D ∩ VJ).

Once again, proceeding as in Section 4.2.1 it can be seen that for the case
when m = 1 and D is a polyhedron, the operator LJ is the dual counterpart of
the operator N in [12].

We can also strengthen the construction of LJ to get an operator that cor-
responds to the dual counterpart of the operator N+ in [12]. This can be done
by defining L+

J as follows

L+
J (K) = {p ∈ Hn,m : p ≡ q + ϕ mod I(VJ), q ∈ LJ(K), ϕ ∈ Σn,m+1} . (12)

The operator L+
J clearly dominates LJ , consequently it also satisfies the

statement of Theorem 8.

4.3 Other varieties

Although we have concentrated on refining the one-step approximation scheme
for 0–1 programs, the same approach can be used to obtain refinements for other
affine varieties. For example, given j ∈ {1, . . . , n}, let

Ṽj = {x ∈ Rn : xj ∈ {−1, 0, 1}}.

13



Define B̃j as follows: Given K ⊆ Hn,m, let

B̃j(K) = {p ∈ Hn,m : ∃q0, q−1, q1 ∈ K s.t. p(x) ≡ (2(1− xj)(1 + xj)q0(x)+

x2
j (1− xj)q−1(x) + x2

j (1 + xj)q1(x)) mod I(Ṽj)}.

(Notice that I(Ṽj) = 〈xj − x3
j 〉.)

Proceeding as in the proof of Theorem 6, we obtain the following result.

Theorem 9 Let j ∈ {1, . . . , n}. Assume D is compact and m > 1. If K ≈
Pn,m(D), then B̃j(K) ≈ Pn,m(D ∩ Ṽj).

5 Refining the sequential approximation scheme

We next show that under suitable conditions on D and V , the statement in
Theorem 3 can be strengthened to obtain a finite sequential approximation
Q0 ⊆ · · · ⊆ QN ≈ Pn,m(D ∩ V ), given a sequential approximation Kr ↑ Pn(D).

We start with the following corollary of Theorem 3.

Corollary 4 Assume D is compact. Given Kr ↑ Pn(D), let Qr = {p ∈ Hn,m :
p ≡ q mod I(V ), q ∈ Kr}. Then Qr ↑ Pn,m(D ∩ V ).

We show below that for suitable D, V, and Kr ↑ Pn(D), the sequence Qr, r ∈
N in Corollary 4 eventually becomes constant, and in consequence Qr yields a
finite sequential approximation to Pn,m(D∩V ). The crux of these constructions
is the specific choice of Kr ↑ Pn(D).

5.1 A finite approximation scheme for D polyhedral and
V = {0, 1}n

Our next construction relies on a theorem due to Handelman [5]. We present
this result below in a format appropriate for our exposition.

Theorem 10 (Handelman) Let aj ∈ Rn, bj ∈ R, j = 1, . . . , d and assume

D = {x ∈ Rn : aT
j x− bj ≥ 0, j = 1, . . . , d} (13)

is a bounded polyhedron. If p ∈ Po
n(D), then for some positive integer N there

exist λα ≥ 0, α ∈ Nd, ‖α‖1 ≤ N such that

p(x) =
∑

α∈Nn,‖α‖1≤N

λα

d∏
j=1

(aT
j x− bj)αj .
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Based on Theorem 10, we can construct Kr ↑ Pn(D∩[0, 1]n) for D polyhedral
as follows. Assume D = {x ∈ Rn : aT

j x− bj ≥ 0, j = 1, . . . , d}. For r ∈ N put

Kr =
{
p ∈ Hn,r : ∃λ(α,β,β′) ≥ 0, (α, β, β′) ∈ Γ(r) s.t.

p =
∑
Γ(r)

λ(α,β,β′)

d∏
j=1

(aT
j x− bj)αj

n∏
i=1

xβi

i (1− xi)β′i
}
, (14)

where Γ(r) = {(α, β, β′) ∈ Nd × Nn × Nn : ||(α, β, β′)||1 ≤ r}. By Theorem 10,
Kr ↑ Pn,m(D ∩ [0, 1]n).

Remark 2 As we shall discuss in Section 6, each Kr above is a polyhedral
cone.

Theorem 11 Assume D = {x ∈ Rn : aT
j x− bj ≥ 0, j = 1, . . . , d} and Kr is as

in (14). Let

Qr = {p ∈ Hn,m : ∃q ∈ Kr s.t. p ≡ q mod I({0, 1}n)}.

Then Q0 ⊆ Q1 ⊆ · · · ⊆ Qn+d ≈ Pn,m(D ∩ {0, 1}n).

Proof. Since Kr ↑ Pn(D ∩ [0, 1]n), by Corollary 4 it suffices to show that
Qr = Qn+d for r ≥ n + d. This in turn is an immediate consequence of the
following observations:

(i) x2
i ≡ xi mod I({0, 1}n) and (1− xi)2 ≡ (1− xi) mod I({0, 1}n).

(ii) Let a ∈ Rn, b ∈ R. Then (aTx− b)2 ≡
∑

β∈{0,1}n λβ

∏n
i=1 xβi

i (1− xi)1−βi

mod I({0, 1}n) for some λβ ∈ R+, β ∈ {0, 1}n,

both of which follow from the identity

f(x) ≡
∑

β∈{0,1}n

f(β)
n∏

i=1

xβi

i (1− xi)1−βi mod I({0, 1}n).

2

5.2 A finite approximation scheme for D semialgebraic
and V = {0, 1}n

Another finite sequential approximation for P(D ∩ {0, 1}n) can be obtained by
using other representation theorems from real algebraic geometry to construct
Kr ↑ P(D). Lemma 12 below is one of such representation theorems stated in a
format appropriate for our exposition. This result is a direct consequence of [19,
Thm. 6.3.4].

Assume D = {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . , d} where gj ∈ Hn, j = 1, . . . , d
and either all gj have even degree or all gj have odd degree. Assume also that
gj , j = 1, . . . , d satisfy the following technical condition:

For all x ∈ Rn \ {0} there exists i ∈ {1, . . . , d} s.t. g̃i(x) < 0,
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where g̃i(x) is the homogeneous component of gi(x) of highest degree. It is easy
to see that the conditions above imply that D is compact.

The following lemma is a special case of [19, Thm 6.3.4].

Lemma 12 Let D = {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . , d} be such that above
conditions hold. If p ∈ Po

n(D), then p(x) = ϕ0(x) +
∑d

j=1 gj(x)ϕj(x), for some
ϕj ∈ Σn, j = 0, . . . , d.

Based on this result, we can construct Kr ↑ Pn(D) in a number of ways.
One possible construction is the following. Let mj = deg(gj) and for r ∈ N put

Kr :=

{
p ∈ Hn,2r : ∃ϕ0 ∈ Σn,2r, ϕj ∈ Σn,2(r−mj) s.t.

p(x) = ϕ0(x) +
d∑

j=1

gj(x)ϕj(x)

}
. (15)

Remark 3 As we shall discuss in Section 6, each Kr above can be defined in
terms of the cone of positive semidefinite matrices.

Theorem 13 Assume D satisfies the conditions of Lemma 12, and let Kr be
as in (15). Let

Qr = {p ∈ Hn,m : p ≡ q mod I({0, 1}n), q ∈ Kr} .

Then Q0 ⊆ Q1 ⊆ · · · ⊆ QN ≈ Pn,m(D ∩ {0, 1}n) for N = n + max{mj : j =
1, . . . , d}.

Proof. Since Kr ↑ Pn(D), by Corollary 4 it suffices to show that Qr = QN for
r ≥ N . This in turn is an immediate consequence of the following observation:
if p ∈ Σn,2m then p ≡ q mod I({0, 1}n) for some q ∈ Σn,2n. 2

In parallel to the connection between the operators Bj , LJ of Section 4 and
the operators Pj , N of [1, 12], there is a connection between the sequence Qr

defined in Theorem 13 and the sequence of relaxation for 0–1 programming
proposed by Lasserre [8]. Indeed, with a suitable choice of the sequence Kr

in (15), it can be shown that the problems (Q∗
r) in [8] are precisely those obtained

when the cone Pn,m(D ∩ {0, 1}n) is approximated by the sequence Qr given
by Theorem 13 in problem (2). Since each Qr has an LMI description (see
Section 6), then each problem (Q∗

r) can be cast as a semidefinite program, as
Lasserre showed [8].

However, observe that the statement in Theorem 13 applies to any sequence
Qr derived from a given Kr ↑ Pn(D), as long as the specific construction of Kr

ensures that the sequence Qr eventually becomes constant. This readily suggests
a number of variations of Lasserre’s scheme. For example, we could conceivable
exploit other algebraic geometry machinery such as the Positivstellensatz (see,
e.g., [18]) to construct other sequences Kr ↑ Pn(D).
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6 Computable descriptions revisited

We now turn our attention to some details concerning the computable descrip-
tion of the cones obtained in our constructions. The two main goals of this
section are: First, to show that if the starting cone K (or sequence Kr) has a
computable description, then the constructions in Sections 4 and 5 yield cones
Q (or sequences Qr) with computable descriptions. Second, to show that the
sequences defined in (14) and in (15) have computable descriptions. More pre-
cisely, the first one is a polyhedral cone, and the second one can be described
in terms of the positive semidefinite cone.

We begin with some simple observations. Recall that for p(x) ∈ Hn,m, we use
p to denote its (finite-dimensional) vector of coefficients under a given ordering
of the monomials in Hn,m.

Observation 1 Let t1, . . . , tl ∈ Hn,m′ be given. Then there exists a linear map
M : Hn,m × · · · × Hn,m → Hn,m+m′ such that

p(x) =
l∑

j=1

tj(x)qj(x), qj ∈ Hn,m if and only if p = M(q1, . . . , ql).

Observation 1 shows that the cones Kr, r ∈ N defined in (14) have a com-
putable description; and in particular, that each Kr is a polyhedral cone.

Observation 2 Assume n, m,m′ are positive integers, p, q ∈ Hn,m, f ∈ Hn,m′

and I = 〈f〉. Then

p ≡ q mod I if and only if p(x) = q(x) + f(x)h(x) for some h ∈ Hn,m.

Since I(Va,b) = 〈aTx − b〉, I(Vj) = 〈xj − x2
j )〉, and I(Ṽj) = 〈xj − x3

j 〉,
Observations 1 and 2 show that if a cone K has a computable description, then
so do the cones Za,b(K), Bj(K), and B̃j(K).

Observation 3 Assume n, m are positive integers and p, q ∈ Hn,m. Let J ⊆
{1, . . . , n} and I = I(VJ) = 〈xj(xj − 1) : j ∈ J〉. Then

p ≡ q mod I if and only if p̃(x) = q̃(x),

where t 7→ t̃ is the map defined by putting t̃(x) =
∑

α∈Nn:|α|≤m tαxα̃ for

α̃i =
{

1 if αi ≥ 1
0 otherwise, i = 1, . . . , n.

Observation 1 and 3 show that if a cone K has a computable description, then
so do the cones W t

J(K) and LJ(K). To show that the same property is satisfied
by the remaining constructions in Sections 4 and 5 (i.e., those in (12), and in
Theorems 11 and 13), as well as to show that each cone in the sequence (15) has
a computable description, it suffices to show that that Σn,2m has a computable
description. This fact readily follows from the following observation.
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Observation 4 Let p ∈ Hn,2m. Then

p ∈ Σn,2m ⇔ ∃Φ � 0 s.t. p = LΦ,

for a suitable linear map L (see, e.g., [16, 27]).

References
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