
Quadratic interior-point methods in
statistical disclosure control

Jordi Castro
Dept. of Statistics and Operations Research

Universitat Politècnica de Catalunya
Pau Gargallo 5, 08028 Barcelona (Catalonia, Spain)

jcastro@eio.upc.es

Technical Report DR 2003-10
May 2003

Report available from http://www-eio.upc.es/~jcastro

Quadratic interior-point methods in statistical

disclosure control

Jordi Castro ∗

Dept. of Statistics and Operations Research
Universitat Politècnica de Catalunya

Pau Gargallo 5, 08028 Barcelona (Spain)
jcastro@eio.upc.es

Abstract

The safe dissemination of statistical tabular data is one of the main
concerns of National Statistical Institutes (NSIs). Although each cell of
the tables is made up of the aggregated information of several individuals,
the statistical secret can be violated. NSIs must guarantee that no indi-
vidual information can be derived from the released tables. One widely
used type of methods to reduce the disclosure risk is based on the per-
turbation of the cell values. We consider a new controlled perturbation
method which, given a set of tables to be protected, finds the closest safe
ones—thus reducing the information loss while preserving confidential-
ity. This approach means solving a quadratic optimization problem with
a much larger number of variables than constraints. Real instances can
provide problems with millions of variables. We show that interior-point
methods are an effective choice for that model, and, also, that special-
ized algorithms which exploit the problem structure can be faster than
state-of-the art general solvers. Computational results are presented for
instances of up to 1000000 variables.

Key words:Interior-point methods – Quadratic Programming – Large-
scale programming – Statistical confidentiality – Controlled perturbation
methods

AMS subject classification 90C06 – 90C20 – 90C51 – 90C90

1 Introduction

In the current Information Society, National Statistical Institutes (NSIs) play
a fundamental role, routinely releasing large volumes of data for their further
exploitation. The released data are usually classified as aggregated or disaggre-
gated. Disaggregated data (a.k.a. microdata or microfiles) correspond to files of
records, each record providing the values for a set of variables of an individual.
Aggregated data (a.k.a. tabular data) are obtained from microdata crossing two
or more variables, which results in sets of tables with a likely large number of
cells. In this paper we focus on tabular data protection (see, e.g., [20, 23] for a
comprehensive introduction to this field). Although each cell shows aggregated

∗Partially supported by the EU IST-2000-25069 CASC project.

1

z1 z2

...
51–55 ... 38000d 40000d ...
56–60 ... 39000d 42000d ...

...

(a)

z1 z2

...
51–55 ... 20 1 or 2 ...
56–60 ... 30 35 ...

...

(b)

Figure 1: Example of disclosure in tabular data. (a) Average salary per age and
zip code. (b) Number of individuals per age and zip code

data for several individuals, there is a risk of disclosing individual data. This is
clearly shown in the example of Fig. 1. The table (a) of that Figure gives the
average salary for age interval and zip code, while table (b) shows the number of
individuals for the same variables. If there was only one individual in zip code
z2 and age interval 51–55, then any external attacker would know the salary of
this single person is 40000 d. For two individuals, any of them could deduce
the salary of the other, becoming an internal attacker. Usually, cells showing
information about few individuals are considered sensitive, although other rules
can be used in practice. See, for instance, [10, 22] for a recent discussion about
sensitivity rules.

In the example of Figure 1 we should protect table (a), a single two-dimensional
table. This can be considered the simplest case. However, in practice we must
deal with more complex situations. The full range can be classified as:

• Single two-dimensional, three-dimensional, and, in general, multidimen-
sional tables. Those tables can be individually protected.

• Hierarchical tables, i.e., sets of tables with variables that have a hierarchi-
cal relation (e.g., zip code and city). In that case, the total or marginal
cells for some table can be the internal cells for the others. They have to
be protected together, to avoid the disclosure of sensitive data.

• Linked tables. It is a generalization of the previous situation, where several
tables are made from the same microdata, thus sharing information or
cells, either hierarchical or not. Again, they have to be protected together.

Eventually, we could consider the whole set of linked tables that can be produced
from some microfiles (e.g., a population census). Clearly, the number of cells
involved in that case could be of several millions. All the above situations
can both refer to frequency tables (i.e., cell values are integer and are usually
associated to the number of individuals in that cell) or magnitude tables (i.e.,
cell values are real, and, for instance, can show the mean for some other variable
of all the individuals in that cell).

The methods for protection of tabular data can be classified in perturbative
(they change the cell values) or nonperturbative (no change is performed). The
most widely used nonpertutative method is cell suppression, where some sec-
ondary cells are removed to avoid the disclosure of some sensitive primary cells

2

(which are removed as well). That results in a difficult combinatorial optimiza-
tion problem, which finds the pattern of secondary suppressions that makes the
table safe with a minimum number of cells or information loss. Some heuristics
[3, 8, 16] and exact methods [11, 12] have been suggested for the cell suppression
problem.

Among the perturbative methods, one of the techniques that received more
attention due to its simplicity was rounding. This method rounds cell values to a
multiple of a fixed integer rounding base. Controlled rounding is a variant where
the additivity of the table is preserved (i.e., rounded marginal values are the sum
of the corresponding slice of rounded cells) [2]. However, preserving the (integer)
additivity is not easy in a multidimensional table or a set of linked tables.
Moreover, in practice it can be necessary to maintain the original marginal
values, instead of rounding them.

To avoid the above lacks of rounding, we suggest a new perturbation method
that finds the minimum-L2-distance (or closest) tables to those to be protected,
preserving marginal values, as well as any set of additional linear constraints.
Finding the minimum-L2-distance tables means we try to minimize the informa-
tion loss when delivering the perturbed table. In this work we focus on tables of
magnitudes (i.e., cell values ∈ IR). For tables of frequencies (integer cell values)
this procedure could still be applied followed by some heuristic post-process.
The main drawback of this approach is the solution of a very large quadratic
optimization problem. We’ll show that interior-point methods can solve this
problem very efficiently. Recently, and independently of this work, a similar
idea was suggested in [9], using the L1 distance for the perturbed table. In
practice, however, the optimization problem obtained with the L2 distance can
be solved more efficiently, as shown in [6].

The structure of the document is as follows. In Section 2 we introduce
the minimum-L2-distance perturbation method. In Section 3 we show some
computational experience using a general state-of-the-art interior-point solver.
From those results we conclude it is worth using a specialized interior-point
algorithm that exploits the problem structure. This is the subject of Section 4.
Finally in Section 5 we present some computational results in the solution of
three-dimensional tables of up to 1000000 cells using a specialized interior-point
algorithm.

2 The minimum-L2-distance perturbation method

Any instance problem, either with one table or a number of (linked or hierar-
chical) tables, can be represented by the following elements:

• A set of cells ai, i = 1, . . . , n, that satisfy some linear relations Aa = b
(a being the vector of ai’s). For instance, for a two-dimensional table of
r+1 rows and c+1 columns (last row and column correspond to marginal
values) we have

r∑

i=1

aij = a(r+1)j j = 1 . . . c (1)

c∑

j=1

aij = ai(c+1) i = 1 . . . r. (2)

3

For a three-dimensional table with l + 1 levels (levels correspond to third
dimension, last level is marginal), the relations are

r∑

i=1

aijk = a(r+1)jk j = 1 . . . c, k = 1 . . . l (3)

c∑

j=1

aijk = ai(c+1)k i = 1 . . . r, k = 1 . . . l (4)

l∑

k=1

aijk = aij(l+1) i = 1 . . . r, j = 1 . . . c. (5)

In practice most tables have positive cell values, and bounds a ≥ 0 have
to be considered.

• A lower and upper bound for each cell i = 1, . . . , n, respectively ai and
ai, which are considered to be known by any attacker. If no previous
knowledge is assumed for cell i, we would simply set ai = 0 (ai = −∞ if
bounds a ≥ 0 were not assumed) and ai = +∞.

• A set P = {i1, i2, . . . , ip} of indices of confidential cells.

• A lower and upper protection level for each confidential cell i = 1, . . . , ip,
respectively lpli and upli, such that the released value should be greater
or equal than ai + upli or less or equal than ai − lpli. Modelling these
”or” constraints would need an extra binary variable for each confidential
cell, resulting in a combinatorial optimization problem. To avoid it, we’ll
assume the user (e.g., the NSI) fixes in advance the sense of the protection
for each confidential cell.

The minimum-L2-distance method finds (using the L2 distance) the closest
set of perturbed values xi to ai, i = 1, . . . , n, such that the tables relations,
lower and upper cell bounds, and sensitive cells protection levels are satisfied.
The optimization problem can be written as

min
x

||x− a||22
subject to Ax = b

ai ≤ xi ≤ ai i = 1 . . . n
xi ≤ ai − lpli or xi ≥ ai + upli i ∈ P,

(6)

x being the vector of the cell values xi, i = 1 . . . n of the perturbed table.
Problem (6) can be applied to any kind of table, since it does not constraint

the structure of the cell relations Ax = b. Any other set of linear conditions
can also be added to (6). For instance, we could impose that, in the perturbed
table, values xi related to some non-confidential cells must be close enough
to the original values ai, e.g., (1 − α)ai ≤ xi ≤ (1 + β)ai for some small α
and β. For cells corresponding to national or regional totals, or for cells with
a zero value, α = β = 0 can be a good choice (i.e., we don’t perturb the
original cell value). This is the usual practice in those situations. We may
also want to affect the distance by any positive semidefinite diagonal metric

4

matrix W = diag(w1, . . . , wn) (e.g., wi = 1/ai). In the computational results of
Sections 3 and 5 we used wi = 1. The more general model can be written as:

min
x

(x− a)T W (x− a) (7)

subject to Ax = b (8)
c ≤ Tx ≤ d (9)
l ≤ x ≤ u, (10)

(9) being any set of additional linear equality or inequality constraints, and l
and u in (10) the final lower and upper bounds of the perturbed cell values.

3 Computational experience using a general interior-
point solver

(7–10) is a large (possibly with millions of variables), separable convex quadratic
problem. It is known that the computational cost of quadratic separable prob-
lems is the same than for linear ones, if solved through an interior-point algo-
rithm [25]. Therefore, in principle, that seems to be the best choice.

To confirm the good behaviour of interior-point methods in this problem, we
performed some preliminary limited computational experience with some small
two-dimensional and three-dimensional tables. These instances, and those used
below in this Section and in Section 5, were obtained with two different gen-
erators that have been used in the literature. The first generator follows the
description of [16]. Cell values are randomly obtained from an integer uni-
form distribution [1. . . 1000] with probability 0.8 and are 0 with probability 0.2.
The second one is similar to the first generator of [11]. Cell values are ran-
domly obtained from integer uniform distributions [1. . . 4] for confidential cells
and {0} ∪ [5 . . . 500] for the remaining entries. Cells to be protected are ran-
domly chosen from the internal (i.e., nonmarginal) cells in both generators. We
extended the original generators for three-dimensional tables using the same
distributions. They can be obtained from the author on request.

We generated three small two-dimensional and three-dimensional tables,
whose sizes are showed in Table 1. Columns r, c, l and |P| give, respectively, the
number of rows, columns, levels and number of sensitive cells for each instance.
The first three rows correspond to two-dimensional tables, and thus column l is
empty. Columns n and m show, respectively, the number of variables (number
of cells) and constraints of the resulting quadratic optimization problem. Note
that, for two-dimensional problems and from (1,2), n = rc and m = r + c, while
for three-dimensional instances and from (3–5), n = rcl and m = (r + c)l + rc.
As for the rest of instances of the paper, we considered that the lower and upper
bounds known for each cell are 0.9ai and 1.1ai, respectively, and the value of
the sensitive cells was set to xi = 1.1ai in the perturbed table. We solved each
problem with four solvers: the interior-point barrier algorithm of Cplex 8.0 [15],
the dual and primal simplex algorithms for quadratic problems of Cplex 8.0 (see,
e.g, [24] for a description of this simplex variant), and Minos 5.5 [18, 19]—one
of the most efficient reduced-gradient type solvers. The CPU time in seconds
required by each solver is shown, respectively, in columns ”Barrier”, ”Dual”,
”Primal”and ”Minos”. The executions were carried on a Compaq Evo N610c

5

Table 1: Dimensions of some small instances and results with four solvers
Cplex 8.0

r c l |P| n m Barrier Dual Primal Minos

25 25 — 10 625 50 0.01 0.02 0.08 1.63
50 50 — 20 2500 100 0.03 0.09 1.02 11.14

100 100 — 20 10000 200 0.21 0.66 22.50 >700∗

10 10 10 20 1000 300 0.05 0.19 0.66 3.15
15 15 15 20 3375 675 0.29 2.92 16.3 164.71
25 25 25 20 15625 1875 4 160 868 >4600∗

∗ Execution was stopped

Table 2: Dimensions of some large instances and results with the barrier Cplex
8.0 solver

r c l |P| n m CPU

1000 500 — 10000 500000 1500 47.1
1000 750 — 10000 750000 1750 72.9
1000 1000 — 10000 1000000 2000 136.0
100 100 25 10000 250000 15000 198.5
100 100 50 10000 500000 20000 896.7
100 100 100 10000 1000000 30000 Not enough memory

notebook, with a Pentium Mobile 4 at 1.8 GHz and 512 MB of RAM. The prob-
lem (7–10) was implemented using the AMPL modelling language [13]. Looking
at Table 1, it is clear that the interior-point solver is the best option, mainly
when the size of the instances increases.

Unfortunately, real problems are much larger than those used for Table 1.
And for large instances even general interior-point solvers can be computation-
ally expensive. This is clearly shown in Table 2, which reports the CPU time
in seconds (column ”CPU”) required by the interior-point barrier algorithm of
Cplex 8.0 for three two-dimensional and three-dimensional large instances. The
meaning of the other columns is the same that in Table 1. The largest three-
dimensional problem, involving one million of cells, could not be solved with
the available memory. The two-dimensional problem with the same number of
variables did not have such limitation. In fact, two-dimensional problems could
be solved more efficiently. This is mainly due to the lesser number of constraints
they involve. It can be concluded that general interior-point solvers are too ex-
pensive, both in memory and execution time, when applied to large instances.
Next Section shows that using a specialized interior-point solver which exploits
the problem structure is instrumental.

6

.
.

.

1

2

.
.

.

2

cr

1

a
2(c+1)

a
r(c+1)

a
(r+1) 1

a
(r+1) 2

a
(r+1) c

a
1(c+1)

Figure 2: Network representation of a (r + 1)× (c + 1) table

4 Exploiting the problem structure

4.1 Two-dimensional tables

The linear relations (1,2) of a (r + 1) × (c + 1) table can be modeled as the
network of Figure 2. Arcs are associated to cells and nodes to equations. In-
jections correspond to marginal row r + 1 and marginal column c + 1. Thus
(7,8,10)—assuming no extra constraints (9) are considered—is a large convex
separable quadratic minimum-cost network flows problem. Some effective spe-
cialized interior-point methods have been devised for linear network problems.
They solve the normal equations at each iteration of the interior-point method
(discussed below) by a preconditioned conjugate gradient. The most effective
preconditioner is the ”maximum spanning tree preconditioner” [21], and its vari-
ants [17]. As far as we know, it has not been applied to quadratic network flows
problems. In that case, the preconditioner would probably not preserve its good
properties, mainly when we are are close to the optimal solution: in a quadratic
problem the optimizer is no longer located in a vertex, and thus the maximum
spanning tree does not correspond to any optimal basis. However, in the first
and intermediate iterations of the interior-point method, it could be more effi-
cient than using a Cholesky factorization, as a general solver does. Therefore,
in principle, there is room for improving the execution times showed in Table
2. This is still part of the further work to be done.

4.2 Three-dimensional tables

As we observed in Table 2, three-dimensional tables are computationally more
challenging than two-dimensional ones with a similar number of cells. As shown
in [5], the relations (3–5) of a three-dimensional table are equivalent to those
of a multicommodity network flows problem with equality mutual capacity con-
straints (see, e.g., Chapter 17 of [1] for an introduction to multicommodity
problems). Indeed, the structure of the constraints (8) defined by (3–5) is




N
N

. . .
N

1l 1l · · · 1l







x1

x2

...
xl


 =




b1

b2

...
bl

al+1




, (11)

7

N ∈ IR(r+c)×(rc) being the network linear relations of the two-dimensional ta-
ble associated to each level (depicted in Figure 2), xk ∈ IRrc, k = 1 . . . l, the
cells (flows) of level k, bk ∈ IRr+c, k = 1 . . . l, the row and column marginals
(injections) of level k, and al+1 ∈ IRrc the level marginal values (mutual arc
capacities). Constraints involving the network matrix N correspond to (3–4),
while (5) are the linking constraints. If marginal values (i.e., the right-hand-side
term of (11)) are considered also variables (for instance, with a large penaliza-
tion for deviations from the original values) the structure of (8) would be an
extension of the standard multicommodity network flows problem:




N −1l
.

N −1l
1l · · · 1l −1l







x1

...
xl

b1

...
bl

xl+1




=




0
...
0
0


 . (12)

The optimization problem (7,8,10) to be solved for a three-dimensional table
is thus a convex separable quadratic multicommodity network flows problem,
which can be written in standard form as

min
x

l∑

k=1

(
(ck)T xk + (xk)T Qkxk

)

subject to Ax = b
0 ≤ xk ≤ uk, k = 1 . . . l,

(13)

where Ax = b is either (11) or (12) (in the latter case, marginal cells are also
variables, and then the two l’s in (13) should be replaced by l + 1, and the
variables bk of (12) should be considered included in the associated xk of (13)).

We extended the specialized interior-point method of [4] (initially developed
for linear multicommodity problems) for the solution of (13). As far as we
know, this is the only specialized method for general quadratic multicommodity
flows, unlike the linear case, where there are several available algorithms (see,
e.g, Chapter 17 of [1]). In fact, the method developed in [4] is not restricted to
multicommodity problems. It can also be used for a wide range of block diagonal
structured problems. In particular, it solves the extended formulation (12).
Next, we justify the above assertions. Most details about the original specialized
interior-point algorithm for linear multicommodity problems are omitted; they
can be found in [4].

The most expensive computation of a primal-dual interior-point method is
the solution of the normal equations

(AΘAT)∆y = b̄ (14)

at each iteration. A is the constraints matrix of (13), ∆y is the direction for
the dual variables, and Θ is a positive definite matrix, which can be partitioned
in l (or l + 1 if formulation (12) is considered) blocks, one for each commodity.
The expression of each block is

Θk = ((Θk
lin)−1 + Qk)−1, (15)

8

Θk
lin being the positive definite diagonal matrix of the linear problem, and Qk

the matrix of quadratic costs of commodity k in (13). In our context, Qk is
diagonal; therefore Θk is also diagonal and easily computable.

Exploiting the structures of A in (11) and Θ, we obtain

AΘAT =
[

B C

CT D

]
=




NΘ1NT · · · 0 NΘ1

...
. . .

...
...

0 · · · NΘlNT NΘl

Θ1NT · · · ΘlNT

l∑

k=1

Θk




. (16)

If, instead, the extended formulation (12) is considered we have

AΘAT =
[

B C
CT D

]
=




NΘ1
i N

T + Θ1
m · · · 0 NΘ1

i
...

. . .
...

...
0 · · · NΘl

iN
T + Θl

m NΘl
i

Θ1
i N

T · · · Θl
iN

T

l+1∑

k=1

Θk
i




,

(17)
where the Θk

i and Θk
m matrices correspond, respectively, to the internal and

marginal cells of the table.
Either using (16) or (17), and appropriately partitioning ∆y and b̄, we can

write (14) as [
B C
CT D

] [
∆y1

∆y2

]
=

[
b̄1

b̄2

]
. (18)

By block multiplication, we can reduce (18) to

(D − CT B−1C)∆y2 = (b̄2 − CT B−1b̄1) (19)
B∆y1 = (b̄1 − C∆y2). (20)

Following [4], (20) is solved by performing a Cholesky factorization of each
diagonal block of B, while system with matrix

H = D − CT B−1C, (21)

the Schur complement of (18), is solved by a preconditioned conjugate gradient
method. A good preconditioner is instrumental for the performance of the
method. The preconditioner of [4] was developed for linear multicommodity
problems. However, it can be applied to any problem where the following result
holds:

Proposition 1 If D and D + CT BC in (18) are positive definite then the
inverse of (21) can be computed as

H−1 =

(∞∑

i=0

(D−1(CT BC))i

)
D−1. (22)

9

Proof. See pp. 860–861 of [4].

Both (16) and (17) satisfy the premises of Proposition 1. Their D−1 matrices
can be easily computed, since

D = Dlin +
l∑

k=1

(Qk)−1,

Dlin being the diagonal positive definite matrix for the linear problem without
the quadratic term. The preconditioner for those problems, as for the linear
ones, is thus obtained by truncating the infinite power series (22) at some term
h . In practice h = 0 or h = 1 are good choices. Note that for h = 0 the
preconditioner is equal to Ĥ−1 = D−1, which, since Qk are diagonal, is also
diagonal. This is instrumental in the overall performance of the algorithm. All
the computational results of this work were obtained with h = 0. The goodness
of the preconditioner depends of the spectral radius of D−1(CT BC)), and, in
practice, it was observed to work better for quadratic than for linear problems
[7]. A thorough study of the behaviour of the spectral radius for quadratic
problems is part of the further work to be done.

5 Computational experience using a specialized
interior-point algorithm

We implemented the specialized interior-point method described in the last Sec-
tion in a code named QIPM. It is a quadratic extension of the package IPM, orig-
inally developed in [4] for linear multicommodity problems. IPM can be found
in http://www-eio.upc.es/~jcastro. QIPM can be obtained from the author
on request. We compared the performance of QIPM against Cplex 8.0 using a set
of 162 three-dimensional instances, obtained with the two generators described
in Section 3. The 81 instances for each generator were produced considering all
the combinations for r, c, l ∈ {25, 50, 100} and |P| ∈ {1000, 5000, 10000} (r, c, l
and |P| with the same meaning that in Tables 1 and 2). The lower and upper
bounds, and the values of the sensitive cells were computed as in Section 3.

Table 3 shows the results obtained with Cplex 8.0 and QIPM for some of
the largest instances. Column ”g” gives the generator used. Columns r, c, l,
|P|, n and m have the same meaning that in previous tables. Columns ”it.” and
”CPU” show the number of interior-point iterations and the execution times for
both codes. The execution environment was described in Section 3. The largest
instances could not be solved with Cplex 8.0 due to a lack of memory. Clearly,
the specialized interior-point method is about two orders of magnitude faster
than the general solver, although the number of iterations is similar. Also, the
execution times of QIPM smoothly increase with the size of the problem, and
almost proportionally to the number of variables. It is worth noting that QIPM
uses standard Cholesky factorization routines, whereas Cplex 8.0 includes a
highly tuned and optimized factorization code. Then, in principle, there is still
room for improving the QIPM performance.

The results obtained for all the 162 instances are summarized in Figures 3–5.
The holes observed in those figures correspond to infeasible problems due to the
tight bounds considered. Figure 3 shows the ratio between the CPU times of

10

Table 3: Dimensions and results with Cplex 8.0 and QIPM for some of the
largest instances

Cplex 8.0 QIPM
g r c l |P| n m it. CPU it. CPU

1 100 50 100 1000 500000 20000 8 892.9 9 6.4
2 100 50 100 1000 500000 20000 7 923.5 7 5.5
1 100 50 100 5000 500000 20000 8 1284.4 9 6.5
2 100 50 100 5000 500000 20000 7 909.2 7 5.4
1 100 50 100 10000 500000 20000 8 884.7 9 6.4
2 100 50 100 10000 500000 20000 7 912.7 7 5.4
1 100 100 25 1000 250000 15000 8 185.1 9 4.1
2 100 100 25 1000 250000 15000 8 206.2 7 3.4
1 100 100 25 5000 250000 15000 9 205.2 10 4.4
2 100 100 25 5000 250000 15000 8 205.1 7 3.5
1 100 100 25 10000 250000 15000 8 179.2 11 4.9
2 100 100 25 10000 250000 15000 8 198.5 7 3.4
1 100 100 50 1000 500000 20000 8 875.4 9 7.8
2 100 100 50 1000 500000 20000 7 899.3 7 6.7
1 100 100 50 5000 500000 20000 8 792.3 9 7.7
2 100 100 50 5000 500000 20000 7 909.6 7 6.5
1 100 100 50 10000 500000 20000 8 866.3 9 7.8
2 100 100 50 10000 500000 20000 7 896.7 7 6.6
1 100 100 100 1000 1000000 30000 ∗ 8 14.1
2 100 100 100 1000 1000000 30000 ∗ 7 13.0
1 100 100 100 5000 1000000 30000 ∗ 9 15.6
2 100 100 100 5000 1000000 30000 ∗ 7 13.4
1 100 100 100 10000 1000000 30000 ∗ 9 15.5
2 100 100 100 10000 1000000 30000 ∗ 7 12.8
∗ Not enough memory

11

Figure 3: Ratio of the Cplex 8.0 and QIPM CPU times

Cplex 8.0 and QIPM with respect to the number of variables of the problem.
As shown by the Figure, the ratios increase with the problem size, which makes
QIPM a very efficient tool for large instances. For instances with more than
250000 variables, QIPM was at least 50 times faster than Cplex 8.0. For the
largest instances it was about 175 times faster.

Figure 4 shows the objective function relative error—in absolute value—of
the QIPM solution,

∣∣∣(f∗Cplex − f∗QIPM)/(1 + f∗Cplex)
∣∣∣, assuming Cplex 8.0 pro-

vides the exact one. The default optimality tolerance used in [4] for linear
problems was 10−6. Although for quadratic problems this tolerance could likely
be decreased, since the preconditioner works better than in the linear case, we
preserved that default value. This explains why most of the relative errors are
around 10−6 in Figure 4. Although there is no a clear tendency, the largest
relative errors were obtained in some of the largest instances.

Finally, Figure 5 shows the difference between the number of interior-point
iterations of QIPM and Cplex 8.0, with respect to the problem size. All the
differences are in the range -1,. . . ,3. QIPM, at most, saved one iteration, while
Cplex 8.0 saved two in several instances. The values are quite uniformly dis-
tributed and independent of the number of variables of the instances.

6 Conclusions

The results obtained with the minimum-L2-distance method show that, first, it
can be a promising tool for the protection of statistical tabular data; and second,
that specialized interior-point methods can solve large instances in few seconds,
more efficiently than general solvers. However, this work can be improved in
several ways. First, the minimum-L2-distance method can be adjusted to fit
the real needs of NSIs, which would likely mean the inclusion of additional
constraints or terms in the objective function. Second, we have to consider
the general situation, that involves multidimensional, hierarchical and linked
tables. That means the development of specialized interior-point solvers for the

12

Figure 4: Objective function relative error of the QIPM solution, in absolute
value

Figure 5: Difference between the number of interior-point iterations performed
by QIPM and Cplex 8.0

13

resulting structured problems [14]. Extending the method for frequency tables,
through some type of heuristic post-process, is another of the future tasks to be
done.

References

[1] R.K Ahuja, T.L Magnanti and J.B. Orlin, Network Flows (Prentice Hall,
Upper Saddle River 1993).

[2] M. Bacharach, Matrix rounding problems, Management Science 9, (1966)
732–742.

[3] F.D. Carvalho, N.P. Dellaert and M.D. Osório, Statistical disclosure in two-
dimensional tables: general tables, J. of the American Statistical Association
89, (1994) 1547–1557.

[4] J. Castro, A specialized interior-point algorithm for multicommodity net-
work flows, SIAM J. on Optimization 10(3), (2000) 852–877.

[5] J. Castro, Network flows heuristics for complementary cell suppression:
an empirical evaluation and extensions, in Inference Control in Statistical
Databases. Lecture Notes in Computer Science, vol. 2316, J. Domingo-Ferrer
(Ed.), (Springer, Berlin 2002) 59–73.

[6] J. Castro, Minimum-distance controlled perturbation methods for tabular
data protection, working paper, Dept. of Statistics and Operations Research,
Universitat Politècnica de Catalunya (2003).

[7] J. Castro, Solving quadratic multicommodity problems through an interior-
point algorithm, in System Modelling and Optimization, E.W. Sachs (Ed.),
(Kluwer, in press). Avalaible from http://www-eio.upc.es/~jcastro as Re-
search Report DR2001-14, Dept. of Statistics and Operations Research, Uni-
versitat Politècnica de Catalunya (2001).

[8] L.H. Cox, Network models for complementary cell suppression, J. of the
American Statistical Association 90, (1995) 1453–1462.

[9] R.A. Dandekar and L.H. Cox, Synthetic tabular data: an alternative to
complementary cell suppression, manuscript, Energy Information Adminis-
tration, U.S. Dept. of Energy, (2002). Available from the first author on
request (Ramesh.Dandekar@eia.doe.gov).

[10] J. Domingo-Ferrer and V. Torra, A critique of the sensitivity rules usually
employed for statistical table protection, Int. J. of Uncertainty Fuzziness and
Knowledge-based Systems 10(5), (2002) 545–556.

[11] M. Fischetti and J.J. Salazar, Models and algorithms for the 2-dimensional
cell suppression problem in statistical disclosure control, Mathematical Pro-
gramming 84, (1999) 283–312.

[12] M. Fischetti and J.J. Salazar, Models and algorithms for optimizing cell
suppression in tabular data with linear constraints, J. of the American Sta-
tistical Association 95, (2000) 916–928.

14

[13] R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language
for Mathematical Programming (Boyd & Fraser, Danvers 1993).

[14] J. Gondzio and R. Sarkissian, Parallel interior point solver for struc-
tured linear programs, Mathematical Programming (to appear). Avalaible
from http://www.maths.ed.ac.uk/~gondzio as Technical Report MS-00-
025, Dept. of Mathematics and Statistics, University of Edinburgh (2002).

[15] ILOG CPLEX, ILOG CPLEX 8.0 Reference Manual Library (ILOG, Gen-
tilly 2002).

[16] J.P. Kelly, B.L. Golden and A.A. Assad, Cell Suppression: disclosure pro-
tection for sensitive tabular data, Networks 22, (1992) 28–55.

[17] S. Mehrotra and J. Wang, Conjugate gradient based implementation of in-
terior point methods for network flow problems, in AMS Summer Conference
Proceedings, L. Adams and J. Nazareth (Eds.), (SIAM, Philadelphia 1996)
124–142.

[18] B.A.Murtagh and M.A. Saunders, Large-scale linearly constrained opti-
mization, Mathematical Programming 14, (1978) 41–72.

[19] B.A. Murtagh and M.A. Saunders, MINOS 5.0. User’s guide, Dept. of Op-
erations Research, Stanford University, (1983).

[20] A. Oganian, Security and Information Loss in Statistical Database Protec-
tion (PhD thesis, Dept. of Applied Mathematics 4, Universitat Politècnica de
Catalunya 2002).

[21] M.G.C. Resende and G. Veiga, An implementation of the dual affine scaling
algorithm for minimum-cost flow on bipartite uncapacitated networks, SIAM
J. on Optimization 3, (1993) 516–537.

[22] D.A. Robertson and R. Ethier, Cell suppression: experience and theory,
in Inference Control in Statistical Databases. Lecture Notes in Computer Sci-
ence, vol. 2316, J. Domingo-Ferrer (Ed.), (Springer, Berlin 2002) 8–20.

[23] L. Willenborg and T. de Waal, Elements of Statistical Disclosure Control.
Lecture Notes in Statistics, vol. 155 (Springer, New York 2000).

[24] P. Wolfe, The simplex method for quadratic programming, Econometrica
27, (1959) 382–398.

[25] S.J. Wright, Primal-Dual Interior-Point Methods (SIAM, Philadelphia
1997).

15

