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Abstract

Density estimation is a classical and important problem in statistics. The aim of
this paper is to develop a new computational approach to density estimation based on
semidefinite programming (SDP), a new technology developed in optimization in the last
decade. We express a density as the product of a nonnegative polynomial and a base den-
sity such as normal distribution, exponential distribution and uniform distribution. The
difficult nonnegativity constraint imposed on the polynomial is expressed as a semidef-
inite constraint. Under the condition that the base density is specified, the maximum
likelihood estimation of the coefficients of the polynomial is formulated as a variant of
SDP which can be solved in polynomial-time with the recently developed interior-point
methods. Since the base density typically contains just one or two parameters, if the like-
lihood function is easily maximized with respect to the polynomial part by SDP, then it is
possible to compute the global maximum of the likelihood function by further maximizing
the partially-maximized likelihood function with respect to the base density parameter.
The primal-dual interior-point algorithms are used to solve the variant of SDP. The pro-
posed model is flexible enough to express such properties as unimodality and symmetry
which would be reasonably imposed on the density function. AIC (Akaike information
criterion) is used to choose the best model. Through applications to several instances we
demonstrate flexibility of the model and performance of the proposed procedure.
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1 Introduction

Density estimation [11, 33, 34] is a classical and important problem in statistics. The aim
of this paper is to develop a new computational parametric approach to density estimation.
Roughly, there are two approaches to this problem; the nonparametric density estimation and
the parametric density estimation. Kernel methods [34], maximum penalized likelihood meth-
ods [11, 13, 14, 40] and Bayesian methods [16, 36, 37, 38, 39] are among well-known nonparamet-
ric approaches. While the models behind these methods are flexible enough to express various
types of distributions, they have several serious drawbacks in statistical inferences. Sometimes
the models are too flexible and therefore we need some regularization or Bayesian framework
to obtain a meaningful result. However, it is not easy to provide a simple and computationally
tractable procedure to determine parameters such as bandwidth or smoothness weight. Local
likelihood methods [9] and mixture distribution methods [18] are intermediate approaches be-
tween parametric and nonparametric approaches. While these approaches sometimes work well,
they also have the same drawbacks as the nonparametric approaches. On the other hand, the
parametric approach is not as popular as the methods mentioned above. This is partly because
the approach fails to provide a flexible model due to the nonnegativity constraint imposed on
the model function. An advantage of the parametric approach is that well-established tools for
inference based on parametric statistical models can be directly applied. Another advantage
is that the parametric density function can be utilized as a part in assembling more general
statistical models such as regression models, time series models and point process models. We
mention GALTHY [3, 4, 32] as an example of the parametric approach. In [6], parametric and
nonparametric density estimation are studied from the viewpoint of MDL principle.

The common difficulty of these approaches is optimization of parameters. In many cases,
determination of parameters in density estimation is formulated as a nonlinear constrained
nonconvex, and sometimes even stochastic program. Therefore, it is difficult to develop a
stable and robust method to solve it. Usually the obtained result is a local optimal solution
and not the global one.

In this paper, we develop a new computational parametric approach to density estimation to
overcome some of these difficulties. We restrict ourselves to one dimensional density estimation,
though the idea can be extended to multi-dimensional case in a reasonable way. We model a
density function as the product of a univariate nonnegative polynomial and a base density such
as normal distribution, exponential distribution and uniform distribution. Thus, the support of
the density function can be any of (−∞,∞), [0,∞) and [a, b], where a, b ∈ R. The novelty of our
approach lies in the use of semidefinite programming (SDP) [5, 7, 25, 43, 46], a new technology
developed in the last decade in the field of optimization. SDP is the problem of minimizing
a linear objective function over the intersection of an affine space and the space of symmetric
positive semidefinite matrices. SDP is an extension of the classical linear programming, and
has wide applications in control, combinatorial optimization, signal processing, communication
systems design, optimal shape design etc. [7, 43, 46]. SDP can be solved efficiently in both
theory and practice with the interior-point methods [5, 15, 17, 25, 26, 27]. We will show that
the maximum likelihood estimate of our model can be computed efficiently and rigorously with
the techniques of SDP.

A necessary and sufficient condition for a univariate polynomial to be nonnegative over the
above-mentioned support sets can be expressed as semidefinite constraints. With this formula-
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tion, when the base density is specified, the maximum likelihood estimation can be formulated
as a variant of SDP, namely, maximizing the log determinant function under semidefinite con-
straint. The formulated optimization problem is not exactly a semidefinite program, but due
to its special form, we can solve it also as efficiently as an ordinary semidefinite program with
the interior-point method. Specifically, we use the primal-dual interior-point method to solve
the variant of SDP [15, 17, 21, 26, 27, 41]. Akaike information criterion (AIC) [1, 2] is used to
choose the best model. We demonstrate that the model is flexible enough and MAIC (minimum
AIC) procedure gives reasonable estimates of the densities.

This paper is organized as follows. In Section 2, we explain our model and formulate
the maximum likelihood estimation as a (variant of) semidefinite program. In Section 3, we
briefly explain SDP and introduce interior-point methods to solve this problem. In Section 4,
the performance of our method is demonstrated through application to several instances. In
Section 5, we discuss possible applications of this approach to other areas of statistics taking
up as an example the estimation of a nonstationary Poisson process. Section 6 is a concluding
discussion.

2 Problem Formulation

Let {x1, ..., xN} be data independently drawn from an unknown density g(x) over the support
S ⊆ R. Our problem is to estimate g(x) based on {x1, ..., xN}. If some prior information on
g(x) is available, we can use an appropriate statistical model to estimate g(x). A flexible model
is necessary to estimate g(x) when we do not have enough information.

In this paper, we develop a computational approach to estimate g(x) based on the following
statistical model

f(x;α, β) = p(x; α)K(x;β), (1)

where p(x; α) is a univariate polynomial with parameter α and K(x;β) is a density function
which is specified with parameter β over the support S. The function K(x;β) is referred to
as a base density (function). We call α and β a polynomial parameter and a base density
parameter, respectively. The polynomial p(x; α) is nonnegative over S. In the following, we
consider the models where the base density is normal distribution, exponential distribution and
uniform distribution. These models will be referred to as “normal based model”, “exponential
based model” and “pure polynomial model”, respectively.

Now, we associate a univariate polynomial with a matrix in the following way. Given x ∈ R,
we define xd = (1, x, x2, ..., xd−1) ∈ Rd. In the following, we drop the subscript d of xd when
there is no ambiguity. A polynomial of even degree n(= 2d − 2) can be written as xTQx
by choosing an appropriate Q ∈ Rd×d. If a polynomial q(x) =

∑n
i=0 qix

i is represented as
q(x) = xT Qx with Q ∈ Rd×d, then we can recover the coefficient qk by

qk = Tr(EkQ),

where (i, j) element of Ek is

(Ek)ij =

{
1 if i + j − 2 = k
0 otherwise

, k = 1, ..., n.
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Let q′(x) =
∑n−1

i=0 q′ix
i be the derivative of q(x). The coefficient q′k is represented as

q′k = (k + 1)Tr(Ek+1Q), k = 1, ..., n − 1.

The main theorem used in this paper together with SDP is the following.

Theorem 2.1 ([24]) Let p(x) be a univariate polynomial of degree n. Then,

(i) p(x) ≥ 0 over S = (−∞,∞) iff p(x) = xT
(n/2+1)Qx(n/2+1) holds for a symmetric positive

semidefinite matrix Q ∈ R(n/2+1)×(n/2+1).

(ii) p(x) ≥ 0 over S = [a,∞) iff

(a)

p(x) = xT
(n+1)/2Q1x(n+1)/2 + (x − a)xT

(n−1)/2Q2x(n−1)/2

for symmetric positive semidefinite matrices

Q1 ∈ R((n+1)/2)×((n+1)/2) and Q2 ∈ R((n−1)/2)×((n−1)/2) (The case when n is odd),

(b)

p(x) = xT
(n/2+1)Q1x(n/2+1) + (x − a)xT

n/2Q2xn/2

for symmetric positive semidefinite matrices

Q1 ∈ R(n/2+1)×(n/2+1) and Q2 ∈ R(n/2)×(n/2) (The case when n is even).

(iii) p(x) ≥ 0 over S = [a, b] iff

(a)
p(x) = (x − a)xT

(n+1)/2Q1x(n+1)/2 + (b − x)xT
(n+1)/2Q2x(n+1)/2 (2)

for symmetric positive semidefinite matrices

Q1, Q2 ∈ R((n+1)/2)×((n+1)/2) (The case when n is odd),

(b)
p(x) = xT

(n/2+1)Q1x(n/2+1) + (b − x)(x − a)xT
n/2Q2xn/2 (3)

for symmetric positive semidefinite matrices

Q1 ∈ R(n/2+1)×(n/2+1) and Q1 ∈ R(n/2)×(n/2) (The case when n is even).

To explain our approach, we focus on the normal based model where S = (−∞,∞) and
K(x;β) is a normal distribution with parameter (µ, σ). We assume that the parameter β =
(µ, σ) is given. Under this condition, as will be explained below, the maximum likelihood
estimation is formulated as a tractable convex program which can be solved easily with the
technique of SDP. The readers will readily see that the exponential based model and the pure
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polynomial model can be treated exactly in the same manner. In the following, C � (�)0
means that a matrix C is symmetric positive semidefinite (definite).

We represent p(x; α) as xT Qx with some Q � 0. The condition for f(x;α, β) to be a density
function is written as ∫

xT QxK(x;β)dx = 1, Q � 0.

It is easy to see that this condition is written as the following linear equality constraint with a
semidefinite constraint

Tr(M(β)Q) = 1, Q � 0,

where
M(β) =

∫
xxTK(x;β)dx.

Note that M(β) is a matrix which can be obtained in closed form as a function of β when K
is normal, exponential or uniform distribution. On the other hand, the log likelihood of the
model (1) becomes

N∑
i=1

log f(xi; α, β) =
N∑

i=1

{log p(xi; α) + log K(xi; β)}

=
N∑

i=1

log(x(i)TQx(i)) +
N∑

i=1

log K(xi; β)

=
N∑

i=1

log Tr(x(i)x(i)TQ) +
N∑

i=1

log K(xi; β),

where x(i) = (1, xi, x
2
i , ..., x

d−1
i )T . Note that the term in log is linear in Q.

Therefore, the maximum likelihood estimation is formulated as follows:

max
Q,β

N∑
i=1

log Tr(X(i)Q) +
N∑

i=1

log K(xi; β)

s.t. Tr(M(β)Q) = 1, Q � 0,

(4)

where X(i) = x(i)x(i)T for i = 1, ..., N . If we fix β and regard Q as the decision variable, this
problem is a convex program closely related to SDP and can be solved efficiently both in theory
and practice with the interior-point method [7, 25, 43, 46]. Let g(β) be the optimal value of (4)
when β is fixed. Then we maximize g(β) to obtain the maximum likelihood estimator. Since β
is typically with “one or two dimension” (e.g., location and scale parameter), maximization of
g can be done easily by grid search and nonlinear programming techniques [12, 28].

In the following, we show that many properties of the density functions such as symmetry,
monotonicity etc., can be expressed by adding linear equality constraints and/or semidefinite
constraints to the above problem. Recall that we are dealing with the normal based model with
the base density parameter (µ, σ). For simplicity, we also assume that µ = 0.

If we consider a symmetric density function with respect to x = 0, we add several linear
constraints Tr(EiQ) = 0 for all odd i such that 1 ≤ i ≤ n because all coefficients of the odd
degrees in the polynomial p(x; α) must be zero.

If we consider a density which is unimodal with the maximum at x = x̂, we do the following.
This condition is equivalent to the two conditions that f(x) is monotone increasing in the inter-
val (−∞, x̂] and is monotone decreasing in the interval [x̂,∞). The first monotone increasing
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condition can be formulated as follows. Since f ′(x;β) = {p′(x)−xp(x)/σ}K(x;β), nonnegativ-
ity of f ′(x;β) in the interval (−∞, x̂] is equivalent to the nonnegativity of {p′(x)−xp(x)/σ} in
the interval (−∞, x̂]. In view of the second statement of Theorem 2.1, we introduce symmetric
positive semidefinite matrices Q1 ∈ R(n/2+1)×(n/2+1) and Q2 ∈ R(n/2+1)×(n/2+1) to represent

p′(x) − x

σ
p(x) = xT Q1x − (x − x̂)xTQ2x.

Note that the degree of p(x) is always even. The formulation is completed by writing down
the conditions to associate Q with Q1 and Q2. This amounts to the following n linear equality
constraints

(k + 1)Tr(Ek+1Q) − 1

σ
Tr(Ek−1Q) = Tr(EkQ1) − Tr(Ek−1Q2) + x̂Tr(EkQ2), k = 1, ..., n,

where El = 0 for l = −1 and l = n + 1. The other monotone decreasing condition on the
interval [x̂,∞) can be treated in a similar manner.

Thus, the approach is capable of handling various conditions about the density function in
a flexible way just by adding semidefinite and linear constraints to (4). From the optimization
point of view, the problem to be solved yet remains in the same tractable class. This point will
be explained in more detail in the next section.

3 Semidefinite Programming and Interior-point Meth-

ods

In this section, we introduce SDP and the interior-point method for SDP, and explain how
the interior-point method can be used in the maximum likelihood estimation formulated in
the previous section. SDP [7, 25, 43, 46] is an extension of LP (linear programming) in the
space of matrices, where a linear objective function is optimized over the intersection of an
affine space and the cone of symmetric positive semidefinite matrices. SDP is tractable convex
programming, and has a number of applications in combinatorial optimization, control theory,
signal processing, structure design etc. [7, 43, 46]. A nice property about SDP is duality. As
will be shown later, the dual problem of a semidefinite program becomes another semidefinite
program, and under mild assumptions they have the same optimal value. The original problem
is referred to as the primal problem in relation to the dual problem. The interior-point method
solves SDP by generating a sequence in the interior of the feasible region. There are two types of
the interior-point methods called the primal interior-point method and the primal-dual interior-
point method. The first one generates iterates in the space of the primal problem while the
other generates iterates in the both spaces of the primal and dual problems. We adopted the
primal-dual method because it is more flexible and numerically stable. We first illustrate basic
ideas of the interior-point methods with the primal method since it is more intuitive and easier
to understand. Then we move on to introducing the primal-dual method.

Remark on literatures: There are many literatures on SDP. The paper [5] and the book [25]
are fundamental works which brought many researchers’ attention to this topic. We mention
[43] as an earlier survey. The book [46] is a handbook of SDP in which various aspects of treated
in detail. The book [7] is a recent textbook in which theory, algorithms and applications are
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treated in depth from a unified point of view. Those who are interested in SDP software
are recommended to see, for example, [35, 42, 47]. Benchmark of several SDP softwares are
reported in [19, 20]. Though the original SDP treated in these literatures is somewhat different
from the problem we deal with in this paper, they will give the readers some good idea about
applicability of the interior-point method to our problem.

3.1 Semidefinite Programming and Primal Interior-point Methods

Let Aij (i = 1, ...,m and j = 1, ..., n̄) and Cj (j = 1, ..., n̄) be real symmetric matrices, where
the size of the matrices Aij and Cj are nj × nj. A standard form of SDP is the following
optimization problem with respect to nj × nj real symmetric matrix Xj , j = 1, ..., n̄:

(P) min
X

n̄∑
j=1

Tr(CjXj),

s.t.
n̄∑

j=1

Tr(AijXj) = bi, i = 1, ...,m, Xj � 0, j = 1, ..., n̄.

(5)

Here we denote (X1, ...,Xn̄) by X, and X � (�)0 means that each Xj is symmetric positive
semidefinite (definite). A feasible solution X is called an interior feasible solution if X � 0
holds. Since the cone of positive semidefinite matrices is convex, SDP is a convex program.
Even though the problem is highly nonlinear, it can be solved efficiently in both theoretical and
practical sense with the interior-point method. The interior-point method is a polynomial-time
method for SDP, and in reality, it can solve SDP involving matrices whose dimension is several
thousands. To date, the interior-point method is the only practical method for SDP.

Now, let Ω be a subset of {1, ..., n̄}, and consider the following problem where a convex
function −∑j∈Ω log detXj is added to the objective function in (5):

(P̃) min
X

∑
j

Tr(CjXj) −
∑
j∈Ω

log detXj,

s.t.
∑

j

Tr(AijXj) = bi, i = 1, ...,m, Xj � 0, j = 1, ..., n̄,
(6)

It is not difficult to see that the maximum likelihood estimation (4) can be cast into this problem
as follows:

(ML) min−
N∑

j=1

log detYj,

s.t. Yj − Tr(X(j)Q) = 0, i = 1, ..., N, Yj � 0, j = 1, ..., N,
Tr(MQ) = 1, Q � 0,

where Yj, j = 1, ..., N are new variables of “one by one” matrix introduced to convert (4) to
the form of (6). Thus, there are n̄ = N + 1 decision variables Yj(j = 1, ..., N) and Q in this
problem.

At a glance, the problem (6) looks more difficult than (5) because of the additional convex
term in the objective function, however, due to its special structure, we can solve (6) as effi-
ciently as (5) just by slightly modifying the interior-point method for (5) without loosing its
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advantages [41, 44]. Due to its form of the objective function, the problem (6) has applications
in statistics. For example, the maximum log likelihood estimate of the Gaussian graphical
model for a given graph is formulated as (6), see, e.g., [29]. In [44], (6) is studied in detail from
the viewpoint of applications and the primal interior-point method.

For the time being, we continue explanation of the interior-point method for (5) to illustrate
its main idea. Since a main difficulty of SDP comes from its highly nonlinear shape of the feasible
region (even though it is convex), it is important to provide a machinery to keep iterates away
from the boundary of feasible region in order to develop an efficient iterative method. For this
purpose, the interior-point method makes use of the logarithmic barrier function

−
n̄∑

j=1

log det Xj.

The logarithmic barrier function is a convex function whose value diverges as X approaches
the boundary of the feasible region where one of Xj becomes singular. Incorporating with this
barrier function, let us consider the following optimization problem with a positive parameter
ν:

(Pν) min
X

∑
j

Tr(CjXj) − ν
∑
j

log det Xj,

s.t.
∑
j

Tr(AijXj) = bi, i = 1, ...,m, Xj � 0, j = 1, ..., n̄,
(7)

where ν is referred to as “barrier parameter.” Since the log barrier function is strictly convex,
(Pν) has a unique optimal solution. We denote by X̂(ν) = (X̂1(ν), ..., X̂n̄(ν)) the optimal
solution of (Pν). By using the method of Lagrange multiplier, we see that X̂(ν) is a unique
symmetric positive definite matrix X satisfying the following system of nonlinear equations in
unknown X and (the Lagrangian multiplier) y:

νX−1
j = Cj −

∑
i

Aijyi, i = 1, ..., n̄,∑
j

Tr(AijXj) = bi, i = 1, ...,m, Xj � 0, j = 1, ..., n̄.
(8)

The set
CP ≡ {X̂(ν) : 0 < ν < ∞}

defines a smooth path which approaches the optimal solution of (P) as ν → 0. This path is
called “the central trajectory of (5).” The main idea of the interior-point method is to solve
the SDP with the following procedure to trace the central trajectory. Starting from a point
close to the central trajectory CP, we solve (5) by repeated application of the Newton method
to (7), reducing ν gradually to zero.

A relevant part of this method is solution of (7) for each fixed ν where the Newton method is
applied. The Newton method is basically a method for an unconstrained optimization problem,
but the problem contains nontrivial constraints X � 0. However, there is no difficulty in
applying the Newton method here, because the problem is a minimization problem and the
term −∑j log detXj diverges whenever as X approach the boundary of the feasible region.
Therefore, the Newton method is not bothered with the constraint X � 0.

Another important issue here is initialization. We need an interior feasible solution to start.
Usually this problem is resolved by so-called “two-phase method” or “Big-M method,” which
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are analogies of the techniques developed in classical linear programming. In the primal-dual
method we introduce later, this point is resolved in a more elegant manner.

Now we extend the idea of interior-point method to solve (6). We consider the following
problem with a positive parameter η:

(P̃η) min
X

∑
j

Tr(CjXj) −
∑
j∈Ω

log detXj − η
∑
j �∈Ω

log detXj ,

s.t.
∑
j

Tr(AijXj) = bi, i = 1, ...,m, Xj � 0, j = 1, ..., n̄.
(9)

We denote by X̃(η) the optimal solution of (9), and define the central trajectory for (6) as

DP ≡ {X̃(η) : 0 < η < ∞}.
Note that X̃(η) approaches the optimal set of (6) as η → 0.

Observe that the central trajectories CP and DP intersects at ν = 1 and η = 1, i.e., X̂(1) =
X̃(1). Therefore, we consider an interior-point method to solve (6) consisting of two stages.
We first obtain a point X∗ close to X̂(1) at Stage 1 with the ordinary interior-point method. In
Stage 2, starting from X∗, a point close to the central trajectory DP for (6), we solve (9) with
the Newton method repeatedly reducing η gradually to zero. This idea is further incorporated
with the primal-dual interior-point method in the next subsection.

3.2 Dual Problem, Primal-Dual Formulation, and Primal-Dual Interior-
point Method

In this subsection, we introduce a dual problem and a primal-dual formulation of the optimiza-
tion problems discussed in the previous section. First, the dual problem of (5) is defined as
follows:

(D) max
y,Zj

∑
i

biyi,

s.t. Cj −
∑

i

Aijyi = Zj, Zj � 0, j = 1, ..., n̄,
(10)

where Zj, j = 1, ..., n̄, is nj × nj real symmetric matrix and y = (y1, ..., ym) is m-dimensional
real vector. We denote (Z1, ..., Zn̄) by Z .

Under mild conditions, (5) and (10) have the optimal solutions with the same optimal value
(the duality theorem) [7, 22, 25, 43]. Analogous to the case of (5), the central trajectory of (10)
is defined as the set of the unique optimal solution of the following problem when parameter ν
is changed:

(Dν) max
y,Zj

∑
i

biyi + ν
∑

j

log det Zj,

s.t. Cj −
∑

i

Aijyi = Zj, Zj � 0, j = 1, ..., n̄.
(11)

We denote by (Ẑ(ν), ŷ(ν)) the optimal solution of (11). Differentiation yields that (Ẑ(ν), ŷ(ν))
is a unique optimal solution to the following system of nonlinear equations:

ν
∑
j

AijZ
−1
j = bi, i = 1, ...,m,

Cj −
∑

i

Aijyj = Zj, Zj � 0, j = 1, ..., n̄.
(12)
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The set
CD ≡ {(Ẑ(ν), ŷ(ν)) : 0 < ν < ∞}

defines a smooth path which approaches the optimal solution of (D) as ν → 0. This path is
called “the central trajectory for (10).” Comparing (12) and (8), we see that (X̂(ν), Ẑ(ν), ŷ(ν))
is the unique optimal solution of the following bilinear system of equations:

XjZj = νI, j = 1, ..., n̄,∑
j

Tr(AijXj) = bi, i = 1, ...,m,

Cj −
∑

i

Aijyi = Zj, j = 1, ..., n̄,

Xj � 0, j = 1, ..., n̄, Zj � 0, j = 1, ..., n̄.

(13)

Note that we also require Xj = XT
j and Zj = ZT

j for each Xj and Zj, since “�” means that a
matrix is “symmetric” positive semidefinite. We define the central trajectory of (5) and (10) as

C = {Ŵ (ν) : 0 < ν < ∞},
where Ŵ (ν) = (X̂(ν), Ẑ(ν), ŷ(ν)). The primal-dual interior-point method solves (P) and (D)
simultaneously by following the central trajectory C based on the formulation (13). Namely,
we solve (13) repeatedly reducing ν gradually to zero.

Like in the primal method, a crucial part of the primal-dual method is the solution procedure
of (13) for fixed ν. There are several efficient iterative algorithms [15, 17, 21, 23, 26, 27]
developed for this subproblem based on the Newton method for a system of nonlinear equations.
We explain these methods in more detail in Appendix.

Now we introduce the dual counterpart of (6) as follows:

(D̃) max
y,Zj

∑
i

biyi +
∑
j∈Ω

log detZj + |Ω|,
s.t. Cj −∑

i Aijyi = Zj, Zj � 0, j = 1, ..., n.
(14)

It is known that the optimal values of (14) and (6) coincides. In order to solve this problem,
we consider the following optimization problem with parameter η > 0:

(D̃η) max
y,Zj

∑
i

biyi −
∑
j∈Ω

log detZj, − η
∑
j �∈Ω

log detZj

s.t. Cj −∑
i Aijyi = Zj, Zj � 0, j = 1, ..., n.

(15)

We denote by (Z̃(η), ỹ(η)) the unique optimal solution of this problem. We define the central
trajectory for (14) as

DD ≡ {(Z̃(η), ỹ(η)) : 0 < η < ∞}.
Note that (Z̃(η), ỹ(η)) approaches the optimal set of (9) as η → 0. The set DD of the solutions
DD is referred to as the central trajectory for (14).

Analogous to (13), we have the following primal-dual formulation of (X̃(η), Z̃(η), ỹ(η)):

XjZj = I, j ∈ Ω
XjZj = ηI, j �∈ Ω∑
j

Tr(AijXj) − bi = 0, i = 1, ...,m,

Cj −
∑

i

Aijyi − Zj = 0, j = 1, ..., n̄,

Xj � 0 j = 1, ..., n̄, Zj � 0, j = 1, ..., n̄.

(16)
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We define
D = {(X̃(η), Z̃(η), ỹ(η)) : 0 < η < ∞}

as the primal-dual central trajectory of (6) and (14). The equation (16) can be solved efficiently
with the same iterative methods for (13).

Now we are ready to describe a primal-dual interior-point method for (6) and (14). As
in the case of the primal method, the primal-dual central trajectories C and D intersects at
ν = η = 1, i.e., Ŵ (1) = W̃ (1). Therefore, we can solve (6) and (14) in two stages as follows.
We first apply the ordinary primal-dual interior-point method for (5) and (10) to find a point
W ∗ = (X∗, Z∗, y∗) close to Ŵ (1). Then starting from W ∗, a point close to the central trajectory
D for (6) and (14), we solve (6) by solving (16) approximately repeatedly reducing η gradually
to zero.

A remarkable advantage of the primal-dual method is its flexibility concerning initialization.
In the primal formulation in the previous subsection, the method needs an initial feasible
interior point. But obtaining such a point is already a nontrivial problem. In the primal-dual
formulation, we can get around this difficulty, because the search directions can be computed
for any (X,Z, y) such that X � 0 and Z � 0. Generally such point does not necessarily satisfy
linear equalities in (16), but we may let them be satisfied in the end of iterations, since they
are linear. In that case, we approach the central trajectory from outside of feasible region.

Another important advantage of the primal-dual method is availability of an upperbound of
the maximum value of the log likelihood function. This bound is obtained as the dual objective
function value. Indeed, we observed in the numerical experiments conducted in the next section
that feasibility of the dual problem (14) is satisfied more quickly and accurately in many cases,
providing an upperbound on the maximum likelihood function value. This point is particularly
important in a situation we need to compute the maximum likelihood estimate repeatedly for
many models. With the dual information, we may truncate iteration in earlier stage if the dual
information suggests the maximum likelihood will not be good.

We provided two versions of the primal-dual method in our implementation; (i) basic algo-
rithm and (ii) predictor-corrector algorithm. The first one follows the central trajectory loosely.
The method is simple and efficient, but often encounters difficulty for ill-conditioned problems
as is reported later. The predictor-corrector algorithm follows the central trajectory more pre-
cisely. This method is slower but is robust and steady, suitable for ill-conditioned and difficult
problems. We describe further details of these methods in Appendix. The primal-dual methods
for (6) is studied in detail in [41], where somewhat different homotopy path leading to W̃ (0)
is introduced to follow. The two-stage algorithm we introduced here seems to work reasonably
well for this statistical application so far.

4 Numerical Results

4.1 Outline

We conducted numerical experiments of our method with the following five models.

(i) Normal based model.

(ii) Exponential based model.

11



(iii) Pure polynomial model where the density function and its first derivative are assumed to
be zero on the boundary of the support.

(iv) Normal based model where we require another additional condition that the estimated
density function is unimodal.

(v) Exponential based model where we require another additional condition that the esti-
mated density function is monotone decreasing.

Some of the datasets used in this experiment are generated by simulation from assumed dis-
tributions and others are taken from real datasets which have been often used for benchmark.
The algorithms are coded in MATLAB and C, and all the numerical experiments are conducted
under MATLAB 6.5 environment with the Windows OS. We used several platforms, but the
typical one is like Pentium IV 2.4GHz with 1GB Memory. The code runs without trouble in a
notebook computer equipped with a Pentium III 650MHz CPU and 256MB Memory.

As was explained before, the maximum likelihood estimation is computed in two steps.
Namely, we optimize parameter α associated polynomials with SDP and at higher level we
optimize parameter β for the base density. We have β = (µ, σ) for (i), β = λ for (ii), and
β = [amin, amax] for (iii), and in (iv), we have β = (µ, σ, γ), where γ denotes the peak of
distribution. Finally in (v), we have β = λ. Assuming that α is optimized with SDP, we just
need to perform at most three (basically one or two) dimensional optimization problems to
accomplish global optimization of the likelihood function.

According to the level of difficulty of SDP to be solved later, we employed

(a) Optimization by nonlinear optimization (for (i), (ii) and (v));

(b) Optimization by grid search (for (i), (ii) and (iv)):

(c) Optimization by manual (for (iii));

for the higher level optimization.
As was explained in the last section, we provided two versions of the interior-point methods;

the basic algorithm and the predictor-corrector algorithm. Generally, we observed that SDPs
for (i), (ii) and (v) are fairly easy while the ones for (iii) and (iv) are more difficult. The
basic algorithm is robust and stable enough to solve (i), (ii) and (v) without trouble. On the
other hand, the basic algorithm got into trouble when we tried to solve (iii) and (iv). In that
case, we need to use a more sophisticated predictor-corrector algorithm. The typical number
of iterations of the basic algorithm is around fifty, and the predictor-corrector algorithm is
between one hundred to two hundred.

Concerning higher level optimization to determine β, we adopted nonlinear optimization and
grid search procedure for (i), (ii), (iv) and (v). Thus, the whole procedure is fairly automated.
As to (iii), optimization is done manually by trial and error, since the SDP routine requires
more time and it is yet difficult to adjust appropriate stopping criteria. Further tune up of the
code is a future subject of research. We compare the models with AIC [1, 2]. Here we note that
the number of parameters should be reduced by one for one addition of one equality constraint.
Therefore, if we define

AIC = −(Log Likelihood) + k,

where k denotes the number of parameters, k will become as follows for the five cases (i)∼(v):
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(i) Normal based model: k = n + 2
(dim(α) = n + 1, dim(β) = 2, (number of linear equalities) = 1).

(ii) Exponential based model: k = n + 1
(dim(α) = n + 1, dim(β) = 1, (number of linear equalities) = 1).

(iii) Pure polynomial model: k = n − 2
(dim(α) = n + 1, dim(β) = 2, (number of linear equalities) = 5).

(iv) Normal based model with unimodality: k = n + 2
(dim(α) = n + 1, dim(β) = 3, (number of linear equalities) = 2).

(v) Exponential based model with monotonicity: k = n + 1,
(dim(α) = n + 1, dim(β) = 1, (number of linear equalities) = 1).

Here n is the degree of the polynomial p(x; α) in the model. We define AIC as one half of the
usual definition of AIC. All the model contains the linear equality constraint that the integral
of the estimated density over the support is one. The pure polynomial model (iii) contains
additional equality constraints that the value of the density function and its derivative on
the both end of its support is zero. In (iv) and (v), we did not give any “penalty term” on
unimodality and monotonicity. In (iv), we introduce a new parameter to specify the peak of the
density but we also have additional linear equality constraint that the derivative of the density
is zero at the peak. Therefore, after all, the penalty term is the same as (i).

The data analyzed here is as follows.

(i) Normal based model

(a) Simulated data 1 generated from a bimodal normal mixture distribution (N = 100).

(b) Simulated data 2 generated from an asymmetric unimodal normal mixture distribu-
tion (N = 250).

(c) Buffalo snowfall data (N = 62) [8, 30, 33].

(d) Old faithful geyser data (N = 107) [45, 34].

(ii) Exponential based model

(a) Simulated data 3 generated from a mixture distribution of an exponential distribu-
tion and a gamma distribution (N = 200).

(b) Coal-mining disasters data (N = 109) [10].

(iii) Pure polynomial model

(a) Old faithful geyser data

(b) Galaxy data (N = 82) [31].

(iv) Normal based model with unimodality condition

(a) The normal mixture distribution dataset treated in (i-b).

(v) Exponential based model with monotonicity condition

(a) Coal-mining disasters data treated in (iii-b).
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4.2 Normal based model

In this subsection, we show the results of the density estimation with the normal based model.

[Simulated data 1: Bimodal normal mixture distribution]
We generated 200 samples from a bimodal normal mixture distribution

0.3√
2π0.52

exp

(
−(x + 1)2

2 · 0.52

)
+

0.7√
2π0.52

exp

(
−(x− 1)2

2 · 0.52

)
.

Figures 1 (a)-(c) show the estimated densities from this data for n = 2, 4, 6. MAIC procedure
picks up the model of degree 4 as the best model. It is seen that the estimated density (solid
line) is close to the true density (broken line). In Figure 2, the change of AIC values is shown
when the degree of the polynomial increases. This figure shows a typical behavior of AIC.

[Simulated data 2: Asymmetric unimodal normal mixture distribution]
Here we generated a simulated dataset of 250 samples from a distribution proportional to

exp

(
−x2

2

)
+ 5 exp

(
−(x − 1)2

0.2

)
+ 3 exp

(
−(x − 1)2

0.5

)
.

This is an asymmetric distribution which has a sharp peak around x = 1. The estimated density
by MAIC procedure is shown in Figures 3. MAIC procedure chooses the model with degree 8.
The values of log likelihood (LL) and AIC are LL = −215.1 and AIC = 223.1. The estimated
density seems to have a bump on the left hand tail. Thus, we see that the estimation of the
density function is more difficult on the left hand tail as long as we estimate the distribution
just from the data. Later we will show how the estimation is stabilized if we assume the prior
knowledge of unimodality of distribution.

[Buffalo snowfall data]
This data is the set of 63 values of annual snowfall in Buffalo, New York, USA from 1910

to 1972, in inches [8, 30, 33]. In Figures 4 (a)-(c), we show profiles of the distribution obtained
with the maximum likelihood estimate when the degree of polynomial is decreased/increased.
MAIC procedure chooses the model of degree 6 and seems to give a reasonable result.

[Old faithful geyser data]
This data contains duration times of 107 nearly consecutive eruption of the Old Faithful

geyser in minutes [45, 34]. The estimated density is shown in Figure 5, where n = 10, LL =
−105.6 and AIC = 117.6. It has longer tails in the both ends, reflecting the nature of the
normal distribution. It seems that the tail of the distribution should be shorter. We also
applied the pure polynomial model. The latter seems to give a better fit with shorter tail, as
is shown later.

4.3 Exponential based model

In this subsection, we show the results of the density estimation with the exponential based
model.
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[Simulated data 3: Mixture an exponential distribution and a gamma distribution]
Here we generated a simulated data of 200 samples from a mixture distribution of an

exponential distribution and a gamma distribution with shape parameter 4

0.2 {2 exp(−2x)} + 0.8

{
x3

3!
exp(−x)

}
.

MAIC procedure picks up the model with degree 2. As is seen in Figure 6, the estimated
distribution obtained by MAIC procedure recovers fairly well the original distribution.

[Coal-mining disasters data]
Coal-mining disasters in Great Britain from 1875 to 1951 are reported in days [10]. See

Figure 12 for the original sequence of disasters. Here we model it as a renewal process to
estimate the interval density function with the exponential based model. MAIC procedure
picks up the model with degree 4, where LL = −699.0 and AIC = 704.0. The estimated
distribution is shown in Figure 7. It is seen that the distribution is considerably different from
the exponential distribution. The estimated density seems to consists of three slopes. It is seen
that there is a small bump around x = 1200. Later we will show how the estimated density
will change if the density function is assumed to be monotonically decreasing.

4.4 Pure polynomial model

In this subsection, we show the profiles of the density functions estimated with the pure poly-
nomial model.

[Galaxy data]
This data is obtained by measurements of the speed of galaxies in a region of the universe

[31]. We applied the pure polynomial model to estimate the density from Galaxy Data, since
the model with normal distribution base did not fit well. MAIC procedure chooses the model
with degree 13. As is seen from Figure 8, the model seems to fit reasonably well to the data,
suggesting that there are three clusters in distribution.

[Old faithful geyser data]
We applied the pure polynomial model to estimate the density function of the Old faithful

geyser data. MAIC procedure chooses the model with degree 14, where LL = −96.4 and
AIC = 108.4. The estimated density is shown in Figure 9. This model fits much better
compared with the normal based model in terms of both likelihood and AIC. The model captures
well the structure of distribution, suggesting that the distribution have a very short tail and
the left peak is higher than the right one.

4.5 Normal based model with unimodality condition

As is demonstrated so far, our approach gives reasonable estimates for many cases. When we
analyze real data, we sometimes have prior knowledge on the distribution such as symmetry
or unimodality. It is difficult to incorporate such prior knowledge into model in nonparametric
approaches. In the following, we pick up the simulated data 2 as an example, and compute the
maximum likelihood estimate with the unimodality condition in our approach. Specifically, we
observe how addition of the unimodality condition changes the estimated density function.
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The distributions obtained by MAIC procedure adding an additional constraint of uni-
modality for the dataset is shown in Figure 10. LL and AIC are −216.4 and 224.5, respectively.
We see that the bumps in the estimated density without unimodality condition disappeared
and the shape of distribution looks closer to the original ones. LL and AIC get worse by about
1.5, where no “penalty” is added to AIC for the unimodality constraint.

4.6 Exponential based model with monotonicity condition

In Subsection 4.2, we estimated the interval density function of the coal-mining disasters data,
and observed that the density function with the best AIC value has a bump around x = 1200.
Here we estimate the density based on the same data with the exponential based model with
monotonicity condition. In Figure 11, we show the best model we found, where the degree
of polynomial is 4, LL = −699.57 and AIC = 704.57. We did not impose any “penalty” on
monotonicity. These values of LL and AIC is almost the same as the ones we obtained in
Subsection 4.2.

5 Other Applications

The approach proposed here can be applied to other areas of statistics such as point process,
survival data analysis etc. In order to clarify this point, here we pick up estimation of the
intensity function of a nonstationary Poisson process as an example. Suppose we have a non-
stationary Poisson process whose intensity function is given by λ(t), and let t1, ..., tN = T be the
sequence of the time when events were observed. We estimate λ(t) as a nonnegative polynomial
function on the interval (0, T ]. The log likelihood is

N∑
i=1

log λ(ti) −
∫ T

0
λ(t)dt.

If T is fixed, then we can apply exactly the same technique as density estimation developed in
this paper. If we represent λ(t) as (2) and/or (3) in Theorem 2.1, the term∫ T

0
λ(t)dt

is represented as ∫ T

0
λ(t)dt = Tr(M1Q) + Tr(M2Q1),

where M1 and M2 are appropriate symmetric matrices. Therefore, the maximum likelihood
estimation is formulated as the following problem:

max
N∑

i=1

log
(
Tr(X(i)

1 Q) + Tr(X(i)
2 Q1)

)
−
(
Tr(M1Q) + Tr(M2Q1)

)
, s.t. Q � 0, Q1 � 0,

where X
(i)
1 and X

(i)
2 , (i = 1, ..., N) are matrices determined from the data. Thus, the problem

just becomes (6) in this case. In Figure 12, we show the estimated intensity function λ(t) for
the coal-mining data with MAIC procedure. The procedure picks up the polynomial of degree
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7, where LL = −690.8 and AIC = 698.8. In the previous section, we analyzed this data as a
renewal process, and AIC of the estimated model is around 704.0 in the both of the cases where
we require or not require monotonicity condition. Thus, we see that the nonstationary Poisson
model seems to fit better in this case than the renewal model.

A similar technique can be applied to the analysis of other statistical problems such as
estimation of a survival function for medical data etc. This is another interesting topic of
further study.

6 Concluding Discussion

In this paper, we proposed a novel approach to the classical density estimation problem by
means of semidefinite programming. We adapted standard interior-point methods for SDP to
this problem, and demonstrated through various numerical experiments that the method gives
reasonable estimate of the density function with MAIC procedure. We also showed that such
properties as unimodality and monotonicity of the density function can be easily handled within
this framework. There are several issues for further research.

The first issue is improvement of implementation. There are two aspects: (i) stability and
robustness and (ii) speed and space. Concerning stability and robustness, we would say that
our code works to some extent in a stable manner in the sense that it solves many of the SDP
problems for optimizing the polynomial parameter α, accomplishing enough level to be used in
a grid search for the base density parameter β. But on the other hand, we admit that there
still remain problems difficult to solve. Therefore, further tune up is necessary in particular if
we synthesize it completely with a more sophisticated nonlinear optimization routine.

Next we discuss the issue of speed and space. In this study we put more emphasis on
robustness of the algorithm. For this reason, the algorithm is a bit slower than expected in
terms of the number of iterations. The code is not also fast enough yet in view of timing data.
This is because our purpose of development of the current code written in MATLAB is to check
feasibility of the idea and we did not pursuit efficiency. Therefore, there are several things to
be done to make it faster.

From the algorithmic point of view, probably it would be possible to reduce the number
of iterations by half or by one thirds if we incorporate with sophisticated implementation
techniques like the Mehrotra predictor-corrector algorithm [35, 41]. Furthermore, it is possible
to develop a code performing one iteration efficiently since our problem is a sparse problem with
a special structure where the most of the blocks Xi is one by one and there are only several
blocks of relatively small semidefinite matrices. When we reasonably exploit these structures
of this problem, the number of arithmetic operations required per iteration of the primal-dual
method becomes O(N3), where N is the number of data and the degree of the polynomial is
assumed to be small. Memory requirement is proportional to O(N2). This suggests that our
approach is not computationally expensive assuming that the number of iteration is typically
up to fifty like other interior-point methods for SDP.

Still these factors may limit applicability of our approach for large problems. However,
the current sophisticated implementation [35, 42, 47] solves the SDP problems involving the
matrices whose dimension is several thousands. Therefore, we have a good chance to solve the
density estimation problems where the number of data is up to several thousands.
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Another remedy to deal with a large problem is to use a histogram density estimate and
then smooth the histogram based on our method. Our method is easily extended to smooth
a histogram. In this case, we are not bothered with choice of the number of the bins in
constructing the histogram. The number of the bins, which corresponds to the number of
samples in this paper, should be as large as possible within the range that the associated
semidefinite program can be solved.

From the statistical point of view, the analysis of the properties of the model on the boundary
would be important. There is a possibility that the estimated polynomial has a root on the
real axis. This is a sort of irregular situation where the standard asymptotic theory for the
maximum likelihood estimator does not hold. We “brutely” applied MAIC procedure even in
this case, but it would be nice if a reasonable treatment of penalty term is developed. Note
that this irregular condition can occur not only for nonnegativity constraint for the density f(x)
itself, but also for nonnegativity constraint for the derivative f ′(x) etc. Study of comparison of
models with different supports based on AIC is also important in our context.

As was explained in the previous section, the techniques of this paper can be applied to other
areas of statistics such as survival data analysis, point process etc. Development of applications
to these areas is also an interesting further topic of research.
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Appendix

A Variants of the Newton Method to Solve (13) and (16)

In this section, we outline the variants of the Newton method for (13) and (16). Since (13)
and (16) are systems of bilinear and linear equations, we may think of directly applying the
Newton method to these systems. But this idea does not work because the X-part and Z-
part of the Newton direction generally does not lie in the space of symmetric matrices. This
difficulty is remedied by replacing the equations XjZj = ζI, Xj = XT

j and Zj = ZT
j in (13)

and (16) (N. B. the latter two conditions on symmetry of Xj and Zj do not appear explicitly

in these systems) with another equivalent system of bilinear equations, say, Φ
(j)
ζ (Xj , Zj) = 0

for j = 1, ..., n̄, and then applying the Newton method to the modified system of equations. A
typical example of Φ

(j)
ζ is

Φ
(j)
ζ (Xj , Zj) =

1

2
(XjZj + ZjXj) − ζI.
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It is known that Φ
(j)
ζ (Xj, Zj) = 0 iff Xj and Zj are symmetric matrices satisfying XjZj = ζI.

Then we apply the Newton method to the system of linear and bilinear equations

Φ(j)
ν (Xj , Zj) = 0, j = 1, ..., n̄∑

j

Tr(AijXj) = bi, i = 1, ...,m,

Cj −
∑

i

Aijyi = Zj, j = 1, ..., n̄,

Xj � 0 j = 1, ..., n̄, Zj � 0, j = 1, ..., n̄.

(17)

to solve (13) and

Φ
(j)
1 (Xj , Zj) = 0, j ∈ Ω

Φ(j)
η (Xj , Zj) = 0, j ∈ {1, ..., n̄}\Ω∑

j

Tr(AijXj) = bi, i = 1, ...,m,

Cj −
∑

i

Aijyi = Zj, j = 1, ..., n̄,

Xj � 0 j = 1, ..., n̄, Zj � 0, j = 1, ..., n̄.

(18)

to solve (16). We do not go into further details of this issue but just mention that there are two
popular search directions employed to solve (13) called HRVW/KSH/M direction [15, 17, 21]
and NT direction [26, 27] which are generated as the Newton directions for certain reasonable
choices of Φ(j)

ν (Xj , Zj), adding another twist to Φν introduced above. These directions are
known to be efficient both in theory and practice [22, 35, 42, 47]. We used HRVW/KSH/M
direction in our implementation.

B Basic Algorithm and Predictor-Corrector Algorithm

In this appendix, we describe in more detail the two versions of the primal-dual methods we
implemented, namely, the basic algorithm and the predictor-corrector algorithm. First we
introduce a few relevant quantities necessary to explain the methods.

For W = (X,Z, y) such that X � 0 and Z � 0, we define

µ(X,Z) ≡
∑n̄

j=1 Tr(XjZj)∑n̄
j=1 nj

.

Suppose that X and Z satisfy the centrality condition XjZj = νI for all j = 1, ..., n̄ for some
ν > 0. It is easy to verify that

µ(X,Z) = ν.

Therefore, we associate any point W = (X,Z, y) such that X � 0 and Z � 0 to a point on the
central trajectory C with the barrier parameter ν = µ(X,Z).

We also introduce analogous concepts for the central trajectory D. Namely, we introduce
the duality gap as

µ̃(X,Z) ≡
∑

j �∈Ω Tr(XjZj)∑
j �∈Ω nj

.
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[Basic Algorithm]
As was mentioned before, the algorithm consists of two stages. In the first stage it finds a

point W ∗ in the neighborhood of Ŵ (1). Then in the second stage, the algorithm generates a
sequence approaching an optimal solution of (6).

[Stage 1]

(Step 0) Let W 0 = (X0, Z0, y0) be an initial solution satisfying X0 � 0 and Z0 � 0. set
k = 1;

(Step 1) If W k is sufficiently close to Ŵ (1), then go to Stage 2.

(Step 2) Compute νk+1. (See the updating scheme of ν described below.)

(Step 3) Set ν := νk+1, and compute the Newton direction ∆W = (∆X,∆Z, ∆y) to (17).

(Step 4) If Xk + ∆X � 0 and Zk + ∆Z � 0 holds, then W k+1 = W k + ∆W . Otherwise take
a step with a fixed fraction θ ∈ (0, 1) of the way to the boundary of semidefinite cones,
i.e., compute the maximum step t∗ such that Xk + t∗∆X � 0 and Zk + t∗∆Z � 0 holds,
and set W k+1 = W k + θt∗∆W .

(Step 5) Set k := k + 1, and return to (Step 1).

[Stage 2]

(Step 0) Set ηk = 1.

(Step 1) If ηk is sufficiently small, then return Xk as an optimal solution to (6)

(Step 2) Compute ηk+1. (See the updating scheme of η described below.)

(Step 3) Set η := ηk+1, and compute the Newton direction ∆W = (∆X,∆Z, ∆y) to (18).

(Step 4) If Xk + ∆X � 0 and Zk + ∆Z � 0 holds, then W k+1 = W k + ∆W . Otherwise take
a step with a fixed fraction θ ∈ (0, 1) of the way to the boundary of semidefinite cones,
i.e., compute the maximum step t∗ such that Xk + t∗∆X � 0 and Zk + t∗∆Z � 0 holds,
and set W k+1 = W k + θt∗∆W .

(Step 5) Set k := k + 1, and return to (Step 1).

We set initial value as X0 = Z0 =
√

ν0I for ν0 > 0 sufficiently large. Updating scheme of ν
and η of Stage 1 (Step 1) and Stage 2 (Step 2) is an important ingredient of the method. We
took the following strategy:

Updating Scheme of ν and η in Basic Algorithm

• Stage 1 (Step 1)

1. If µk ≥ 10, then set νk+1 = 0.5µ(Xk, Zk).

2. If 1 ≤ µ(Xk, Zk) ≤ 10, then set νk+1 = 1.
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• Stage 2 (Step 2)

1. ηk+1 = 0.2µ̃(Xk, Zk).

[Predictor-Corrector Algorithm]
In the predictor-corrector algorithm, we trace the central trajectory more precisely. This

strategy is very important to solve difficult problems. For this purpose, we introduce a neigh-
borhood of the central trajectory C

N (β) ≡
(X,Z, y) :

√∑
j

‖X1/2
j ZjX

1/2
j − µ(X,Z)I‖2

F ≤ βµ(X,Z), X � 0, Z � 0

 , (19)

where β ∈ [0, 1) is the parameter to determine the area of the neighborhood. Note that whether
a point (X,Z, y) is in N (β) or not depends only on X and Z .

Analogously, a neighborhood Ñ (β) of D is defined as

Ñ (β) ≡
(X,Z, y) :

√∑
j∈Ω

‖X1/2
j ZjX

1/2
j − I‖2

F +
∑
j �∈Ω

‖X1/2
j ZjX

1/2
j − µ̃(X,Z)I‖2

F

≤ βµ̃(X,Z), X � 0, Z � 0

}
.

Now, we are ready to describe the predictor-corrector algorithm. The predictor-corrector
algorithm follows the central trajectory more closely. For this reason, the algorithm is more
robust and stable than the basic Algorithm, capable of handling ill-conditioned problems which
the basic algorithm cannot solve. Below we outline the method.

The method consists of two stages: Stage 1 starts from an initial point (X0, Z0, y0) =
(ν0I, ν0I, 0) for ν0 > 0 and finds a point W k, say, in a sufficiently small neighborhood of Ŵ (1).
Starting from W k, Stage 2 generates a sequence approaching W̃ (0).

Two neighborhoods N (β) and N (2β) are provided in Stage 1 to guide the iterates smoothly
to W̃ (1). One iteration of the predictor-corrector algorithm consists of the predictor step and
corrector step. In the beginning of the predictor step the iterate is assumed to stay in smaller
neighborhood N (β). The Newton direction for (17) with ν = 0 is computed, and the largest
step is taken in the direction of the Newton direction toward the boundary of N (2β). Then
corrector steps is performed to bring the iterate back again to N (β). This step is designed
so that the progress made in the predictor step is not lost. Repeating this procedure, the
predictor-corrector algorithm generates a sequence approaching to Ŵ (1).

Stage 2 goes in a similar way. We use different neighborhoods Ñ (β) and Ñ (2β) for guide. In
the predictor step the iterate is assumed to stay in smaller neighborhood Ñ (β). The Newton
direction for (18) with η = 0 is computed, and the largest step is taken in the direction of
the Newton direction toward the boundary of Ñ (2β). Then corrector steps is performed to
bring the iterate back again to Ñ (β). This steps are designed so that the progress made in the
predictor step is not lost. Repeating this procedure, the predictor-corrector algorithm generates
a sequence approaching W̃ (0).
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(a) n = 2 (AIC = 248.19)
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(b) n = 4 (AIC = 247.26)
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(c) n = 6 (AIC = 247.72)

Figure 1: Estimated density function from the simulated data 1 with different degrees of poly-
nomials (normal based model). Each data point is shown by a circle; The bars are the histogram
density estimation (the number of the bins is 20); The solid line is the estimated density; The
broken line is the true density.
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Figure 2: AIC of the estimated density function from the simulated data 1.
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Figure 3: Estimated density function from the simulated data 2 (normal based model). Each
data point is shown by a circle; The bars are the histogram density estimation (the number of
the bins is 20); The solid line is the estimated density; The broken line is the true density.
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(a) n = 4 (AIC = 291.88)
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Figure 4: Estimated density function from the Buffalo snowfall data with different degrees of
polynomials (normal based model). Each data point is shown by a circle; The bars are the
histogram density estimation (the number of the bins is 20); The solid line is the estimated
density.
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Figure 5: Estimated density function from the Old faithful geyser data (normal based model).
Each data point is shown by a circle; The bars are the histogram density estimation (the number
of the bins is 20); The solid line is the estimated density.
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Figure 6: Estimated density function from the simulated data 3 (exponential based model).
Each data point is shown by a circle; The bars are the histogram density estimation (the number
of the bins is 20); The solid line is the estimated density; The broken line is the true density.
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Figure 7: Estimated density function from the coal-mining disasters data (exponential based
model). Each data point is shown by a circle; The bars are the histogram density estimation
(the number of the bins is 20); The solid line is the estimated density.
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Figure 8: Estimated density function from the Galaxy data (pure polynomial model). Each
data point is shown by a circle; The bars are the histogram density estimation (the number of
the bins is 20); The solid line is the estimated density.
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Figure 9: Estimated density function from the Old faithful geyser data (pure polynomial model).
Each data point is shown by a circle; The bars are the histogram density estimation (the number
of the bins is 20); The solid line is the estimated density.
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Figure 10: Estimated density function from the simulated data 2 (normal based model with
unimodality constraint). Each data point is shown by a circle; The bars are the histogram
density estimation (the number of the bins is 20); The solid line is the estimated density; The
broken line is the true density.
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Figure 11: Estimated density function from the coal-mining disasters data (exponential based
model with monotonicity). Each data point is shown by a circle; The bars are the histogram
density estimation (the number of the bins is 20); The solid line is the estimated density.
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Figure 12: Estimated intensity function from the coal-mining disasters data. Each disaster is
shown by a circle.
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