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Abstract. It has been known for almost 50 years [15] that the discrete
l1 approximation problem can be solved by linear programming. How-
ever, improved algorithms involve a step which can be interpreted as a
line search, and which is not part of the standard solution procedures.
This is the simplest example of a class of problems with a structure dis-
tinctly more complicated than that of the so-called nondegenerate linear
programs. Our aim is to uncover this structure for these more general
polyhedral functions and to show that it can be used it to develop what
are recognizably algorithms of simplicial type for minimizing them. A key
component of this work is a compact description of polyhedral convex
functions described in some detail in [11], and this can be applied also in
the development of active set type methods in polyhedral function con-
strained optimization problems. Applications include the development of
new algorithms for problems which include problems in statistical esti-
mation and data mining.

1 Introduction

A convex function is the supremum of an affine family:

f(x) = sup
i∈σ

cTi x− di. (1)

If the index set σ is finite then f(x) is polyhedral. The problem of minimizing a
polyhedral convex function (PCF) f(x) over a polyhedral set Ax ≥ b can always
be written as a linear program (LP):

min
Ax≥b

h; h ≥ cTi x− di, i ∈ σ. (2)

Linear programming can be regarded as the simplest example of a PCF mini-
mization problem. Certainly it is the best known as a result of its extensive use
in applications. It has the generic form

min
x∈X

cTx; X = {x : Ax ≥ b}

where A : Rp → Rn, p < n. Note that it can be written also as

min
x

F (x); F (x) = F1(x) + F2(x).

F1(x) = cTx, type 1 PCF,

F2(x) = δ(x : X), type 2 PCF.



The type 2 PCF is an indicator function which builds vertical walls in Rp+1 above
the plan of the constraint set in Rp. The Kuhn-Tucker conditions characterize
the optimum:

cT = uTA,

ui ≥ 0, ui(Ai∗x− bi) = 0, i = 1, 2, · · · , n,

where “Matlab like” notation is used to identify matrix rows and columns.

This linear program supports a simple picture! This is illustrated in the
following figure which shows a corner of the epigraph of the objective function
sitting above the constraint set in R2.

aT2 x = b2

aT1 x = b1

Ax�b

z = cTx

Table 1. nondegenerate linear program



Here three faces of the epigraph intersect at the indicated extreme point
x ∈ R2, and in this picture each simplex step can move along an edge only to the
adjacent extreme point where it hits one of the walls built around the epigraph
by the indicator function of the constraint set. This illustrates the point that
a line search step is not a part of the basic simplex algorithm. The traditional
problem of degeneracy corresponds here to more than three faces intersecting
at an extreme point. Thus a degenerate vertex is in this sense overdetermined.
Problems arise in naive implementations which select a subset of the active
constraints according to some a priori rule in order to generate a descent edge
as the resulting direction may immediately violate one of the ignored active
constraints.

A rich source of problems possessing an inherently more complex structure
arise in discrete estimation. Here we consider algorithms for linear estimation
problems which are characterised by:

1 The epigraph of the function is generically degenerate in the sense of linear
programming - remember that the problem of minimizing any PCF can
always be written as a linear program.

2 There is a well defined set of necessary conditions which describe the problem
optimum and which can be taken here as defining an appropriate sense of
nondegeneracy.

Let the linear model be
r = Ax− b. (3)

It is assumed that rank(A) = p, and that this suffices to guarantee a bounded
optimum. Associated with extreme points of the epigraph are appropriate sets
of algebraic conditions specifying the faces that intersect there. Typically these
involve a subset of the equations specifying the linear model, and we refer to this
subset as the ”active set” at xσ where σ is the index set pointing to the rows
{Aσ,bσ} corresponding to the active components in the linear model.

Example 1. l1 estimation. This estimation problem has a long history and has
attracted recent attention because of its robustness properties:

min
x

∑
|ri| , r = Ax− b, A : Rp → Rn.

This corresponds to a PCF with the defining affine family specified by

cTj = θTj A,

dj = θTj b,

where θj , j = 1, 2, · · · , 2n has the form of one realization from among the
possibilities:

[±1,±1, · · · ,±1]T .
The cause of the nonsmoothness of the epigraph stems from the ambiguity in
allocating the signs associated with zero residuals. Thus extreme points will be



characterized by sets of (at least) p zero residuals. The necessary conditions
characterizing the optimum extreme point are:

0 =
∑

i∈σC

θiAi∗ +
∑

i∈σ

uiAi∗,

θi = sign(ri), ri 6= 0,

σ = {i; ri = 0},
|ui| ≤ 1, i ∈ σ.

In the case p = 2 a typical extreme point could be characterized by (say)

±r1(x1, x2) = 0,

±r2(x1, x2) = 0.

Here four faces of the epigraph intersect at each extreme point (LP expects 3).
Each face can be picked out by the assignation ±1 ⇒ θi such that directions
into the face satisfy

θ1A1∗t = λ1 > 0,

θ2A2∗t = λ2 > 0.

for convex combination of edge directions. Now the ambiguity of signs associated
with the zero residuals makes more sense. This resolution is illustrated in figure
2.

This figure shows also that the l1 problem typically supports a linesearch.
For example, the line r2 = 0 defines two edges of the epigraph which join at
the extreme point r1 = r2 = 0 so a search for a minimum in the corresponding
direction is possible. What happens when moving through the extreme point in
this direction is an increase in directional derivative, and this is illustrated in a
one dimensional example in the next figure. The function in figure 3 is

f(x) = |x|+ |x− 1|+ |x− 2|+ |x− 3|+ |x− 4|

Example 2. Rank regression [6], [8]. This is an estimation procedure with partic-
ularly attractive properties, but unfortunately a tractable numerical algorithm
had not been one of them until recently. Let nondecreasing scores wi summing
to zero be given. The estimation problem is

min
x

n∑

i=1

wirν(i)

w1 ≤ w2 · · · ≤ wn,

n∑

i=1

wi = 0, ‖w‖ > 0.

Here ν is the ranking set pointing to the ordered residuals, and typical scores
are the Wilcoxon scores:

wi =
√
12

(
i

n+ 1
− 1

2

)
, i = 1, 2, · · · , n.
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r1 = 0

r2 = 0

t

r1 > 0, r2 > 0

r1 < 0
r2 < 0

r1 < 0
r2 > 0

r1 > 0
r2 < 0

Table 2. four faces of the epigraph intersect at extreme points xσ ∈ R2

Nonsmoothness of the epigraph is caused by the possible reassigning of scores
associated with tied residuals as a result of small perturbations about the ex-
treme point. Here the necessary conditions are distinctly more complicated! The
reasons for this relate to additional structural complexity and will motivate sub-
sequent developments.

It turns out that now 6 faces intersect at each extreme point of the epigraph
over R2 providing a first indication of this additional complexity. Consider the
lines characterizing tied residuals with equations

± (r2 − r1) = ± (r3 − r2) = ± (r1 − r3) = 0.

The first point to make is that there is a distinctly more serious redundancy:

r1 − r3 = −r3 + r2 − r2 + r1.

This forces the line given by the third equation to pass through the intersec-
tion of the other two - hence the six faces. Again it makes more sense to look
at characterizing particular faces by looking at directions into faces as convex
combinations of directions along appropriate edges.

θik (Ai∗ −Ak∗) t = λik > 0,

θkj (Ak∗ −Aj∗) t = λkj > 0.
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Table 3. Simple l1 example

The picture that corresponds here to figure 2 is figure 4.
Rank regression has an agreeably high statistical efficiency for a relatively

robust estimator. This is mirrored in surprising apparent smoothness of the
epigraph. This is illustrated by two classic examples [6].

1. The first picture in figure 5 is the classical Hubble dataset giving velocity of
recession against distance. This small dataset presents strong visual evidence
for a linear relation. The second picture gives the graph of the derivative of
the piecewise linear rank regression objective in this case. This is strictly
piecewise constant, but note both the apparent smoothness, and the steep
linear section in the centre of the picture. Here the reciprocal of the slope is
linked to the variance reinforcing the quality of the data:

2. The dataset plotted in figure 6 is associated with the question if two popu-
lations differ only by a constant. Here the observations are on weight gain
in newborn babies corresponding to a treatment and control. The general
properties of the rank regression estimate are similar, but the evidence for a
conclusion is not so strong here, and this is reflected in the smaller slope of
the characteristic linear middle section in the graph of the piecewise constant
derivative:

The use of the affine family description of a convex function does not lead to
a practical linear programming algorithm for the l1 problem. However, practical
LP algorithms for this problem are well known, and one way of approaching
these is through Fenchel duality [11]. Here this gives:

min
u
bTu, ATu = 0, −e ≤ u ≤ e.
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r1 = r2

r2 = r3

r3 = r1

t

r3 > r1 > r2 r3 > r2 > r1

r1 > r3 > r2 r2 > r3 > r1

r1 > r2 > r3 r2 > r1 > r3

Table 4. six faces of the epigraph intersect at extreme points xσ ∈ R2

The approach works also for rank regression, but while the result looks some-
what familiar, and it is an LP, the inequality constraints have both an unusual
description and an apparent fearful complexity if the scores are mostly distinct.

min
u
bTu, ATu = 0, u ∈ conv {wi}

where wi are all distinct permutations of
w1, w2, · · · , wn. l1 is actually a limiting case of rank regression corresponding
to sign scores [10].

2 Identifying structure

The approach taken is one of seeking a compact characterization of extreme
points of the epigraph in order to provide local information concerning the ob-
jective. It is a development of ideas originally presented in [10].



Table 5. Hubble data and Hubble rank statistic

Table 6. Weight data and rank statistic

Definition 1. The set φi (r) , i = 1, 2, · · · , N are structure functionals for

f (r (x)) if each extreme point

[
x∗

f (r (x∗))

]
of epi (f)is determined by a linear

system

φi (r (x
∗)) = 0, i ∈ σ ⊆ {1, 2, · · · , N} .

where σ defines the associated active set.

The rank regression example shows that there can be a natural redundancy
among the structure functionals associated with extreme points of the epigraph.

Definition 2. Redundancy: A structure equation φs = 0 is redundant if

∃π 6= ∅, s /∈ π Ä (φi = 0∀ i ∈ π)⇒ φs = 0

identically in r.



Consider the rank regression example:

φ12 = r2 − r1, φ23 = r3 − r2, φ31 = r1 − r3.

φ12 = φ23 = 0⇒ φ31 = φ23 − φ12 = 0,

φ12 = 0⇒ φ21 = 0.

Note that multiplication by -1 is significant!
In this example φ12, φ23 and φ23, φ31provide examples of nonredundant pairs

and give structure equations corresponding to independent linear systems (here
each of rank 2) over r ∈ Rn. Say that such nonredundant configurations are
obtained by “allowable reductions”.

Definition 3. Linear independence of structure functionals: Let x be in

the intersection of k structure equations pointed to by the index set σ. Then
these structure functionals are linearly independent relative to the design matrix

A provided

rank (Vσ) = k = |σ| ≤ p.

where

V T
σ = ΦTσA ∈ Rp → Rk

Φσ =
[
∇rφ

T
σ(1) · · · ∇rφ

T
σ(k)

]
∈ Rk → Rn.

Definition 4. Non-degeneracy: This requires for a given active set of struc-

ture functionals that each allowable reduction is linearly independent relative to

the problem design. For example, in R2 the additional condition φ45 = 0 ad-

joined to those above cannot be removed by an allowable reduction and leads to

a degeneracy.

Non-degeneracy is assumed here. Consider now a particular allowable reduction
σs Let x = x∗ + εt, ε > 0 small enough. Then, using the piecewise linearity of
the objective and the linearity of the active structure functionals, this permits
the objective to be written in terms of the local structure as

f (r (x)) = fσs (r (x)) +

|σs|∑

i=1

ωi (t)φσs(i) (r (x)) , (4)

In this case:

1. fσs is smooth, ωi (t) provides the nonsmooth behaviour.
2. Each distinct realization of ωi (t) , i = 1, 2, · · · , |σ| characterizes one of the

faces of epi (f) meeting at

[
x∗

f (r (x∗))

]
.

This representation encapsulates the nonsmoothness in the representation of the
objective function. An alternative is to provide an explicit description of the faces
of the tangent cone T and here it is useful to introduce a further concept based
on the approach exemplified in figure 2 and figure 4.



Definition 5. Completeness: Let x∗ be an extreme point. The structure func-

tional description is complete if for each face 1 ≤ s ≤ q of the tangent cone

T (epi (f) ,x∗) ∃σs, |σs| = p such that directions into the face

[
x∗ + εt

f (x∗ + εt)

]
=

[
x∗

f (x∗)

]
+ ε

[
t

f ′ (x∗ : t)

]
(5)

satisfy

V T
σs
t = λ > 0, (6)

where Vσs is nonsingular.

Remark 1. Completeness implies redundancy. This follows because ∀ s the sys-
tems

φσs(i) (r (x)) = 0, i = 1, 2, · · · , p
have the same solution x∗.

Remark 2. Extreme directions in T (epi (f) ,x∗) are given by

tiσs = V −Tσs
ei, i = 1, 2, · · · , p, s = 1, 2, · · · , q. (7)

There is redundancy here. Extreme directions (edges) formed by the intersec-
tion of adjacent faces are determined by an equation of this form for each face
(say σs, σt) so there must be relations of linear dependence on the set of active
structure functionals. What proves to be common is that a particular structure

functional in the allowable reductions increases away from zero.

Example 3. l1 estimation: Here active structure functionals correspond to zero
residuals.

φ2i−1 = ri, φ2i = −ri, N = 2n.

Let an extreme point x∗ be determined by

φσ(i) = ri, σ = {1, 3, · · · , 2p− 1}

Let x = x∗ + εt .Then

f (r (x)) =
∑

|ri(x∗)|>0

|ri|+
p∑

i=1

ωi (t)φσ(i)
(r (x))

For each allowable reduction of the active structure functionals ωi (t)φσ(i)
(r) =

|ri| , ωi = ±1. Completeness needs to characterize faces by explicitly revealing
the associated index sets. For example:

r1 > 0, r2 > 0, r3 > 0⇒ σs = {1, 3, 5}
r1 > 0, r2 < 0, r3 > 0⇒ σs = {1, 4, 5}

There are 2p faces intersecting at x∗ in the l1 example. However, differences
between the sets of equations determining the extreme directions are pretty
trivial in this case.



Example 4. rank regression: Here the structure functionals express the condition
for ties in the ranking set:

φij = rj − ri, 1 ≤ i 6= j ≤ n, N = n (n− 1) . (8)

This example supports two types of structure functional redundancy:

φij = −φji, φik = φjk + φij .

Examples of possible structure equations when p = 3 are

r1 = r2 = r3 = r4,

r1 = r2, r3 = r4 = r5,

r1 = r2, r3 = r4, r5 = r6.

In the first case {φ12, φ13, φ14} form a possible reduced set of structure func-
tionals which specializes the role of r1. Such a pivotal element is here called an
origin. If the tie involves positions l, l + 1, · · · , l + 4 in the sorted list then the
objective function can be written:

f (r) =

n∑

i=5

wµ(i)ri +

(
l+4∑

i=l

wi

)
r1 +

4∑

i=2

ωi−1 (t)φ1i.

However, not all reduced active sets are equal in the sense that this may not be
a good set for completeness. Let t be into the face r1 < r2 < r3 < r4. To express
this condition at nearby points in this direction using these structure functionals
gives

r1 < r2 < r3 < r4 ⇒ φ12 > 0, φ13 > φ12, φ14 > φ13.

The required set must satisfy (6). Thus relaxing this set of structure functionals
does not give the right ordering. Here this is σs = {12, 23, 34} which gives

φ12 > 0, φ23 = φ13 − φ12 > 0, φ34 = φ14 − φ13 > 0.

The above equations show this set is related to the previous set by a linear
transformation. This information can be used to change the current reduced
structure functional basis representation of the non-smooth part of the objective
function:

p∑

i=1

ωi (t)φσ(i) (r(x+ t)) = tTVσω(t),

= tTVσTsT
−1
s ω(t),

=

p∑

i=1

(ωs (t))i φσs(i) (r(x+ t))



where φTσT = φTσs

[
φ12 φ13 φ14

]


1 −1

1 −1
1




=
[
φ12 φ23 φ34

]

Solutions of the systems V T
σs
tsi = ei, i = 1, 2, 3,break ties as follows:

ts1 : r1 < r2 = r3 = r4,

ts2 : r1 = r2 < r3 = r4,

ts3 : r1 = r2 = r3 < r4.

3 Differential properties

Let f(x), x ∈ X be convex. The subdifferential ∂f(x) is the set

{v; f(t) ≥ f(x) + vT (t− x),∀t ∈ X}.

The elements v ∈ ∂f(x) are called subgradients. They generalise the idea of a
gradient vector at points of nondifferentiability of f(x). For example, the vectors[
v

−1

]
give the normals to the supporting hyperplanes to f(x) at points of non-

differentiability, and the subdifferential is the convex hull of gradient vectors at
nearby differentiable points. The subdifferential is important for characterizing
optima and calculating descent directions in nonsmooth convex optimization. In
particular, x minimizes f(x) if 0 ∈ ∂f(x). The corresponding definition of the
directional derivative is:

f ′(x : t) = inf
λ>0

f(x+ λt)− f(x)

λ
, (9)

= max
v∈∂f(x)

vT t. (10)

To compute the subdifferential specialize an allowed reduction σ of the ac-
tive set and make use of the representation (4). The convex hull form of the
subdifferential now gives

vT ∈ ∂f (r (x))→ v = fg + Vσz, (11)

where
fg = ∇xfσ (r)

T
(12)

is the gradient of smooth part of the objective, and

(Vσ)∗i = ∇xφ
T
σ(i) =

{
∇rφσ(i)A

}T
, i = 1, 2, · · · , |σ| , (13)

z ∈ Zσ = conv(ωs, s = 1, 2, · · · , q). (14)



The standard inequality (10) for the directional derivative gives

Zσ =
{
z; (fg + Vσz)

T
t ≤f ′ (x∗ : t)

}
. (15)

It follows that the constraint set is known if the directional derivative can be
computed.

The constraint set Zσ is polyhedral and has the important property that the
extreme points are determined by the extreme directions of T (epi (f) ,x∗). Let
ts be into a face of T as illustrated in the examples sketched in figures 2 and 4.
Then it can be written as a convex combination of the edge directions. The key
calculation is

f ′ (x∗ : ts) = fTg ts + max
z∈Zσ

zTV T
σ ts, (16)

= fTg ts + max
z∈Zσ

{
p∑

i=1

λiz
TV T

σ t
s
i

}
,

≤ fTg ts +

p∑

i=1

λi max
z∈Zσ

zTV T
σ t

s
i

=

p∑

i=1

λif
′ (x∗ : tsi ) . (17)

However, equality between the directional derivative and the component direc-
tional derivatives on the edges follows from the linearity of f on the face con-
taining ts. This shows that ẑs which maximizes (16) also maximizes each of the
terms in (17) and is thus a characteristic of the face.

To compute Zσ it is important to take account of the form of the structure
functionals that remain active on an edge leading from the extreme point. Con-
sider, for example, the tie r1 = r2 = r3 = r4 determining an extreme point in a
rank regression problem corresponding to p = 3. If r1 leaves the group with the
remaining residuals still tied then this determines an edge on which φ12, φ13, φ14

all relax away from zero. On this edge φ23 = φ24 = 0. Thus it is necessary to
relate φ12, φ13, φ14 and φ12, φ23, φ24. In general this will lead to a relation of the
form

[
Φj ∇rφ

T
j

] [Sj
sTj 1

]
= ΦσPj , (18)

where:

1. φj is the structure functional that increases from zero on the edge (here φ12);
2. Φj is the gradient matrix associated with the structure functionals that re-

main active on the edge (here φ23, φ24);
3. the form of the transformation matrix is fixed by the particular mode by

which the number of active structure functionals is reduced in the current
allowable reduction;

4. Pj is a permutation matrix performing the necessary rearrangements which
include switching ∇rφ

T
j to the last column; and



5. the active set condition on the edge is

ΦTj At = 0. (19)

The directional derivative on the edge is given by

f ′ (x∗ : t) = fTg t+ max
z∈Zσ

zTV T
σ t,

= fTg t+max
z∈Zσ

zTP−Tj

[
STj sj

1

] [
ΦTj
∇rφj

]
At,

= fTg t+max
z∈Zσ

zTP−Tj

[
sj
1

]
vTj t,

= fTg t+

{
ζ+
j v

T
j t, v

T
j t > 0,

ζ−j v
T
j t, v

T
j t < 0,

where the edge condition (19) has been used. This gives the inequalities deter-
mining Zσ in the form

ζ−j ≤
[
sTj 1

]
P−1
j z ≤ ζ+

j , (20)

where the bounds are given by

ζ+
j = max

z∈Zσ
zTP−Tj

[
sj
1

]
,

ζ−j = min
z∈Zσ

zTP−Tj

[
sj
1

]
.

This has sneaked in the assumption that both φj , and −φj are active at x∗.
This is not always true (double sided bounds imply redundancy), and the case
where this is not true is interesting. Basically it corresponds to the simple “max”
case where the defining affine family supports “non degenerate” extreme points
having the form

cTν(i)x− dν(i) = C (x) , i = 1, 2, · · · p+ 1.

Suitable structure equations are

φi (x) =
(
cTν(i) − cTν(p+1)

)
x−

(
dν(i) − dν(p+1)

)
= 0 i = 1, 2, · · · , p.

In terms of this set the objective function can be written:

C (x) = cTν(p+1)x− dν(p+1) +

p∑

i=1

ωi (t)φnu(i) (x) ,

the weights characterizing the nonsmoothness satisfy

ωi (t) =

{
1, t is into face i,

0 otherwise,



and the resulting constraint set is

Z =

{
z; zi ≥ 0, i = 1, 2, · · · , p,

p∑

i=1

zi ≤ 1.

}

This case includes discrete maximum norm estimation.

Example 5. Rank regression again: In general, at an extreme point there will
exist multiple groups of ties and each edge leading from this point is obtained
by relaxing a structure functional in one of these groups. This will result in
the group splitting into two subgroups one or both of which could be the triv-
ial group containing a single element. Here the case of a splitting into two
nontrivial subgroups, one of which is tied to the group origin, is considered,
and this has the consequence that a new origin must be found for the sec-
ond subgroup thereby releasing one degree of freedom. Let the original sub-
group be V0 =

[
∇xφ

T
1 · · · ∇xφ

T
m

]
, the subgroup with the same origin be V1 =[

∇xφ
T
1 · · · ∇xφ

T
k−1

]
, with origin residual rm+1, and the new subgroup be

V2 =
[
∇x (φk+1 − φk)

T · · · ∇x (φm − φk)
T
]
.

The relation (18) here has the particular form

[ [
V1 V2

]
∇xφ

T
k

] [ S
sTk 1

]
= V0P, (21)

where the above assumptions imply P = I and

[
S
sTk 1

]
=



I 0

I 0
0
[
1 · · · 1

]
1


 . (22)

This gives the inequalities

ζ−k ≤
m∑

j=k

zj ≤ ζ+
k (23)

for each mode of separation into subgroups (after reordering if necessary).
The procedure used to calculate ζ for a particular splitting of a group com-

pares two computations of f ′(x∗ : t). The first uses the form of the subdifferential
at the extreme point based on the original reduced active set structure to obtain
a lower bound for the directional derivative using (10). In this case the origin

contribution is
(∑m+1

i=1 wi

)
A(m+1)∗t and the contribution from the group before

splitting is

m∑

i=1

zi
(
Ai∗ −A(m+1)∗

)
t =

(
k∑

i=1

zi

)
(
Ak∗ −A(m+1)∗

)
t



where the calculation requires that allowance be made for terms which vanish
on the edge. The second calculation involves the new subgroups, and here only
the contributions of the origin terms matter as the terms involving the active
structure functionals vanish on the edge as a consequence of (19). Specializing
to the case Ak∗t < A(m+1)∗t corresponding to the new subgroup changing more
slowly on the edge gives the contribution

((
k∑

i=1

wi

)
Ak∗ +

(
m+1∑

i=k+1

wi

)
A(m+1)∗

)
t.

This result has the interesting feature that it is independent of z so that the
contribution of the split groups to the directional derivative estimate is already
maximised. The general result [4] is

(
m−k+1∑

i=1

wi

)
≤

m∑

i=k

zπ(i) ≤
(

m+1∑

i=k+1

wi

)
,

where π is any permutation of 1, 2, · · · ,m. This says that the sum of the k
smallest scores must be less than the sums of any k multipliers zi and these sums
must, in turn be less than the sum of the k largest scores for k = 1, 2, · · · ,m.

4 Elements of a simplicial algorithm [10], [11]

The basic steps in a simplicial algorithm are:

1. test at the current extreme point to see if 0 ∈ ∂f . If this test is satisfied then
the current point is optimal;

2. otherwise use the information from this test to determine an edge of the
epigraph generating a descent direction;

3. then proceed using a line search to determine the minimum of the objective
in this direction. This search will terminate at another extreme point.

The current point is optimal provided

∃z̃ ∈ Z, 0 = fg + V z̃. (24)

If this test is unsuccessful then z̃ /∈ Z, and there exists a violated member of the
set of inequalities. Let this be:

ζ−k ≤
[
sTk 1

]
P−1
k z ≤ ζ+

k . (25)

This information can now be used to compute a descent direction. Let the trans-
formation generating the edge be:

V →
[
Vk vk

] [Sk
sTk 1

]
P−1
k . (26)



Then the direction determined by the edge is found by solving the linear system

tT
[
Vk vk

]
= θeTp , θ = ±1. (27)

Here the choice of θ depends on whether the left or right inequality in (25) is
violated. To verify the descent property compute the directional derivative and
use the definition of z̃, and the active set condition (19). This gives

sup
z∈Z

tT (fg + V z)

= sup
z∈Z

(
−tTV z̃+ θ

[
sTk 1

]
P−1
k z

)
,

= sup
z∈Z

(
θ
[
sTk 1

]
P−1
k (z− z̃)

)
,

=

{ (
ζ+
k −

[
sTk 1

]
P−1
k z̃

)
,
[
sTk 1

]
P−1
k z̃ > ζ+

k ,
−
(
ζ−k −

[
sTk 1

]
P−1
k z̃

)
,
[
sTk 1

]
P−1
k z̃ < ζ−k ,

< 0.

A linesearch must now be performed in the descent direction. Preferred meth-
ods work with the piecewise constant directional derivative of the objective func-
tion, and it is assumed that this can be evaluated economically. It is necessary
to have a global solution strategy in order to avoid the potential computational
cost of a close inspection of slope changes - for example, there are O(n2) slope
changes on the line generated by each descent edge in the rank regression prob-
lem if the scores are distinct. In general the minimum is not characterized by a
zero of the directional derivative. Rather, the desired point occurs at a “crossing
point” where the graph of the directional derivative jumps across the axis from
negative to positive in the search direction. This behaviour does not sit well with
standard root finding algorithms and suitable modifications must be sought.

– Hoare’s partitioning algorithm: A linesearch method using this algorithm
(the partitioning step in quicksort) has proved popular in the l1 estimation
problem [2]. Here it is only necessary to know the distances from the current
point to nonsmooth points in the search direction. The required point is then
identified as a weighted median. Hoare’s algorithm has been suggested with
the partition bound defined by the standard median of three approach. In-
terestingly, this proves very successful for problems with randomly generated
model data, but appears much less satisfactory when the model corresponds
to a standard continuous approximation problem.

– Bisection applied to the directional derivative: Here bisection is applied to
refine a bracket of the minimum. Also it is necessary to be able to recognise
when the bracket contains just one active member. The shifting strategy
required to modify the secant algorithm will do. Bisection has optimal prop-
erties which ensure that its worst case performance will never be too bad.

– A secant algorithm: The asymptotic linearity evident in figures 5 and 6
suggests use of the secant algorithm to find the crossing point in the rank
regression problem. This was first implemented in [9]. As noted above the



red: secant step

green: shift step

Table 7. Progress in the secant algorithm

continuous algorithm needs modification [5]. Here a secant step identifies a
new piecewise constant piece of the directional derivative and this is followed
by a shifting strategy which identifies the end of this piece closest to the
crossing point as in figure 7. This modification ensures that the algorithm
is finite. It proves effective in other applications (for example, l1), but an
application of the secant algorithm which includes the shifting step has been
given in which the method encounters every constant piece [11]. This example
is extremely badly scaled.

It is important that evaluation of f ′ (x : t) be no worse than nγ (n) , where γ (n)
is a function of slow growth (γ(n)/n = o(1).

5 Polyhedral constrained problems [11]

The basic problem to be considered is that of minimizing an objective function
subject to a single polyhedral constraint. The polyhedral constraint can provide a
compact representation of relatively complicated systems of linear inequalities,
especially when these serve to represent a global statement of the constraint



structure. The local representations that serve well in the optimization context
are again useful. The basic problem statement is

min
x∈X

f(x); X = {x; κ ≥ g (x)} . (28)

The assumptions made here are that f (x) is strictly convex and smooth (typ-
ically a positive definite quadratic form), and that g (x) is polyhedral convex.
The Kuhn-Tucker conditions for (28) are

∇f(x) = −µvT , vT ∈ ∂g (x) , µ ≥ 0, (29)

where µ = µ(κ) is the constraint multiplier. Here κ plays the role of a control
parameter. As it increases the strength of the constraint is weakened so that

κ→∞, xκ → arg min
x

f (x) , µ (κ)→ 0.

If x∗ is the unconstrained minimum of f(x) then it also solves (28) when κ ≥
g(x∗). This gives µ(κ) = 0 as the corresponding multiplier value. The limit as
κ tends to its lower bound is simplest when x̂ = arg minx g (x) is an isolated
(global) minimum. The condition for a nonempty feasible region requires κ ≥
g (x̂), and in this case

κ→ g (x̂) , xκ → x̂, µ (κ)→ µ (g(x̂))

A closely related problem considers the Lagrangian associated with (28):

L (x, λ) = f(x) + λg (x) , λ ≥ 0. (30)

Note that L is strictly convex as a function of x and that λ is here the control
parameter and it could well be set a priori. The necessary conditions are identical
with those of the constrained problem (29) when λ = µ(κ). Also λ = 0 when
µ = 0. However, the Lagrangian is defined if λ ≥ µ (g(x̂)). If 0 ∈ ∂g (x̂)

o
, the

interior of ∂g(x), then x̂ minimizes L (x, λ) for λ ≥ µ (x̂). The argument uses
that

vT ∈ ∂g (x̂)⇒ µ

λ
vT ∈ ∂g (x̂) , λ > µ.

This follows from the convexity of ∂g because µ
λ
v is on the join of v and 0.

Applications which lead to polyhedral constrained problems either directly
or in Lagrangian form include:

1. The “Lasso” provides a new approach to variable selection [12]. It uses the
structure of the l1 unit ball to force components of the state vector to zero.
This is illustrated in figure 8. The constrained problem considered is

min
x

1

2
rT r; ‖x‖1 ≤ κ. (31)

Here κ is the control parameter. Small values of κ will introduce bias into the
parameter estimates in data analytic applications in addition to controlling
the number of variables selected.
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�
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�
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Table 8. A mechanism for variable selection

2. The Lagrangian form of the same problem has been considered as “Basis
pursuit denoising” [3] . The problem statement is

min
x

{
1

2
rT r+λ ‖x‖1

}
. (32)

3. A differently structured problem occurs in the literature on machine learning
[14] and data mining. The “Support vector regression” formulation is

min
x

{
1

2
‖x‖22 + λ

n∑

i=1

|ri|ε

}
, (33)

|r|ε =
{
|r| − ε, |r| ≥ ε,

0, |r| < ε.
(34)

Here the value of λ controls the trade-off between regularization and bias in the
estimation procedure - small values introducing the most bias. The value of ε
defines the “ε-insensitive region”. Data corresponding to residuals that fall into
the interior of this region is effectively ignored.

6 An active set algorithm

The basic components of an active set algorithm are:



1. A local approximation of the problem (typically a quadratic representation
of the objective and a linearization of the constraints) is constructed at the
current point x0. This generates a linear subproblem which is solved to give
a direction of descent h;

2. This computed direction is used in a linesearch step to generate the next
iterate.

There are differences in detail between the algorithms for the constrained and
Lagrangian form of the problem. These have to do with the choice of local ob-
jective, the constraint set being determined by the active structure functionals
in both cases. Here attention is restricted to the Lagrangian form which is some-
what more interesting as there is a constraint contribution to the local objective.
The necessary local structure is encapsulated in the compact representation of
the subdifferential:

vT ∈ ∂g (x0)⇒ v = g0 + Vσz, z ∈ Zσ. (35)

Here it should be noted that as curvature in f can be important it is no longer
sufficient that the solution be sought among the extreme points of g(x) so that
at the optimum rank(Vσ) = k ≤ p. However, the structure function formalism
applies here also; and the representation of the subdifferential as the convex
hull of nearby gradients provides an accessible route to this. The subdifferential
can be split into components obtained by projecting into the constraint space
spanned by the structure functional gradients vi and into its orthogonal comple-
ment. The derivation of the constraint set is now carried out in the constraint
space where the preceding discussion applies. The splitting is particularly simple
in the cases corresponding to the lasso and to support vector regression.

The descent direction is generated by solving the quadratic program

min
V T
σ h=0

G (x0,h) , (36)

G (x0,h) =
(
∇f (x0) + λgT0

)
h+

1

2
hT∇2f(x0)h. (37)

It is assumed that the exact Hessian can be computed readily. This is certainly
true for the examples referenced which have quadratic objective functions so
that feasible points for (36) satisfy

L(x0 + h, λ) = L(x0, λ) +G(x0,h). (38)

The immediate region of validity for this derivation of h corresponds to the region
of validity of the compact structure functional representation of g(x) about x0.
This will be called the region of lc-feasibility. It is characterized by:

– the referenced index set σ points to the active structure functionals at x0;
– the constraints in the quadratic program express the condition that the

current active structure is preserved in the computed direction; and
– g0 is the gradient of the differentiable part of g in the compact representation

(4) about x0.



Lemma 1. Let h minimize G. Iff h 6= 0 then h is a descent direction for mini-

mizing L (x, λ).

Proof. By assumption hT∇2f(x0)h ≥ 0. As G(x0, 0) = 0 it follows that

h 6= 0⇒ minG < 0⇒
(
∇f (x0) + λgT0

)
h < 0. (39)

A direct computation now shows that the directional derivative is negative.

L′ (x, λ : h) = max
vT∈∂L

vTh,

= max
z∈Zσ

{
∇f (x0) + λ (g0 + Vσz)

T
}
h,

=
(
∇f (x0) + λgT0

)
h < 0.

The next phase of the computations is simplest when (38) is satisfied corre-
sponding to f a quadratic form. There are two possibilities:

1. either x1 = x0 + h is an lc-feasible minimum of the quadratic program; or
2. the the step to the minimum in the direction of h requires at least one new

structure functional to change sign or become active. The situation here
differs from the case of purely polyhedral objectives in that the search need
not terminate at a new active structure functional.

If x1 is an lc-feasible minimum then the necessary conditions give

0 = ∇f(x1)
T + λ (g0 + Vσz1) , (40)

where z1 is the multiplier vector for the quadratic program. If

z1 ∈ Zσ ⇒ 0 ∈ ∂L(x1, λ)

then x1 is optimal. If not then Vσ does not correspond to the correct active set
at the optimum and must be modified. This follows the same pattern as before.
It is necessary to :

1. relax an active structure functional associated with a violated constraint (20)
on Zσ;

2. redefine the local linearization.

If φj is the structure functional deleted from the active set then the index set
becomes σ ← σÂ {j}. The corresponding modification of the active set is

[
Vj vj

] [ S
sTj 1

]
= VσPj ,

g
j
1 = g0 + ζjvj ,

ζj =

{
ζ−j ,

[
sTj 1

]
P−1
j z1 < ζ−j ,

ζ+
j ,
[
sTj 1

]
P−1
j z1 > ζ+

j .



Lemma 2. The solution of the revised QP is a descent direction which is lc-

feasible. Let

hj = arg min
V T
j h=0

G (x1,h) .

Then hj is a descent direction, and is lc-feasible in the sense that the behaviour

of φj is determined by

[
sTj 1

]
P−1
j z1 > ζ+

j ⇒ vTj hj > 0,
[
sTj 1

]
P−1
j z1 < ζ−j ⇒ vTj hj < 0.

Proof. It is necessary to verify first lc-feasibility. The necessary conditions give

∇2fhj +∇fT + λ
(
g
j
1 + Vjz1

)
= 0, V T

j hj = 0,

so that

hTj ∇2fhj + hTj
(
∇fT + λg0

)
+ λζjh

T
j vj = 0. (41)

Also, if follows from (40) that

0 = hTj
(
∇fT + λg0 + λVσz1

)
,

= hTj
(
∇fT + λg0

)
+ λ

[
sTj 1

]
P−1
j z1h

T
j vj . (42)

Combining (41) and (42) gives

hTj ∇2fhj + λ
(
ζj −

[
sTj 1

]
P−1
j z1

)
hTj vj = 0.

The result follows from this using the mode of violation of the constraint in-
equalities (20). The descent property now follows from Lemma 1.

If f(x) is not a quadratic form then the optimum is approached iteratively
using the solution of the locally defined quadratic program as a descent direction
at each stage. Note that a line search in this computed descent direction is then
used to determine the next iterate. Also there is a line search used in the solution
of the current quadratic program. Thus there could be some scope for balancing
the computational load between these two component steps in each iteration.

The quadratic program line search is complicated by the occurrence of jump
discontinuities in the directional derivatives so that the minimum may occur
either at a new active structure functional corresponding to a crossing point or
at a zero of the directional derivative forced by the curvature of the objective
function. It has proved convenient to work with the directional derivative and to
first isolate the minimum to an interval which contains at most one discontinuity.
If there are none then the secant algorithm can be applied once on this interval. If
there is exactly one then it is straightforward to distinguish between a crossing
point and a zero. It is necessary to test first for a crossing point, but if this
fails then the zero can be determined by a single secant step on the appropriate
subinterval.



7 A homotopy algorithm

In [11] an effective algorithm for implementing the lasso is described. This makes
use of the result that the optimal solution trajectory x(κ) is a piecewise linear
function of the constraint bound κ in (31). Here the resulting algorithm has
much of the character of a stepwise variable selection procedure with the added
advantage that the global optimum is obtained for each value of the selection
parameter κ. This contrasts with the classical stepwise regression procedure
where the local greedy algorithm employed need not produce a global result.
The existence of a piecewise linear optimal homotopy path extends to the case
where the objective f(x) is a positive definite quadratic form and the constraint
g(x) is polyhedral convex.

The problem is considered in Lagrangian form and the multiplier λ is used in
the role of homotopy control parameter. Let x be optimal for the current value
of λ. Then the necessary conditions are

∇f(x)T + λ (gσ + Vσzσ) = 0

where σ is the index set pointing to the current (non redundant) set of active
structure functionals which correspond to equality constraints here. Assume zσ ∈
Zo
σ. This, plus continuity of the minimizer x(λ), ensures local differentiability

with respect to λ. This gives

∇2f
dx

dλ
+ Vσ

d

dλ
(λzσ) + gσ = 0, (43)

V T
σ

dx

dλ
= 0. (44)

Strict convexity plus the nonredundancy assumption implies that the augmented
matrix of the quadratic program (36) is nonsingular. Here this gives

[
dx
dλ

d
dλ

(λzσ)

]
= −

[
∇2f Vσ
V T
σ 0

]−1 [
gσ
0

]
. (45)

The piecewise linear nature of the solution trajectory follows because the right
hand side is independent of λ. The consistency of the assumptions made is
verified readily. Adding δ times (43) to the necessary conditions gives

∇fT + δ∇2f
dx

dλ
+ (λ+ δ)gσ + Vσ

(
λz+ δ

d

dλ
(λz)

)

= ∇f(x+ δ
dx

dλ
) + (λ+ δ) (gσ + Vσz(λ+ δ))

= 0

as the Taylor series for λz terminates after the first derivative term and Zσ is
constant, depending only on the constant derivative information, on any set on
which the active structure functional information is preserved exactly. This shows
that optimality is preserved under the current structure provided z(λ+ δ) ∈ Zσ.



To determine the behaviour of L (x(λ), λ)) on the homotopy trajectory con-
sider a displacement δ that does not involve a slope discontinuity. Then

∆L = L

(
x+ δ

dx

dλ
, λ+ δ

)
− L(x, λ)

= f

(
x+ δ

dx

dλ

)
− f (x) + λ

(
g

(
x+ δ

dx

dλ

)
− g (x)

)
+ δg

(
x+ δ

dx

dλ

)
.

This gives

lim
δ→0

∆L

δ
= L′

(
x :

dx

dλ
, λ

)
+ g(x),

where

L′
(
x :

dx

dλ
, λ

)
= ∇f(x)T dx

dλ
+ λg′(x :

dx

dλ
).

Also

L′
(
x :

dx

dλ
, λ

)
= 0.

This follows from the necessary conditions because

∇f(x)T dx
dλ

= −λgT dx
dλ

,

= λ
dx

dλ

T

∇2f
dx

dλ
> 0,

and

g′(x :
dx

dλ
) = sup

z∈Zσ

{g + Vσz}T
dx

dλ
,

= gT
dx

dλ
< 0.

A consequence is that f(x) increases along the homotopy path while g(x) de-
creases. For fixed λ the minimizer of L also minimizes 1

λ
f + g so the minimizer

must tend to the minimizer x̂ of g for large λ. It follows that x̂ is the only limit
point as λ→∞. Further, it is attained for finite λ. To see this let the necessary
conditions for the minimum of g be

ĝ + V̂ ẑ = 0, ẑ ∈ Ẑo.

Necessarily V̂ has its full row rank so that it follows that there is λ0 large enough,
and a ball S0(λ0) centred on x̂ such that

V̂ +{−ĝ − 1

λ
x} ∈ Ẑ,∀x ∈ S0,∀λ > λ0.

Thus x̂ is the unique minimizer of L(x, λ), λ > λ0.
It remains to consider what happens at the end of the current linear section

as λ increases. Two types of behavior trigger slope discontinuities:



1 The multiplier vector zσ(λ) reaches a boundary point of Zσ. In this case
a structure functional (say φj) is about to become inactive. By (20) this
implies an equality [

sTj 1
]
P−1
j zσ = ζ±j .

Updating the necessary conditions gives

∇fT + λ
{
gσ + ζ±j vj + Vjz−

}
= 0. (46)

It follows from (18) and continuity of x(λ) that the homotopy continues with
the reduced constraint set defined by Vj where

[
Vj vj

] [Sj
sj 1

]
= VσPj . (47)

2 A new nonredundant structure functional φj becomes active. Here the re-
vised necessary conditions give

∇fT + λ

{
gσ − ζ±j vj +

[
Vσ vj

] [ zσ
ζ±j

]}
= 0. (48)

The homotopy continues with the updated set of active structure functionals
and continuity requires that the modified multiplier vector move off its bound
and into the interior of the updated constraint set.

Example 6. The lasso (31), (32). Here:

f(x) =
1

2
‖r‖2, g(x) =

p∑

i=1

|xi|,

and the structure functionals are

φ2i−1 = xi, φ2i = −xi, i = 1, 2, · · · , p.

Let the current point on the homotopy trajectory be characterized by an index
set |σ| = k < p pointing to the (appropriately signed) nonzero components
of x, so it also indicates the inactive structure functionals, and let Pσ be the
permutation matrix such that

Pσx =

[
xσ
0

]
, Pσg =

[
θσ
0

]
, Pσz =

[
0
zσ

]
. (49)

Also define the Cholesky factorization

PσA
TAPT

σ =

[
M11 M12

M21 M22

]
=

[
UT

1

UT
12 U

T
2

] [
U1 U12

U2

]
, (50)

and note that

Pσ
[
V 0

]
PT
σ =

[
0 0
0 I

]
.



Then (43), (44) are equivalent to




[
M11 M12

M21 M22

] [
0 0
0 I

]

[
0 0
0 I

]
0







[
dxσ
dλ
dxc
dλ

]

[
d
dλ

(λzc)
d
dλ

(λzσ)

]


+



[
θσ
0

]

0


 = 0.

It follows immediately that the contributions from the fixed state variables xc,
corresponding to the active structure functionals, and multipliers zc, correspond-
ing to inactive structure functionals, are zero. The result of solving for the re-
maining quantities is

M11
dxσ
dλ

+ θσ = 0

M21
dxσ
dλ

+
d

dλ
(λzσ) = 0.

Making use of the factorization (50) of M leads to the equations

U1
dxσ
dλ

= −UT
1 θσ = −wσ, (51)

and

UT
12U1

dxσ
dλ

+
d

dλ
(λzσ) = −UT

12wσ +
d

dλ
(λzσ).

Simplifying gives
d

dλ
(λzσ) = UT

12wσ. (52)

Equations (51) and (52) are equivalent to the homotopy equations given in [11]
when the relation

dλ

dκ
= − 1

‖wσ‖2
(equation (6.23) in [11]) is used.

Example 7. Support vector regression (33). This example finds the residual struc-
ture in the constraint while the objective function is a simple function of the
state. We have:

f(x) =
1

2
‖x‖2, g(x) =

n∑

1=1

|ri|ε.

The active structure functionals correspond to residual values ri = ±ε. At the
current point let these be referenced by index sets ε+ and ε− respectively, the
set corresponding to values |ri| < ε by σ0, and the values ri > ε, ri < −ε by σ+,
and σ− respectively. Then

V∗i = AT
ε(i)∗, ε = ε+ ∪ ε−, (53)

g =
∑

i∈σ+∪σ−

AT
i∗θi, θi = sgn(ri). (54)



It proves convenient to compute an orthogonal factorization of V . Let

V =
[
Q1 Q2

] [U
0

]
.

Then

dx

dλ
= −Q2Q

T
2 g, (55)

d

dλ
(λz) = −U−1QT

1 g. (56)

This shows that the trajectory is piecewise linear. Continuity of the state variable
is used to patch the pieces together, and up and downdating to take account of
changes in active structure functionals follows standard practice.

8 Computational experience

The complexity of the simplex algorithm for linear programming has been an-
alyzed under random and worst case scenarios. However, this work does not
directly apply to polyhedral function minimization when there is the possibility
of a line search step, and this case is less well understood. In the case of deter-
ministic approximation problems where there is a well defined set of continuously
differentiable basis functions then the best results are obtained for discrete max-
imum norm approximation in the case that the Haar condition (equals nonsin-
gularity of the p× p minors of the design matrix) holds. These results have been
obtained for a dual simplex algorithm applied to a linear programming formula-
tion of the problem and need not apply to other formulations [10]. This method
can be considered as a discretization of the classical first algorithm of Rémès
for which p-step second order convergence has been proved [13]. This suggests
strongly that a complexity estimate will involve O(p) simplex steps and will be
effectively independent of the fineness of the discretization which here determines
n. A formal argument has been presented in [10] to show that something similar
in the sense of predicting a complexity estimate depending on p happens in the
discrete l1 approximation problem, and here the line search is seriously impor-
tant in an effective algorithm. If the l1 problem data is randomly generated, and
this is the case, for example, if a popular way of generating test problems with
known solutions [1] is used, then these results do not apply. However, computa-
tional experience suggests the complexity has a dominant dependence on p but
with a further factor depending on n which has slow growth [10]. The two cases
need not lend themselves to similar line search strategies [11].

Rank regression has been considered here as an example with significant
intrinsic complexity. In this case the empirical evidence obtained from compu-
tations with simplicial methods involving a line search strategy suggests that
the gross indicators such as the total number of descent steps have a dominant
dependence on p which is similar to that in the l1 case. However, the work
per step is somewhat greater and more care is now needed in treating the line



search because of the potential O(n2) slope changes in the computed direction.
The secant algorithm is strongly favoured because of the asymptotic linearity
properties of the rank regression estimator [8]. These offer more if the model
is exact because now there are consistency results [7] which show that a good
initial approximation can be obtained by iterating a few least squares problems
with a common design matrix. If advantage is taken of this property then the
computational experience [11] suggests relatively few iterations of the simplicial
algorithm are required. Typically it requires p steps to establish a first extreme
point but then few more are required to complete convergence.

Polyhedral function constrained problems fall into two groupings depending
on the complexity of the constraint formulation. In the lasso this is low as it
depends only on the state variable x and typically p¿ n in standard data sets.
For example, for the Iowa wheat data p = 9, n = 33, while for the Boston
housing data p = 13, n = 506 - both sets can be found readily by standard web
searches. For both these data sets, for the lasso started at κ = 0, the homotopy
algorithm turns out to be clearly the method of choice as it takes exactly p
simplicial steps of O(np) operations applied to an appropriately organised data
set [12] to compute the solutions for the full range of κ in each case with two
more steps being necessary if an intercept term is included in the housing data.
This is essentially the minimum number possible, the cost is strictly comparable
with the work required to solve the least squares problem for the full data set,
and a great deal more information is obtained.

Support vector regression provides an example in which the residual vec-
tor in the linear model appears in the polyhedral function constraint. This now
contains a number of terms equal to the number of observations so that it is
distinctly more complex than in the lasso. The active set algorithm proves rea-
sonably efficient on the Boston housing data set and results are summarized in
Table 9. Here the data presented are the number of iterations to convergence
(nits), the number of residuals in the ε-insensitive region (n0) and the number
of residuals at the ε bound (ne) for a range of values of λ and ε. Each iteration

ε λ nits n0 ne

10 10 121 471 13
1 113 471 10
.1 92 459 10

1 10 144 135 13
1 130 135 13
.1 201 129 12

.1 10 262 16 13
1 179 14 12
.1 183 12 11

Table 9. Active set algorithm: Boston housing data

is an O(np) sweep operation on a similar tableau data structure to that used



in the lasso [11]. The total work corresponds very roughly to O(10) solutions of
the least squares problem for the corresponding design matrix. For comparison,
the corresponding values for the Iowa wheat data are given in Table 10. Here

ε λ nits n0 ne

10 10 32 17 9
1 32 18 8
.1 33 18 6

1 10 31 3 9
1 26 2 8
.1 16 0 6

.1 10 54 1 9
.1 34 0 8
.1 18 0 5

Table 10. Active set algorithm: Iowa wheat data

the increase in computing cost for the housing data example suggests a stronger
dependence on n than in the lasso computations. This would seem to reflect the
additional complexity in the polyhedral constraint.

The homotopy algorithm is relatively less favoured in this case. The obvious
starting point in the sense that the solution x = 0 is known is λ = 0. Results for
the two data sets are given in Table 11 and Table 12. The number of iterations
is very much larger than in the lasso, and only snapshot results are presented,
but these make clear that the initial progress is very slow with only very small
increments in λ being taken and with few structure functionals being active at
any increment point. Note that this is the region where bias can be expected
to be maximized so there well could be a message that in this region results
are of little interest. Initially all the residuals are of the same sign and (mostly)
bigger than |λ| in both examples, and passing through the ε-insensitive region
takes a minimum of two simplicial steps, so that O(n) homotopy steps can be
anticipated. However, the process of settling down is reflected in the number of
iterations and is more convoluted than one involving just a sequence of simple
sign changes. Eventually the final progress to the large λ solution minimizing the
polyhedral objective is reasonably efficient. For example, for the housing data,
around the last 1000 steps are taken in moving λ up to its final value from values
which are order 10−4 smaller. This corresponds to between 5 and 10 applications
of the active set algorithm and, by construction, each step along the homotopy
trajectory is optimal for the current λ values.

These results suggest that homotopy may be most useful in some form of
post-optimality strategy. For example, the active set algorithm could be used
to find starting values for the homotopy, especially starting values avoiding the
small initial values of λ. The homotopy algorithm could then be used to provide
more local information for decision making purposes.



ε λ nits n0 ne

.1 6.2813 -7 800 7 1
1.3640 -4 1600 4 5
1.2205 -2 2400 11 11
1.7506 -1 3200 14 11
1.3873 +2 3504 17 13

1 8.4170 -7 900 63 1
5.6961 -4 1800 81 5
2.5095 -2 2700 106 11
8.5303 +0 3600 134 13
2.6616 +2 3630 137 13

5 3.3052 -7 600 189 1
3.1050 -5 1200 276 3
3.7948 -3 1800 318 9
1.5889 -1 2400 394 11
6.1290 +2 2592 405 13

Table 11. Homotopy: Boston housing data

ε λ nits n0 ne

1 6.1039 -7 30 0 1
4.1825 -6 60 0 1
6.1329 -6 90 1 4
1.8249 +0 120 2 7
6.9885 +0 128 3 9

5 4.7748 -7 25 4 0
1.5381 -6 50 11 1
2.1717 -2 75 11 1
7.9804 -1 100 11 8
4.1176 +0 112 9 9

10 5.3009 -7 30 10 1
4.1587 -6 60 18 1
5.7636 -2 90 19 3
9.9232 -1 120 18 8
2.0812 +0 128 17 9

Table 12. Homotopy: Iowa wheat data
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