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1 Introduction

It is typical of nonconvex optimization problems that there is a gap between necessary and sufficient
optimality conditions. If to proceed from the necessary conditions, then in general there exist points
satisfying these conditions but not being optimal. Such points are usually referred to as stationary.
Meanwhile if the necessary conditions are strong enough then the stationary points do possess some
extremal properties and can be of practical interest.

To eliminate the gap between necessary and sufficient conditions, contrary to the traditional
approach when stronger and stronger necessary conditions are deduced, it is suggested in the
current paper to extend (weaken) the initial definition of optimality taking stationary points into
consideration.

Formally, it is possible to speak of interrelations between the two conditions (groups of con-
ditions): in terms of the initial (optimality or stationarity definitions) and dual (optimality con-
ditions) spaces. The aim is to describe in terms of the initial space the set of points satisfying
necessary optimality conditions expressed in terms of the dual space elements. As a result neces-
sary conditions become also sufficient (for stationarity) and one can speak of (a kind of) duality
between corresponding conditions.

Of course, the notion of stationarity depends on the type of the necessary conditions being
considered. We consider below a group of necessary conditions (for different settings of extremal
problems), obtained in the works of B. S. Mordukhovich and the author, and formulated in terms
of so called strict subdifferentials and related to them constructions of strict normal cones and
strict coderivatives.

The strict subdifferential is defined as a union of Fréchet subdifferentials calculated near the
given point and thus accumulates information about “differential” properties of the function in the
neighborhood of the point. This is also true for the defined on its basis limiting subdifferential.

Actually conditions, expressed in terms of strict (and limiting) subdifferentials are examples of
so called “fuzzy conditions”, when extremality at a point is characterized by “elementary” subdif-
ferentials calculated at some points from its neighborhood. Corresponding stationarity conditions
are also “fuzzy” in a sense: they estimate difference quotients for points from a neighborhood of
a given point. They are weaker than traditional ones in which one of the points is assumed to be
fixed. We will call the corresponding notion weak stationarity (the term extended extremality was
used earlier [13], see also preceding definitions in [9, 10, 11, 12]).

There exist many different abstract definitions of optimality (extremality). In the current paper
we proceed from the two definitions: of the extremal point of the sets system [15] (in terms of sets)
and of the (ϕ,Ω,M)-extremal point [8] (in terms of mappings). The corresponding definitions of
weak stationarity are introduced in Sections 3, 4.
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In Section 5 the definition of weak stationarity is being made specific for the case of a scalar
function. This produces the notion of weak inf-stationarity which turns out equivalent to the
corresponding stationarity notion introduced by B. Kummer [16]. In this case the definition of
weak stationarity can be reformulated with the help of a slope [2] (see also [7]). Some illustrated
examples of weakly inf-stationary functions are presented in Section 6.

The main subdifferential constructions which are used in statements of extremality conditions
are recalled in Section 2. Comparison of different constructions and description of the potential of
their use in analysis and optimization can be found in the survey paper [14].

Mainly standard notations are used throughout the paper. Symbols X∗ and Y ∗ denote spaces
topologically dual to X and Y respectively, and 〈·, ·〉 denote the bilinear form defining duality
between a space and its dual. The ball of radios ρ centered at x is denoted Bρ(x). We write Bρ if
x = 0, and simply B if x = 0, ρ = 1. A unit ball in the dual space is denoted B∗.

2 Strict subdifferentials, normals, coderivatives

Let X be a real normed space. Consider a function ϕ : X → R̄ = R ∪ {+∞}, finite at x◦. The set

∂ϕ(x◦) =
{

x∗ ∈ X∗ : lim inf
x→x◦

ϕ(x) − ϕ(x◦) − 〈x∗, x− x◦〉

‖x− x◦‖
≥ 0

}

(1)

is called the Fréchet subdifferential of ϕ at x◦.
The convex set (1) is a natural generalization of the Fréchet derivative and the subdifferential

of convex analysis. Fréchet subdifferentials possess comparatively poor calculus and are not widely
used in nonsmooth analysis and optimization. But it is possible to define on their basis more
powerful analysis tools: the strict δ-subdifferential and the limiting subdifferential.

The strict δ-subdifferential (δ > 0) of ϕ at x◦ is defined by the formula

∂̂δϕ(x◦) =
⋃

{

∂(cl ↓ϕ)(x) : x ∈ Bδ(x
◦),

∣

∣cl ↓ϕ(x) − ϕ(x◦)
∣

∣ ≤ δ
}

. (2)

The symbol cl ↓ϕ denotes here a lower semicontinuous envelope of ϕ: cl ↓ϕ(x) = lim infu→x ϕ(u).
Of course, definition (2) becomes simpler if ϕ is lower semicontinuous near x◦.

The set (2) is nonconvex in general. It accumulates the information about “differential” proper-
ties of ϕ near x◦ (it would be more precise to speak of points of the graph of cl ↓ϕ near (x◦, ϕ(x◦)))
and generalizes the notion of strict derivative. Let us recall that ϕ is called strictly differentiable
[1] at x◦ (with the derivative ∇ϕ(x◦)) if

lim
x→x◦, x′→x◦

ϕ(x′) − ϕ(x) − 〈∇ϕ(x◦), x′ − x〉

‖x′ − x‖
= 0.

Proposition 1. If ϕ is strictly differentiable at x◦ with the derivative ∇ϕ(x◦) then for any ε > 0

there exist δ > 0 such that ∇ϕ(x◦) ⊂ ∂̂δϕ(x◦) ⊂ ∇ϕ(x◦) + εB∗.

Proposition 2. If ϕ is convex and ∂ϕ(x◦) 6= ∅ then for any ε > 0 there exist δ > 0 such that

∂ϕ(x◦) ⊂ ∂̂δϕ(x◦) ⊂ ∂ϕ(x◦) + εB∗.

The limiting subdifferential of ϕ at x◦ can be defined by the formula

∂̄ϕ(x◦) =
⋂

δ>0

cl ∗∂̂δϕ(x◦), (3)

where the symbol cl ∗ denotes weak∗ sequential closure of a set (a collection of the limits of all
weakly∗ convergent sequences of elements of this set) in the dual space. In other words, x∗ ∈ ∂̄ϕ(x0)
⇔ there exist sequences {xk} ⊂ X , {x∗k} ⊂ X∗ such that x∗k ∈ ∂ϕ(xk), k = 1, 2, . . . , and xk → x◦,

ϕ(xk) → ϕ(x◦), x∗k
w∗

→ x∗ when k → ∞. In case of a strictly differentiable function ϕ (3) reduces
to the strict derivative.

Remark 1. Simple examples show that the Fréchet subdifferential (1) can be empty. On the

other hand, it follows from [6] that in the case of an Asplund space ∂̂δϕ(x◦) 6= ∅ for any lower
semicontinuous function ϕ and any δ > 0. If X is not Asplund the latter statement is not true.
The limiting subdifferential (3) can also be empty even in case of a continuous function on a finite
dimensional space. However, in finite dimensions it is possible to substitute completely the strict
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δ-subdifferentials by the limiting constructions if to consider besides the limiting subdifferential (3)
the so called singular limiting subdifferential. Unfortunately, in the infinite-dimensional case to use
the limiting subdifferentials effectively one needs additional assumptions guaranteing nontriviality
of the limits in the weak∗ topology (see. [18]).

Remark 2. Changing in (1) the inequality sign for the opposite one it is possible to define the
Fréchet superdifferential, and on its basis also the strict δ- and the limiting superdifferential. Of
course, the Fréchet sub- and superdifferential at some point can be nonempty simultaneously
if and only if the function is Fréchet differentiable at the point. Strict and limiting sub- and
superdifferentials can be nonempty simultaneously even for nonsmooth functions, and they can
also be significantly different.

Remark 3. As it follows from Definition 1, the Fréchet subdifferentials and defined on their basis
strict δ-subdifferentials are convenient for investigating differential properties of functions on an
Asplund space. In an arbitrary Banach space instead of (1) one must use the ε-subdifferential
(ε > 0)

∂εϕ(x◦) =
{

x∗ ∈ X∗ : lim inf
x→x◦

ϕ(x) − ϕ(x◦) − 〈x∗, x− x◦〉

‖x− x◦‖
≥ −ε

}

,

and instead of (2) the strict (ε, δ)-subdifferential

∂̂ε,δϕ(x◦) =
⋃

{

∂ε(cl
↓ϕ)(x) : x ∈ Bδ(x

◦),
∣

∣cl ↓ϕ(x) − ϕ(x◦)
∣

∣ ≤ δ
}

must be used.

By analogy with (1)–(3) some geometrical objects, namely the generalized normals to a set can
be defined.

Let Ω be a set in a normed space X , x◦ ∈ Ω. The sets

N(x◦| Ω) =

{

x∗ ∈ X∗ : lim sup
x

Ω
→x◦

〈x∗, x− x◦〉

‖x− x◦‖
≤ 0

}

, (4)

N̂δ(x
◦| Ω) =

⋃

{N(x| cl Ω) : x ∈ cl Ω ∩Bδ(x
◦)} , (5)

N̄(x◦| Ω) =
⋂

δ>0

cl ∗N̂δ(x
◦| Ω) (6)

are called correspondingly the Fréchet normal cone, the strict δ-normal cone and the limiting

normal cone to Ω at x◦. The denotation x
Ω
→ x◦ in (4) means that x→ x◦ with x ∈ Ω.

Of course, all the three sets (4)–(6) are cones. The cones (5), (6) can be nonconvex. The
sets (4)–(6) coincide with the corresponding subdifferentials of the indicator function δΩ of Ω,
which is defined as follows: δΩ(x) = 0 if x ∈ Ω, and δΩ(x) = +∞ otherwise. On the other
hand, the subdifferentials (1)–(3) can be defined through the normal cones (4)–(6) to the epigraph
epiϕ = {(x, µ) ∈ X × R : ϕ(x) ≤ µ} of ϕ at (x, ϕ(x)).

In case of a convex set Ω the cones (4), (6) coincide with the normal cone in the sense of convex
analysis, and for the cone (5) a statement similar to Proposition 2 holds true.

With the help of the normal cones (4)–(6) it is easy to define coderivatives for set-valued
mappings.

Let F : X ⇒ Y be a set-valued mapping (multifunction) between normed spaces, (x◦, y◦) ∈
gphF , where gphF = {(x, y) ∈ X × Y : y ∈ F (x)} is a graph of F . We shall assume that the
norm in X × Y agrees with the norms in X and Y , for example, ‖x, y‖ = max(‖x‖ , ‖y‖), x ∈ X ,
y ∈ Y .

The role of the derivative for F can be played by the set-valued mappings which for any y∗ ∈ Y ∗

are defined by the following relations:

∂F (x◦, y◦; y∗) = {x∗ ∈ X∗ : (x∗,−y∗) ∈ N(x◦, y◦| gphF )}, (7)

∂̂δF (x◦, y◦; y∗) = {x∗ ∈ X∗ : (x∗,−y∗) ∈ N̂δ(x
◦, y◦| gphF )}, (8)

∂̄F (x◦, y◦; y∗) = {x∗ ∈ X∗ : (x∗,−y∗) ∈ N̄(x◦, y◦| gphF )}. (9)

The equalities (7)–(9) define correspondingly the Fréchet coderivative, the strict δ-coderivative and
the limiting coderivative of F at (x◦, y◦).

In the case Y = R, F (x) = ϕ(x) + R+, y◦ = ϕ(x◦), y∗ = 1 the sets (7)–(9) reduce to the
subdifferentials (1)–(3).
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3 Weak stationarity of sets systems

In this section we consider a system of sets Ω1, Ω2, . . . , Ωn (n > 1) in a normed space X , having
a common point x◦ ∈ ∩n

i=1Ωi and we are interested in investigating “extremal” properties of the
system.

The initial definition of the extremal system [15] was geometrical: all the sets have a common
point and an arbitrarily small shift of the sets makes them unintersecting.
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The sets are not assumed convex. Below are three more illustrated examples of the extremal
systems of two sets.
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In the last example the extremal system consists of the set Ω and its boundary point {x◦}.
The following constants can be used for characterizing the mutual arrangement of sets Ω1, Ω2,

. . . , Ωn near x◦:

θρ[Ω1, . . . ,Ωn](x◦) = sup

{

r ≥ 0 :
(

n
⋂

i=1

(Ωi − ai)
)

⋂

Bρ(x
◦) 6= ∅, ∀ai ∈ Br

}

, (10)

θ̃[Ω1, . . . ,Ωn](x◦) = lim inf
ρ→+0

θρ[Ω1, . . . ,Ωn](x◦)/ρ, (11)

θ̂[Ω1, . . . ,Ωn](x◦) = lim inf
ωi

Ωi
→x◦

θ̃[Ω1 − ω1, . . . ,Ωn − ωn](0). (12)

Evidently all the constants (10)–(12) are nonnegative, the function ρ → θρ[Ω1, . . . ,Ωn](x◦) is

nondecreasing, θ̃[Ω1, . . . ,Ωn](x◦) ≥ θ̂[Ω1, . . . ,Ωn](x◦), and θρ[Ω1, . . . ,Ωn](x◦) > 0 for any ρ > 0 if

θ̃[Ω1, . . . ,Ωn](x◦) > 0.
It follows from definition (10) that for any i = 1, 2, . . . , n and any nonnegative r < θρ[Ω1, . . . ,Ωn]

the following inclusion holds:
Br(x

◦) ⊂ Ωi +Bρ,

which, in its turn, yields the following statement.

Proposition 3. The following assertions are equivalent:
(a) θρ[Ω1, . . . ,Ωn](x◦) → 0 as ρ→ 0;
(b) x◦ 6∈ ∩n

i=1int clΩi.

Definition 1. The system of sets Ω1, Ω2, . . . , Ωn is locally extremal at x◦ if θρ[Ω1, . . . ,Ωn](x◦) = 0
for some ρ > 0.

The condition formulated above means that an arbitrarily small shift makes the sets uninter-
secting in a neighborhood of x◦: there exist a number ρ > 0 and sequences {aik} ⊂ X tending
to zero, such that ∩n

i=1(Ωi − aik) ∩ Bρ(x
◦) = ∅, k = 1, 2, . . .. Thus Definition 1 is equivalent to

the initial one introduced in [15]. It defines a general notion of extremality embedding different
solution notions in optimization problems.
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Remark 4. If to exclude from (10) mentioning the neighborhood Bρ(x
◦) (this corresponds to the

case ρ = +∞), then global extremality of the sets system can be defined.

The following two definitions weaken step by step the requirements to the system of sets.

Definition 2. The system of sets Ω1, Ω2, . . . , Ωn is stationary at x◦ if θ̃[Ω1, . . . ,Ωn](x◦) = 0.

Definition 3. The system of sets Ω1, Ω2, . . . , Ωn is weakly stationary at x◦ if θ̂[Ω1, . . . ,Ωn](x◦) =
0.

Definition 2 corresponds to the traditional notion of stationarity, and the condition formulated
in Definition 3 means that arbitrarily close to x◦ there exist points whose properties are arbitrarily
close to the stationarity property.

Combining (10)–(12), one can get the following representation for (12):

θ̂[Ω1, . . . ,Ωn](x◦) = lim inf
ωi

Ωi
→x◦

ρ→+0

sup

{

r ≥ 0 :
(

n
⋂

i=1

(Ωi − ωi − ai)
)

⋂

Bρ 6= ∅, ∀ai ∈ Br

}

/ρ. (13)

The next assertion is an immediate consequence of the definitions.

Proposition 4. θ̂[Ω1, . . . ,Ωn](x◦) > 0 if and only if there exist α > 0 and δ > 0 such that

(

n
⋂

i=1

(Ωi − ωi − ai)
)

⋂

Bρ 6= ∅ (14)

for any ρ ∈ (0, δ], ωi ∈ Ωi ∩Bδ(x
◦), ai ∈ Bαρ, i = 1, 2, . . . , n.

In the case n = 2 the following constant can be used along with (10):

θ′ρ[Ω1,Ω2](x
◦) = sup {r ≥ 0 : Br ⊂ Ω1 ∩Bρ(x

◦) − Ω2 ∩Bρ(x
◦)} . (15)

The difference of sets in (15) is understood in the algebraic sense: Ω1 − Ω2 = {ω1 − ω2 :
ω1 ∈ Ω1, ω2 ∈ Ω2}. Contrary to (10) θ′ρ[Ω1,Ω2](x

◦) always tends to zero when ρ→ 0.

Proposition 5. θ′ρ[Ω1,Ω2](x
◦) ≤ 2ρ.

The next statement establishes relations between (10) and (15).

Proposition 6. (a) θ′ρ[Ω1,Ω2](x
◦) ≤ 2θρ+θ′

ρ[Ω1,Ω2](x◦)/2[Ω1,Ω2](x
◦);

(b) θ′ρ[Ω1,Ω2](x
◦) ≤ 2θ2ρ[Ω1,Ω2](x

◦);
(c) 2θρ[Ω1,Ω2](x

◦) ≤ θ′ρ+θρ[Ω1,Ω2](x◦)[Ω1,Ω2](x
◦);

(d) 2 min(θρ[Ω1,Ω2](x
◦), ρ) ≤ θ′2ρ[Ω1,Ω2](x

◦).

Proof. Let 0 ≤ r < θ′ρ[Ω1,Ω2](x
◦) and a1, a2 ∈ Br/2. Then a1 − a2 ∈ Br and in view of (15) the

following inclusion holds true:

a1 − a2 ∈ Ω1 ∩Bρ(x
◦) − Ω2 ∩Bρ(x

◦),

which is equivalent to the condition

(Ω1 ∩Bρ(x
◦) − a1) ∩ (Ω2 ∩Bρ(x

◦) − a2) 6= ∅,

which, in its turn, implies the condition

(Ω1 − a1) ∩ (Ω2 − a2) ∩Bρ+r/2(x
◦) 6= ∅.

Due to the arbitrariness of a1, a2 ∈ Br/2 it yields the inequality θρ+r/2[Ω1,Ω2](x
◦) ≥ r/2, which

due to arbitrariness of r < θ′ρ[Ω1,Ω2](x
◦) and monotonicity of ρ→ θρ[Ω1,Ω2](x

◦) yields (a).
(b) follows from (a) in view of Proposition 5.
Let 0 ≤ r < θρ[Ω1,Ω2](x

◦) and a ∈ B2r. Then owing to (10) the condition

(Ω1 − a/2) ∩ (Ω2 + a/2) ∩Bρ(x
◦) 6= ∅,

holds true, which implies the inclusion

a ∈ Ω1 ∩Bρ+r(x
◦) − Ω2 ∩Bρ+r(x

◦).

Due to arbitrariness of a ∈ B2r it implies the estimate θ′ρ+r[Ω1,Ω2](x
◦) ≥ 2r, which due to

arbitrariness of r < θρ[Ω1,Ω2](x
◦) and monotonicity of ρ→ θ′ρ[Ω1,Ω2](x

◦) yields (c) and (d).
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It follows from Proposition 6 (conditions (b) (d)) that in the case n = 2 replacement in (11) of
the constant (10) by the constant (15) does not imply changes in Definitions 2, 3. Thus when n = 2
Definition 3 is equivalent to the corresponding definition from [10] (see also [13], [14]). Instead of
“weak stationarity” the term “extended extremality” was used earlier.

On the other hand, the general case n ≥ 2 is easily reduced to the case of two sets.

Proposition 7. The system of sets Ω1, Ω2, . . . , Ωn is weakly stationary at x◦ if and only if the
system of sets Ω̃1 = Ω1 × Ω2 × . . .× Ωn, Ω̃2 = {(x, x, . . . , x) : x ∈ X} in Xn is weakly stationary
at (x◦, x◦, . . . , x◦).

Let us define one more constant for Ω1,Ω2, . . . ,Ωn, this time with the help of dual space
elements:

η[Ω1, . . . ,Ωn](x◦) = lim
δ→0

inf

{∥

∥

∥

∥

∥

n
∑

i=1

x∗i

∥

∥

∥

∥

∥

: x∗i ∈ N̂δ(x
◦|Ωi), i = 1, . . . , n,

n
∑

i=1

‖x∗i ‖ = 1

}

. (16)

(16) is convenient for formulating dual criteria of weak stationarity of sets systems. It can be
used to reformulate the generalized Euler equation [8, 10, 15, 13].

Definition 4. The system of sets Ω1, Ω2,. . . ,Ωn satisfies the generalized Euler equation at x◦ if
η[Ω1, . . . ,Ωn](x◦) = 0.

Proposition 8. η[Ω1, . . . ,Ωn](x◦) < ε if and only if for any δ > 0 there exist points ωi ∈ Ωi ∩
Bδ(x

◦), x∗i ∈ N(ωi|Ωi), i = 1, 2, . . . , n, such that
∑n

i=1 ‖x
∗
i ‖ = 1, ‖

∑n
i=1 x

∗
i ‖ < ε.

As it can be seen from the next theorem the dual criterion of weak stationarity becomes exact
in the case of an Asplund space. Let us recall that a Banach space is called Asplund (see [19, 20])
if any continuous convex function on it is Fréchet differentiable on a dense set of points. Asplund
spaces form a rather broad subclass of Banach spaces. It contains e.g. all reflexive spaces and all
spaces that admit equivalent norms, Fréchet differentiable at all nonnull points.

Theorem 1. (a) The following inequality is true:

θ̂[Ω1, . . . ,Ωn](x◦) ≤ η[Ω1, . . . ,Ωn](x◦). (17)

(b) If X is Asplund, the sets Ω1,Ω2, . . . ,Ωn are closed and θ̂[Ω1, . . . ,Ωn](x◦) < 1 then

η[Ω1, . . . ,Ωn](x◦) ≤
θ̂[Ω1, . . . ,Ωn](x◦)

1 − θ̂[Ω1, . . . ,Ωn](x◦)
. (18)

Proof. (a) If θ̂[Ω1, . . . ,Ωn](x◦) = 0 then (17) holds trivially.

Let θ̂[Ω1, . . . ,Ωn](x◦) > α > 0, η[Ω1, . . . ,Ωn](x◦) < ε. We shall show that α < ε. In view
of Propositions 4, 8 there exist a number δ > 0 and points ωi ∈ Ωi ∩ Bδ(x

◦), x∗i ∈ N(ωi|Ωi),
i = 1, 2, . . . , n, such that

∑n
i=1 ‖x

∗
i ‖ = 1, ‖

∑n
i=1 x

∗
i ‖ < ε and for any ρ ∈ (0, δ], ai ∈ Bαρ,

i = 1, 2, . . . , n, condition (14) holds true.
Let us denote ε′ = (ε−‖

∑n
i=1 x

∗
i ‖)/(2n). It follows from definition (4) of the normal cone that

for sufficiently small ρ for all ω ∈ Ωi∩B(α+1)ρ(ωi) the inequalities 〈x∗i , ω−ωi〉 ≤
ε′

α+1 ‖ω − ωi‖ ≤ ε′ρ
holds true. Besides, for any i = 1, 2, . . . , n it is possible to find a point ai ∈ Bαρ such that
〈x∗i , ai〉 > αρ ‖x∗i ‖− ε

′ρ. Let us make use of condition (14) now. Let x ∈ (∩n
i=1(Ωi −ωi −ai))∩Bρ.

For any i = 1, 2, . . . , n we have x = ω′
i−ωi−ai for some ω′

i ∈ Ωi and ‖ω′ − ωi‖ = ‖x+ ai‖ ≤ (α+1)ρ.
Thus 〈x∗i , x〉 < −αρ ‖x∗i ‖+2ε′ρ and consequently

∑n
i=1〈x

∗
i , x〉 < −αρ+2nε′ρ. On the other hand,

〈
∑n

i=1 x
∗
i , x〉 > −ερ. Comparing the last two inequalities, one can conclude that α < ε. Due to

the arbitrariness of α and ε inequality (17) is proved.
(b) When proving inequality (18) we use essentially two fundamental results of variational

analysis: Ekeland variational principle [4] and established by M. Fabian representation for elements
of the subdifferential of the sum of functions [5]. To apply the first result it is necessary to assume
that X is a Banach space and Ω1,Ω2, . . . ,Ωn are closed. To make use of the second result we must
assume additionally that X is Asplund.

Let θ̂[Ω1, . . . ,Ωn](x◦) < α < 1. We shall show that η[Ω1, . . . ,Ωn](x◦) < α/(1−α). Let us take

an arbitrary β ∈ (θ̂[Ω1, . . . ,Ωn](x◦), α). For any δ > 0 there exist a number ρ ∈ (0, δ/2) and points
ωi ∈ Ωi ∩ Bδ/2(x

◦), ai ∈ Bβρ, i = 1, 2, . . . , n, such that (∩n
i=1(Ωi − ωi − ai)) ∩Bρ = ∅. Let us
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consider in the Asplund space Xn (with the norm ‖x1, x2, . . . , xn‖ = max(‖x1‖ , ‖x2‖ , . . . , ‖xn‖))
two closed sets Ω̄1 = Ω1 × Ω2 × . . . × Ωn and Ω̄2 = {(x, x, . . . , x) : x ∈ Bρ} and a continuous
function ϕ1 from Xn × Xn into R: ϕ1(x̄1, x̄2) = ‖x̄1 − ω̄ − ā− x̄2‖, where ω̄ = (ω1, ω2, . . . , ωn),
ā = (a1, a2, . . . , an). Evidently ϕ1(x̄1, x̄2) > 0 for all (x̄1, x̄2) from Ω̄1×Ω̄2 and ϕ1(ω̄, 0) = ‖ā‖ ≤ βρ.

The spaceXn×Xn with the norm ‖x̄1, x̄2‖ = max(‖x̄1‖ , ‖x̄2‖) is also Asplund. Let us take now
an arbitrary γ ∈ (β, α). The Ekeland theorem [4] guarantees existence of a point (ω̄′, x̄′) ∈ (Ω̄1 ×
Ω̄2)∩Bβρ/γ(ω̄, 0) minimizing the function ϕ1 +ϕ2 +ϕ3, where ϕ2(x̄1, x̄2) = γ ‖(x̄1, x̄2) − (ω̄′, x̄′)‖,
ϕ3(x̄1, x̄2) = 0 if (x̄1, x̄2) ∈ Ω̄1 × Ω̄2 and ϕ3(x̄1, x̄2) = ∞ otherwise (the indicator function of the
set Ω̄1 × Ω̄2). Evidently ‖(ω̄′, x̄′) − (ω̄, 0)‖ ≤ βρ/γ < ρ. Let us denote % = ρ− ‖(ω̄′, x̄′) − (ω̄, 0)‖.

The functions ϕ1 and ϕ2 are Lipschitz continuous, and one can apply Lemma 4 from [5] (“zero”
fuzzy sum rule). There exist points (x̄1j , x̄2j), (x̄∗1j , x̄

∗
2j) ∈ ∂ϕj(x̄1j , x̄2j), j = 1, 2, 3, such that

‖(x̄1j , x̄2j) − (ω̄′, x̄′)‖ < %, ϕ1(x̄11, x̄21) > 0, (x̄13, x̄23) ∈ Ω̄1 × Ω̄2 and ‖(x∗1, y
∗
1) + (x∗2, y

∗
2) +

(x∗3, y
∗
3)‖ < α − γ. Evidently, ‖(x̄13, x̄23) − (ω̄, 0)‖ < ρ. Let x̄13 = (w1, w2, . . . , wn), wi ∈ Ωi,

i = 1, 2, . . . , n, x̄23 = (y, y, . . . , y). The last estimate guarantees that ‖wi − x◦‖ < δ and y is an
interior point of Bρ.

The functions ϕ1 and ϕ2 are convex. Their Fréchet subdifferentials coincide with subdif-
ferentials in the sense of convex analysis and can be easily calculated. The subdifferential of
ϕ3 reduces to the normal cone to Ω̄1 × Ω̄2. When j = 1 one has x̄∗11 = x̄∗, x̄∗21 = −x̄∗,
where x̄∗ is a subgradient of the norm of the space Xn, calculated at a nonnull point. Thus,
‖x̄∗‖ = 1. When j = 2 the estimate ‖x̄∗12, x̄

∗
22‖ ≤ γ is true. Finally, when j = 3 one has

x̄∗13 = (x∗13, x
∗
23, . . . , x

∗
n3), x

∗
i3 ∈ N(wi|Ωi), i = 1, 2, . . . , n, x̄∗23 = (y∗13, y

∗
23, . . . , y

∗
n3),

∑n
i=1 y

∗
i3 = 0.

On the other hand, ‖x̄∗13 + x̄∗23‖ = ‖(x̄∗11 + x̄∗12 + x̄∗13) + (x̄∗21 + x̄∗22 + x̄∗23) − x̄∗12 − x̄∗22‖ < α and
consequently ‖

∑n
i=1 x

∗
i3‖ = ‖

∑n
i=1(x

∗
i3 + y∗i3)‖ ≤ ‖x̄∗13 + x̄∗23‖ < α. At the same time

∑n
i=1 ‖x

∗
i3‖ =

‖x̄∗13‖ ≥ ‖x̄∗11‖ − ‖x̄∗11 + x̄∗12 + x̄∗13‖ − ‖x̄∗12‖ > 1 − α > 0. Let us denote x∗i = x∗i3/ ‖x̄
∗
13‖. Evi-

dently, x∗i ∈ N(wi|Ωi), i = 1, 2, . . . , n, ‖
∑n

i=1 x
∗
i ‖ < α/(1 − α),

∑n
i=1 ‖x

∗
i ‖ = 1. Consequently,

η[Ω1, . . . ,Ωn](x◦) < α/(1 − α). In view of arbitrariness of α inequality (18) is proved.

Corollary 1.1. In an Asplund space the Extended extremal principle holds true: a system of
closed sets is weakly stationary at some point if and only if this system satisfies the generalized
Euler equation at this point.

Remark 5. Since a locally extremal sets system is weakly stationary, it follows from [17] that
asplundity of the space is not only sufficient for validity of the Extended extremal principle but
also necessary.

4 Weak stationarity of set-valued mappings

Let us start with considering first a set-valued mapping F : X ⇒ Y between normed spaces X
and Y with a graph gphF = {(x, y) ∈ X × Y : y ∈ F (x)} and fix a point (x◦, y◦) ∈ gphF . We
will assume that the product space X × Y is equipped with the maximum-type norm: ‖x, y‖ =
max(‖x‖ , ‖y‖).

Similarly to (10)–(12) the following three constants can be defined for characterizing the local
behavior of F near (x◦, y◦):

θρ[F ](x◦, y◦) = sup{r ≥ 0 : Br(y
◦) ⊂ F (Bρ(x

◦))}, (19)

θ̃[F ](x◦, y◦) = lim inf
ρ→+0

θρ[F ](x◦, y◦)

ρ
, (20)

θ̂[F ](x◦, y◦) = lim inf
(x,y)

gph F
→ (x◦,y◦)

θ̃[F ](x, y). (21)

All the constants (19)–(21) are nonnegative, the function ρ → θρ[F ](x◦, y◦) is nondecreasing,

θ̃[F ](x◦, y◦) ≥ θ̂[F ](x◦, y◦), and θρ[F ](x◦, y◦) > 0 for any ρ > 0 if θ̃[F ](x◦, y◦) > 0.

Proposition 9. The following assertions are equivalent:
(a) θρ[F ](x◦, y◦) → 0 as ρ→ 0;
(b) y◦ 6∈ int ∩ρ>0 F (Bρ(x

◦)).

The three constants (19)–(21) give rise to the three definitions.
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Definition 5. F is locally extremal at (x◦, y◦) if θρ[F ](x◦, y◦) = 0 for some ρ > 0.

The condition formulated above means that the image of a ball centered at x◦ does not contain
any ball centered at y◦.

Definition 6. F is stationary at (x◦, y◦) if θ̃[F ](x◦, y◦) = 0.

Definition 7. F is weakly stationary at (x◦, y◦) if θ̂[F ](x◦, y◦) = 0.

Combining (19)–(21), one can get the following representation for (21):

θ̂[F ](x◦, y◦) = lim inf
(x,y)

gph F
→ (x◦,y◦)

ρ→+0

sup {r ≥ 0 : Br(y) ⊂ F (Bρ(x))} /ρ. (22)

The next proposition shows that weak stationarity is equivalent to the absence of the covering
[3] property.

Proposition 10. θ̂[F ](x◦, y◦) > 0 if and only if there exist α > 0 and δ > 0 such that

Bαρ(y) ⊂ F (Bρ(x)) (23)

for any ρ ∈ (0, δ], (x, y) ∈ gphF ∩Bδ(x
◦, y◦).

The dual counterpart of (22) can be defined as follows:

η[F ](x◦, y◦) = lim
δ→0

inf
{

‖x∗‖ : x∗ ∈ ∂̂δF (x◦, y◦; y∗), ‖y∗‖ = 1
}

. (24)

The element y∗ ∈ Y ∗ in (24) can be seen as some analog of the Lagrange multipliers vector.

Definition 8. The generalized Lagrange multipliers rule holds for F at (x◦, y◦) if η[F ](x◦, y◦) = 0.

Proposition 11. η[F ](x◦, y◦) < ε if and only if for any δ > 0 there exist points (x, y) ∈ gphF ∩
Bδ(x

◦, y◦), (x∗, y∗) ∈ N(x, y|gphF ), such that ‖y∗‖ = 1, ‖x∗‖ < ε.

Theorem 2. (a) The following inequality is true:

θ̂[F ](x◦, y◦) ≤ η[F ](x◦, y◦). (25)

(b) If X is Asplund, gphF is closed and θ̂[F ](x◦, y◦) < 1 then

η[F ](x◦, y◦) ≤
θ̂[F ](x◦, y◦)

1 − θ̂[F ](x◦, y◦)
. (26)

The proof of the theorem is very similar to the one of Theorem 1.

Proof. (a) If θ̂[F ](x◦, y◦) = 0 then (25) holds trivially.

Let θ̂[F ](x◦, y◦) > α > 0, η[F ](x◦, y◦) < ε. We shall show that α < ε. In view of Propositions
10, 11 there exist a number δ > 0 and points (x, y) ∈ gphF ∩Bδ(x

◦, y◦), (x∗, y∗) ∈ N(x, y|gphF ),
such that ‖y∗‖ = 1, ‖x∗‖ < ε and for any ρ ∈ (0, δ] condition (23) holds true.

Let us denote α′ = max(α, 1), ε′ = (ε − ‖x∗‖)/2. It follows from definition (4) of the normal
cone that for sufficiently small ρ for all (u, v) ∈ gphF ∩Bα′ρ(x, y) the inequalities 〈(x∗, y∗), (u, v)−
(x, y)〉 ≤ (ε′/α′) ‖(u, v) − (x, y)‖ ≤ ε′ρ hold true. Besides, it is possible to find a point a ∈ Bαρ

such that 〈y∗, a〉 > αρ − ε′ρ. Let us denote y′ = y + a and make use of condition (23): there
exists x′ ∈ Bρ(x) such that y′ ∈ F (x′). Thus (x′, y′) ∈ gphF ∩ Bα′ρ(x, y) and consequently
〈(x∗, y∗), (x′, y′)−(x, y)〉 ≤ ε′ρ. On the other hand, 〈(x∗, y∗), (x′, y′)−(x, y)〉 > −‖x∗‖ ρ+αρ−ε′ρ.
Comparing the last two inequalities, one can conclude that α < ‖x∗‖ + 2ε′ = ε. Due to the
arbitrariness of α and ε inequality (25) is proved.

(b) Let θ̂[F ](x◦, y◦) < α < 1. We shall show that η[F ](x◦, y◦) < α/(1 − α). Let us take

an arbitrary β ∈ (θ̂[F ](x◦, y◦), α). For any δ > 0 there exist a number ρ ∈ (0, δ/2) and points
(x, y) ∈ gphF ∩ Bδ/2(x

◦, y◦), ỹ ∈ Bβρ(y), such that F−1(ỹ) ∩Bρ(x) = ∅. Let us consider a
continuous function ϕ1 : X × Y → R given by ϕ1(u, v) = ‖v − ỹ‖. Evidently ϕ1(u, v) > 0 for all
(u, v) ∈ gphF such that u ∈ Bρ(x), and ϕ1(x, y) ≤ βρ.

Let us take now an arbitrary γ ∈ (β, α). The Ekeland variational principle guarantees existence
of a point (x′, y′) ∈ gphF ∩ Bβρ/γ(x, y) minimizing the function ϕ1 + ϕ2 + ϕ3, where ϕ2(u, v) =
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γ ‖(u, v) − (x′, y′)‖, ϕ3(u, v) = 0 if (u, v) ∈ gphF and ϕ3(u, v) = ∞ otherwise (the indicator
function of the set gphF ). Evidently ‖(x′, y′) − (x, y)‖ ≤ βρ/γ < ρ. Let us denote % = ρ −
‖(x′, y′) − (x, y)‖.

The functions ϕ1 and ϕ2 are Lipschitz continuous, and one can apply Lemma 4 from [5] (“zero”
fuzzy sum rule). There exist points (xj , yj), (x∗j , y

∗
j ) ∈ ∂ϕj(xj , yj), j = 1, 2, 3, such that ‖(xj , yj)−

(x′, y′)‖ < %, ϕ1(x1, y1) > 0, (x3, y3) ∈ gphF and ‖(x∗1, y
∗
1)+(x∗2, y

∗
2)+(x∗3, y

∗
3)‖ < α−γ. Evidently,

‖(x3, y3) − (x, y)‖ < ρ, in particular, x3 is an interior point of Bρ, and (x3, y3) ∈ Bδ(x
◦, y◦).

The functions ϕ1 and ϕ2 are convex. Their Fréchet subdifferentials coincide with subdifferentials
in the sense of convex analysis and can be easily calculated. The subdifferential of ϕ3 reduces to
the normal cone to gphF . One has x∗1 = 0, ‖y∗1‖ = 1, ‖x∗2, y

∗
2‖ ≤ γ, (x∗3, y

∗
3) ∈ N(x3, y3|gphF ).

On the other hand, ‖x∗3‖ = ‖(x∗1 + x∗2 + x∗3) − x∗1 − x∗2‖ < α, ‖y∗3‖ = ‖y∗1 + y∗2 − (y∗1 + y∗2 + y∗3)‖ >
1 − α. Let us denote x′∗ = x∗3/ ‖y

∗
3‖, y

′∗ = y∗3/ ‖y
∗
3‖. Evidently, (x′∗, y′∗) ∈ N(x3, y3|gphF ),

‖x′∗‖ < α/(1 − α), ‖y′∗‖ = 1. Consequently, η[F ](x◦, y◦) < α/(1 − α). In view of arbitrariness of
α inequality (26) is proved.

Corollary 2.1. In an Asplund space a closed-graph set-valued mapping is weakly stationary at
some point if and only if the generalized Lagrange multipliers rule holds at this point.

Let us consider a special case now, motivated by applications in optimization. Let the set-
valued mapping F be defined by the triple {Ω,M, f} in the following way: F (x) = f(x) −M if
x ∈ Ω and F (x) = ∅ otherwise. Here Ω and M are subsets of X and Y correspondingly and f is a
(single-valued) function from Ω to Y . We will assume that x◦ ∈ Ω, f(x◦) ∈M . We will say that
f is M -closed if gphF is closed in X × Y .

The stationarity and other properties introduced above induce corresponding ones for the triple
{Ω,M, f}.

Definition 9. (a) {Ω,M, f} is weakly stationary at x◦ if F weakly stationary at (x◦, 0).
(b) The generalized Lagrange multipliers rule holds for {Ω,M, f} at x◦ if it holds for F at

(x◦, 0).

In view of Definition 9 the next statement follows immediately from Corollary 2.1.

Corollary 2.2. Let X, Y be Asplund, Ω, M be closed, and f be M -closed. {Ω,M, f} is weakly
stationary at x◦ if and only if the generalized Lagrange multipliers rule holds for {Ω,M, f} at x◦.

When f is Lipschitz the generalized multipliers rule takes a more natural form: the following
constant can be used instead of (24):

η[Ω,M, f ](x◦) = lim
δ→0

inf
{

‖x∗‖ : x∗ ∈ ∂̂δ〈y
∗, f〉(x◦), y∗ ∈ N̂δ(f(x◦)|M), ‖y∗‖ = 1

}

(27)

Proposition 12. Let f be Lipschitz continuous near x◦. The generalized Lagrange multipliers
rule holds for {Ω,M, f} at x◦ if and only if η[Ω,M, f ](x◦) = 0.

The term 〈y∗, f〉 in (27) can be treated as the Lagrangian function and the first inclusion in (27),
combined with the condition η[Ω,M, f ](x◦) = 0, can be considered as an analog of the traditional
multipliers rule. The second inclusion in (27) generalizes conditions on the signs of multipliers and
the complementarity slackness conditions.

Let us mention that the classical nonlinear programming problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, 2, . . . ,m,

fi(x) = 0, i = m+ 1, . . . , n,
x ∈ Ω.

can be plunged into the scheme described above if one assigns f = (f0 − f0(x), f1, f2, . . . , fn) :
X → R

n+1, M = R
m+1
− × 0.

5 Weak inf-stationarity

The case of a scalar function ϕ : X → R̄ = R ∪ {+∞} will be considered in this section. It is
assumed to be finite at some point x◦ ∈ X . We will relate to it the set-valued mapping F : X ⇒ R

defined by F (x) = f(x) + R+ = {µ ∈ R : µ ≥ f(x)} (the epigraphical mapping).
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Of course, y◦ = ϕ(x◦) ∈ F (x◦) and constants (19)–(21) reduce (up to a sign) in this case to
the following ones:

θρ[ϕ](x◦) = inf
x∈Bρ(x◦)

ϕ(x) − ϕ(x◦), (28)

θ̃[ϕ](x◦) = lim sup
ρ→+0

θρ[ϕ](x◦)

ρ
, (29)

θ̂[ϕ](x◦) = lim sup
x

ϕ
→x◦

θ̃[ϕ](x). (30)

The denotation x
ϕ
→ x◦ in (30) means that x→ x◦ with ϕ(x) → ϕ(x◦).

The constants (28)–(30) are nonpositive, the function ρ→ θρ[ϕ](x◦) is nonincreasing, θ̃[ϕ](x◦) ≤

θ̂[ϕ](x◦), and θρ[ϕ](x◦) < 0 for any ρ > 0 if θ̃[ϕ](x◦) < 0.

Proposition 13. The following assertions are equivalent:
(a) θρ[ϕ](x◦) → 0 as ρ→ 0;
(b) ϕ is lower semicontinuous at (x◦).

From the point of view of optimization theory the “zero cases” of (28)–(30) are of interest. (28)
corresponds to the traditional notion of local minimality, and (29), (30) lead to the corresponding
stationarity notions.

Definition 10. ϕ is inf-stationary at x◦ if θ̃[ϕ](x◦) = 0.

Definition 11. ϕ is weakly inf-stationary at x◦ if θ̂[ϕ](x◦) = 0.

The role of “inf” prefix in Definitions 10, 11 is to stress that minimization problems are ad-
dressed here1. Sup-stationarity can be defined in a similar way with obvious changes in (28)–(30).

Combining (28)–(30), one can get the following representation for (30):

θ̂[ϕ](x◦) = lim sup
x

ϕ
→x◦

ρ→+0

inf
u∈Bρ(x)

ϕ(u) − ϕ(x)

ρ
. (31)

The next proposition shows that the absence of weak stationarity means that all points in a
neighborhood of a given point have descent directions with a uniform rate.

Proposition 14. θ̂[ϕ](x◦) < 0 if and only if there exist α > 0 and δ > 0 such that for any
x ∈ Bδ(x

◦) with |ϕ(x) − ϕ(x◦)| ≤ δ and any ρ ∈ (0, δ] one can find u ∈ Bρ(x) such that ϕ(u) −
ϕ(x) < −αρ.

The dual constant (24) takes in the current setting a very simple form:

η[ϕ](x◦) = lim
δ→0

inf
{

‖x∗‖ : x∗ ∈ ∂̂δϕ(x◦)
}

. (32)

It is not difficult to see that substituting Ω = X , M = R−, f = ϕ into (27) leads to the same
constant (32) though ϕ is not assumed to be Lipschitz.

Definition 12. The generalized Fermat condition holds for ϕ at x◦ if η[ϕ](x◦) = 0.

Proposition 15. η[ϕ](x◦) < ε if and only if for any δ > 0 there exist x ∈ Bδ(x
◦) such that

|ϕ(x) − ϕ(x◦)| ≤ δ, and an element x∗ ∈ ∂ϕ(x) such that ‖x∗‖ < ε.

Application of Corollary 2.1 brings us to the following result.

Proposition 16. In an Asplund space a lower semicontinuous real valued function is weakly
stationary at some point if and only if the generalized Fermat condition holds at this point.

1The terminology was proposed by V. F. Demianov (personal communication)
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Besides (28)–(30) the following pair of constants can be used for characterizing stationarity
properties of ϕ at x◦:

τ [ϕ](x◦) = lim inf
x→x◦

min

(

ϕ(x) − ϕ(x◦)

‖x− x◦‖
, 0

)

, (33)

τ̂ [ϕ](x◦) = lim sup
x

ϕ
→x◦

τ [ϕ](x). (34)

Comparing (28), (29) and (33) one can easily see that τ [ϕ](x◦) ≤ θ̃[ϕ](x◦) which implies that

τ̂ [ϕ](x◦) ≤ θ̂[ϕ](x◦), and the last inequality can be strict. Fortunately, as it follows from the next
proposition, constants (30) and (34) do coincide in the most important “zero case” in the Banach
space setting.

Proposition 17. Let X be a Banach space and ϕ be lower semicontinuous near x◦. ϕ is weakly
inf-stationary at x◦ if and only if τ̂ [ϕ](x◦) = 0.

The proof of Proposition 17 can be found in [14]. The necessary part was actually proved by
B. Kummer2 using Ekeland variational principle.

Remark 6. In view of (33), (34) the condition τ̂ [ϕ](x◦) = 0 means that for any ε > 0 there exists
a point xε ∈ Bε(x

◦) such that |ϕ(xε) − ϕ(x◦)| ≤ ε and ϕ(u) + ε ‖u− xε‖ ≥ ϕ(xε) for all u near
xε. Using the terminology adopted in [16], xε is a local Ekeland point of ϕ and x◦ is a stationary
point of ϕ with respect to minimization.

Remark 7. It is easy to see that τ [ϕ](x◦) = −|∇ϕ|(x◦) where |∇ϕ|(x◦) is a slope of ϕ at x◦ [2]
(see also [7]).

In the smooth case inf-stationarity reduces to the classical one.

Proposition 18. Let ϕ be strictly differentiable at x◦. ϕ is weakly inf-stationary at x◦ if and only
if ∇ϕ(x◦) = 0.

In general the notion of inf-stationarity appears to be stable relative to small deformations of
the data.

Proposition 19. Let ψ be strictly differentiable at x◦ with ∇ψ(x◦) = 0. If ϕ is weakly inf-
stationary at x◦ then ϕ+ ψ is weakly inf-stationary at x◦.

6 Examples

The illustrated versions of the examples of inf-stationary functions from [13] are presented in this
section. All the functions below are from R to R and are weakly inf-stationary at zero, though
only for the first one zero is really a point of minimum.

First, three classical examples of stationary points.

1. y = x2

-

6

0 1

1

2. y = −x2

-

6

0 1

1

3. y = x3

-

6

0 1

1

2personal communication
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Finally, a piecewise linear function.
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