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Abstract. Sufficient optimality criteria for linearly constrained, concave
minimization problems is given in this paper. Our optimality criteria is based
on the sensitivity analysis of the relaxed linear programming problem. Our
main result is similar to that of Phillips and Rosen (1993), however our proofs
are simpler and constructive.

Phillips and Rosen (1993) in their paper derived sufficient optimality crite-
ria for a slightly different, linearly constrained, concave minimization problem
using exponentially many linear programming problems. We introduced spe-
cial test points and using these, for several cases, we are able to show the
optimality of the current basic solution.

The sufficient optimality criteria, described in this paper, can be used as
a stopping criteria for branch and bound algorithms developed for linearly
constrained, concave minimization problems.
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1 Introduction
We consider separable concave minimization problem in the following form
X n
min 2:1 fj (CC j)
]:

Ax<b
1<x<u

(P)

where A € R™*" is a matrix, b € R™, I,u € R" are given vectors, 1 > 0,
f; : IR — IR are concave functions and x € R" is the vector of the unknowns.
Let us introduce the sets

A={xeR": Ax<b} and 7T:={xcR":1<x<u}.

Then the set of feasible solutions of problem (P) is defined as P = ANT
which assume that the domain of f; [l;,u;] C Df; holds. Furthermore P*
denotes the set of optimal solutions of problem (P). If P # () then P* #
() holds, since P is bounded and closed. Problem (P) is one of the most

simple optimization problems which do not belong to the class of convex
optimization. This problem has two important theoretical properties: there
is optimal solution at vertex of the polyhedron P [19], moreover if f; is strict
concave then each optimal solution is a vertex of the polyhedron and the
problem (P) is in the class of NP-complete problems [20].

Several practical problem can be formulated by problem (P) like some
control problems [1], concave knapsack problems [21], some production and
transportation problems [15], production planning problems [17], process net-
work synthesis problems [11], some network flow problems [26].

Due to the importance and applicability of model (P), the literature of
possible solution methods is quite large. We know from literature three main
types of algorithm: listing vertices of the polyhedron P, cutting plane meth-
ods and branch-and-bound algorithms (BB). Several versions of BB are dis-
cussed in papers [10], [24], [22], [23], [16], [3], [6], [18], vertex enumaration
procedures are used in papers [4], [8] and [9] to solve problem (P). Cutting
plane algorithms are described in papers [25], [5] and [12]. There are some
further methods like approximation using splines [13] or combination of BB
and cutting plane algorithms [5].
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Sufficient optimality criteria is given for the linearly constrained, separable
concave minimization problem.

The optimality criteria is based on the linear programming relaxation of
(P) and the sensitivity analysis of that linear programming problem. Our
result is similar to Phillips and Rosen’s result [22] but our proof is elementary
and constructive, and does not require to find common solution of exponen-
tially many linear programming problems. We introduce a test which can
be efficiently used as stopping or branching criteria in a BB algorithm. The
numerical implementation and testing of our BB algorithm is in progress.

Section 2 deals with the linear programming relaxation of problem (P)
and the related optimality criteria known from the literature of linear pro-
gramming. In section 3 using the sensitivity analysis of linear programming
problem we introduce the sufficient optimality criteria for problem (P). A test
point, which may violate these optimality criteria derived from the sensitivity
analysis of linear programming relaxation, has been introduced in section 4.
In section 4 we show, that the non existence of a violating test point for the
optimal solution of the relaxed linear programming problem means that the
given vertex is the optimal solution of the original problem (P).

In this paper, small (indexed) Latin (sometimes Greek) letters like z; y;,
v, B, ... denote (real) numbers. Exceptions are f, f;, f, fs g, g; which are
used for denoting functions and i, j, k, [ are (general) indices, while m is the
number of constraints in (P) and n denotes the number of variables used
in the problem. Capital Latin letters likes A, B,... denote matrices, while
calligraphic letters A, P, ... denote sets. The n dimensional Euclidean space
is denoted by IR™, and the matrices of size m x n, by R"™*". Elements of the
sets in IR"™ or R™, are unknowns of the system of linear inequalities, bounds
and right hand-sides of these inequalities and columns (rows) of matrices are
all vectors and has been denoted by small bold face letters x, b, 1, u, 0, a;
etc. Furthermore, let us denote the nonnegative orthant of R" by R%, i.e.
R = {x € R" : x > 0}. The positive vectors of the Euclidean space are
denoted by R and the indices of the unknowns by J := {1,...,n}. The
summing vector of all 1’s is vector e.

2 The relaxed linear programming problem

During the solution of problem (P), for instance using a branch-and-bound
algorithm, the first step is to form and solve a linear programming relaxation.
Solving the linear programming relaxation and applying the post optimality
analysis for the optimal solution we can introduce sufficient optimality criteria
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of the original problem. In this way we can decide whether the optimal
solution of the relaxed problem is the optimal solution of the original problem
(P) or not.

It is necessary to introduce the following statement about properties if one
dimensional concave function, A., Csészar (7], 228. page.

Proposition 2.1. Let f be one dimensional function on interval I C Dy.
The following statements are equivalent

(a) f is concave on interval I;

(b) letz,yel, x#y and

fly) = flz)
y—x

ifa, b, c €I, a <b< c then the following holds

m(x, y) =

m(a,b) > m(a,c) > m(b,c);

(¢) for anyt e I, my(z) =m(t,x) function is decreasing on I\ {t};
(a) ifa,bycel, a<b<cthen
m(a,b) > m(b, c).
O

The following proposition is an important consequence of the properties
listed above, A., Csészar [7], 232. page.

Proposition 2.2. Let f be one dimensional concave function on open interval
I C Dy, then

(a) f is continuous on interval I;
(b) at anyt € I the function is left and right differentiable and
fL(8) = fL(t);
(¢) ifa,b,el, a<b then
fi(a) = m(a,b) = fL(b),
moreover, if f is strict concave on interval I, then

fi(a) > m(a,b) > f’(b).

Operations Research Reports No. 2003-02
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The subsections 2.1 and 2.2 summarize the relaxed linear programming
problem generation pertaining to the problem (P) in order to calculate a
lower bound for problem (P). Although these calculations are well known in
the literature, this part is being discussed here for the sake of completeness.

In subsection 2.3 the optimality criteria of the relaxed linear programming
problem are obtained.

2.1 Relaxation of the concave functions f; on the set 7

Let us consider the linear relaxation of the concave functions f; : R — IR on
closed interval [l;, u;] as follows

9i(zj) = cjz; + dj,

where

() — Fa (L (uj) — £
¢ = f](u;j_ij(]) and dj:fj(lj)_% L= fi(ly)—c; 1y,
thus

9i(xj) = ¢j x5 +dj = ¢ x5 + f(l) — ¢5 1.

n
Then the objective function f(x) = > f;(x;) is approximated by the linear
j=1

function

900 = D 0i(ea) = D (es s + i) —esly)
j=1 j=1
= cIx+(f)—c")=c"x+6
on the set P = ANT, where
6=f1) —cTL
from the properties of the function f it is easy to show that
f(x)>g(x)=cTx+46

holds for all x € P.
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2.2 Computing lower bound for the objective value of
(P)

Lower bound for the objective value of (P) can be computed using the fol-
lowing linear programming problem
P
min c”x +4 (PLp)

Let us denote the optimal solution of (Prp) by X then 8 = g(X) = ¢I%x + 4§
which is the optimal objective value of it. Therefore

B=c"x+6< f(x) < fX)+ (V) (x—%)

holds, for all x € P, namely, a lower bound has been obtained for the optimal
objective value of the problem (P). The second inequality holds because of
the concavity of the function f, since the linear function

Fx) = f(2) + (V)T (x —%) (1)

is the tangent of f in x € P. 1

2.3 Optimality criteria of the relaxed LP problem

Without loss of generality we may consider the relaxed LP problem of (P) in
the following form

mincTx

Ax<b (PLp)
1<x<u

(The constant 4, from the objective function has been deleted.) Let us denote

the optimal solutions of the problem (Prp) by P;.
Pr={x"cP:c'x* <c'x, xc P}

During the sensitivity analysis we need some notations related to linear pro-

gramming.

Let us denote the index set of the optimal basis by Jp C J, while Jn
contains the indices of nonbasic variables. The vectors {a; : j € Jgp} are
linearly independent. Obviously J = Jp U Jny and Jg N JIn = 0.

IThe condition for differentiability can be disregarded, since concave function f has
subgradient at every inner point of its domain [2, 14] and so a subgradient can be considered
instead of V f(X).
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The index set JY C Jn (T C Jn) contains those indices which are at
their lower (upper) bound in this basis. In our problem (P) the index set
of nonbasic variables, Jn is partitioned into two subsets as follows Jny =
Tk U T

Let A = [B7!A4], and cp denotes the vector which contains the objective
coefficients of the basic variables.

For any x € P basic feasible solution of the (P p) problem the following
statements are true.

l; <Z;<wu; forall i€ Jp,
z; = 1; for all ieJ]l\;,

z; =u; forall ieJy.

As a consequence of these, if a basic partition of the index set J given as
(IB,J, zl\/v J) then the basic variables value can be computed as follows

_ 1 _ _
XB:B b—leaj—Zujaj,
JjeTY JETN

where a; denotes the j-th column vector of matrix A.

The dual problem of the (P p) has the form

max —bTy + 17z — uTs

ATy +z-s=c (Drp),
y=0, z>0, s>0
and denotes

D={(y,zs): —-ATy+z—-s=c,y>0,2z>0,s>0}

the set of dual feasible solutions. Let us consider the weak duality theorem
related to (Prp) and (D p) problems.

Proposition 2.3. Let x € P and (y, z,s) € D vectors then
x> by +17z —uls (2)
inequality holds. In (2), equality holds if and only if

0=c’x+bly 1Tz +uls=y"(b—Ax) + 27 (x —1) + s (u —x). O
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Now we are ready to introduce the optimality criteria (necessary and suf-
ficient) of the problems (Prp) and (Drp) as

Ax<b, 1<x<u
ATy 4+z—-s=c¢c, y>0,2>0,s>0
y(b—Ax)=0, z(x—-1)=0, s(u—x)=0,

where y (b—Ax), z (x—1) and s (u—x) denote the Hadamard (coordinatewise)
product of the corresponding vectors.

Assuming that x* € PZ is a basic solution belonging to the basis B and
y* =cEB~! >0, we get that

e in case of j € JB, lj <z} <uy, zj =0 and s; = 0 hold and thus
—a;ry:cj
e incaseof j € Tk, lj = z}, zj 2 0 and s; = 0 hold and thus
Zj =¢j +aJTy >0
e incase of j € Ty, u; = x;, z; = 0 and s; > 0 hold and thus

—8; =¢j —I—a;ry <0.

Finally, we obtain a basic solution x* € P, which is optimal if and only if

y*=ckB™t > o0 (3)
—ckB™'a; < ¢, any j € Jk and (4)
—cpB7a; > ¢, any jEJY (5)

hold.

3 Sufficient optimality criteria

Here we formulate and prove sufficient optimality criteria for problem (P)
with regard to an extremal point of set P, concerning a basic solution.

Let us define the set H C IR"™, which contains coefficients of the corre-
sponding relaxed linear, objective functions.

The set ‘H must be such that if the optimal solutions of linear programming
problem related to the elements of set H were known then the optimal solution
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of (P) could be generated, too. Otherwise it would be impossible to identify
the optimal solution of problem (P) using optimization method based on
linear relaxation.

At first we examine H in general term and use the most important proper-
ties of it. Later we define sets with simple structure which approximates set
H.

The next lemma states the existence of a vector h € IR"™ for an optimal
basic solution x of problem (P) such that x € P holds. Namely % is element
of the set of optimal solutions of the relaxed linear programming problem with
objective function coefficient h.

Lemma 3.1. Consider problem (P). The optimal solution of (P) is denoted
by % and f(%X) = mingep f(x). Then

f(%) = min f(x),

xeP

where f(x) = (Vf(%X))T (x—%)+ f(X), is a linear function defined by equation
(1).

Proof. The following inequality holds because of the concavity of function f,
fx) < f(x) = (V) (x = %) + f(%),

with strict equality at %, namely f(%) = f(

ming problem with objective function f(x

).
f(%) = min f(x) < min f(x) < f(%) = f(%)

xeP xeP

x). Consider the linear program-
Then

from which ~ ~
min f(x) = f(%)
is obtained. O

In this lemma, the differentiability of function f] on interval [I;, u;] is used.
It is easy to show that if f is not differentiable at X then any inner point of
the set of subgradients is also suitable for function f.

It has been proved that there exists such vector h that the optimal solution
% of relaxed linear programming problem, concerning vector h, as objective
function coefficient, is also an optimal solution for the problem (P). Thus the
set H should contain these vectors Vf(x), x € P.

For any % € P basic solution, set Cp can be formulated as follows

Cp ={c € R": vector c satisfies equation (3)—(5) }.
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Cp contains such ¢ vectors, for which X is an optimal solution for linear
programming problem

T
min ¢ X P,).
xép } ( J
Obviously, set Cp is not empty.

It is easy to prove the following statement about any linear programming

relaxation of the problem (P).

Proposition 3.1. Consider the basic solution X € P, with basis B and let
h € H be a given vector. If h € Cp then the X is an optimal solution of the
following linear programming problem.

. T )
xrn€17r>1h x} (P),

namely X € P;, where P} denotes the set of optimal solution of problem ().
O

(From this result follows that
it HCCp then xeP; (6)

holds for any h € H.

We are ready to introduce and prove our main result, the sufficient optimal-
ity criteria for linearly constrained separable concave minimization problem
(P).

Theorem 3.2. Consider the linearly constrained, separable concave mini-
mization problem (P), and suppose the functions f; are strictly concave. Let
X € P be a basic solution with basis B that H C Cp holds, then P* = {X}.

Proof. Since H C Cp thus x € P} holds for any h € H.

There exist global minimal solution %X of (P) which is an extremal point of
set P. Suppose that X # x.

Let h = V f(%). Since lemma 3.1 asserts x € P}, otherwise X € P;. The
following relations hold,

fx) = fx) = f(%) > f(%), (7)
which is a contradiction, thus X = X, then P* = {x}. O

The strict inequality comes from the strict concavity. If the condition of
strict concavity is removed from the Theorem 3.2 then the inequality (7) will
be modified

&) = f(x) = f%) = (%) > f(%)

Operations Research Reports No. 2003-02
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so f(X) = f(x), thus X € P*, but the equality |P*| = 1 cannot be guaranteed.

It has been proved that the sufficient optimality criteria for a basic solution
X € P of problem (P) with basis B is

H C Cp.

4 On set H

The set ‘H determines the strength of the optimality criteria. For some prob-
lems (P) and given basis, set H might be computed easily, however in general,
the set H is nonlinear and nonconvex. Obviously the best approximation of
the set H is our aim.

Set ‘H contain vectors that are linear relaxation of function f at some fea-
sible points of the problem. These vectors are closely related to the derivative
of function f.

Checking optimality is equivalent to investigate the relation between two
sets Cp and H. Determining set H we have to take into account that the
relation between these two sets should be examined easily.

One way to determine set H is to consider the range of derivative of function
fonset P. If f is strictly concave then, f’ strictly decreasing, so it has inverse
function g, then set

F={y:Ag(y)=b and 1< g(y) <u}

is the range of f’ on P, which is suitable for set H. Set F can have complicated
structure (nonlinear, nonconvex), so to decide whether H C Cp is as difficult
as the solution of problem (P).

If function f is quadratic then function ¢ is linear so H = F is also a
polyhedron.

We approximate set F, so that it is contained in a set which has less
complicated structure (i.e. polyhedron).

Obviously, the determination of H is greatly influenced by the property of
function f (strict concavity, differentiability etc.) On the other hand if the
structure of set H is complicated (not polyhedron) then verifying the optimal-
ity criteria (6) can be very difficult. For this reason it is worth determining
a set having simple structure (hyper rectangle) which encloses the set H. If
the set approximating H is only based on the properties of problem (P), we
can get

Hp={h e R": h; € [fj_(u;), i (;)]}

Operations Research Reports No. 2003-02
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and H C Hy holds. Nevertheless, if we determine set approximating H for a
given basic solution X € P then let

Hrx ={h€R": h; € [c}, 4]}

this set will contain the coefficients of all possible relaxed linear functions,
where
u { m(l;,%;), % #l;

! { m(Zj,uj),  Tj Fuj

fi (), otherwise and %= fi—(uj), otherwise

It is obvious that H C Hy % holds.
(From the Proposition 2.1. and 2.2. we can get the inequalities

Fi_(uy) < ¢ =m(@;,u5) <m(l;, %) = ¥ < fl, (1) (8)

and therefore Hy x C ‘Hy holds. Namely based on information from the basic
solution X € P, a tighter set can be determined as set of coefficients for the
relaxed linear objective functions approximating set H. Philips and Rosen
[22] also used the set Hx. 2

Now we are ready to examine the computational complexity of the decision
problem, whether the relation

Hizx CChr

is true or false. Philips and Rosen [22] reduced this problem to the following
question: whether exponentially large number of linear programming prob-
lems have a common optimal solution or not. If those linear programming
relaxations of problem (P) have common optimal solution then that solution
will be the optimal solution of problem (P), too. Obviously, it is enough to
decide whether the extremal points of hyperrectangle H % is element of Cp or
not. This observation can save significant amount of computations, but it still
needs checking whether the vertices (exponential number of points) belongs
to set Cg or not.

Instead of following this line, we would like to choose, much more efficiently,
such vertex from Hy g which violate, at least one constraint from the set Cg,
if such point exists. We call these vertices as test points.

4.1 Defining a test point

Instead of checking inclusion Hyx C Cp we define a test point chosen from
set Hyx, for each inequality of (3)—(5) system. Now, the coefficients of the

2If functions fj are strictly concave then inequalities in (8) are strictly fulfilled.
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linear objective function are the unknown variables in the inequality system
(3)-(5). If there is no test point which violates at least one inequality then
the inclusion Hy x C Cp should hold.
Let us define a test point, which belongs to H %, and violate the constraint
indexed by j € Jk
—cﬁB_laj = —cgéj <¢;j.

It means, we choose such vertex of Hy %, which increase the left side of
inequality and decrease the right side as much as possible. Therefore the test
point h; can be defined as follows

c%-, ifi=j
}_l"— Cys if&ij>0,i€jB
E C;L, if&ij<0,i€jB

hija if ;1 ¢ (jB \ {Z Py = 0}) U {]}a where h'ij € [Cé,C;’L]-
It is obvious that h; € Hx holds. From the construction of the test point it
is clear that ~ ~
ha; + hy; < hja; + hy;

holds for any h € H; %, which is

~hfa; — hj; > ~hha; — hyj. (9)
Now, if the test point does not violate the inequality, that is

0 Z —}_lgﬁj — FL]‘]‘, (10)

then based on (9) and (10) there is no element of set M x which can violate
the inequality j € J, le In general, the test point hy for any index k € 7, ]l\, UJN
will be defined, using sets .,71-+, J; , and i € Jg, as follows

d, ifkeJ ,ieJTs

v, ifkeJr ieJs

ik = cfc, ifi =k, andkej}v
cp, ifi=k, and k€ JF

hi, i¢ (I \{i: aw =0})U{k}, where h; € [c},c¥]

>

where

J5 = {ke Ty aw <0yU{ke Tk : ax >0}, and
I~ = {keJh:auw >0 U{ke T ay <0}

Based on these observations, we can get the following proposition.
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Proposition 4.1. If test point hy does not violate the inequality k € 7, ]l\, UJN
then no point h € Hy % violates either. O

Moreover, in case of j € Tk (j € T¥)
—bL .a; > (~hTp;a; <c¥)
B,j %I J B,j 4j J

the test point l_1j violates the optimality criteria which belongs to the variable
j-
We can determine a test point for testing inequality system

hLB=1 >o0.
Let matrix B = B~! and let b; denote the i-th column of matrix B, then

Cé, if bji >0, j € I
hji = C;I-L, if b]z < 0, j S jB _
hi, ifjeJLUTEU{j€ Tp : bj =0} where, h; € [cé,c}*]

In this case 1_1;‘(:3 b; > 0 holds, and any vector h € H;x satisfies the i-th
nonnegativity condition.

Therefore, instead of testing 2™ vertices of hyperrectangle H %, it is enough
to determine n test points in order to check whether the inclusion Hyx C Cp
holds or not.

Let us introduce the index set IC

K = {i : h; test point violates i-th inequality}.

It is obvious that, the equality X = ) leads to Hsx C Cp, thus X € P* holds.
The decision, whether basis X € P is optimal solution for problem (P), can
be performed as follows

1. generate set H x,
2. using matrices B~ and B~' Ay generate test point l_1j,

3. perform the checking of the test points, if there is no index j for which
test point h; violates j-th condition then X; is optimal solution for
problem (P).

Nevertheless, if any test point l_1j can be founded which violates j-th condi-
tion, can we conclude that X € P is not an optimal solution of the problem
(P)? Unfortunately we can not, because we do not know, how good is the
approximation of set H by set Hy .
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Since sets ‘H and Hy % significantly depend on bounds /; and wj, thus it is
expected that if the diameter of set H x is rapidly decrease then a branch—
and-bound type algorithms is efficient for solving problem (P).

In case of branch—and-bound type algorithms the partition is to be per-
formed in a way that the diameter of the set Hyx decreases. The numeri-
cal testing of the branch—and-bound algorithm, using test point introduced
above, is in progress.

References

[1] Apkarian, P. and Tuan, H. D. Concave programming in control theory, J. Global
Optim., 15: 343-370, 1999.

[2] Bazaraa, M. S., Sherali, H. D. and Shetty, C. M., Nonlinear Programming:
Theory and Algorithms John Wiley & Sons., Inc., New York, 1993.

[3] Benson, H. P. Separable concave minimization via partial outer approximation
and branch and bound, Oper. Res. Lett., 9: 389-394, 1990.

[4] Benson, H. P. and Sayin, S. A finite concave minimization algorithm using
branch and bound and neighbor generation, J. Global Optim., 5: 1-14, 1994.

[5] Bretthauer, K. M. and Cabot, A. V., A composite branch and bound, cutting
plane algorithm for concave minimization over a polyhedron, Comput. Oper.
Res., 21: 777-785, 1994.

[6] Cabot, A. V. and Erenguc, S. S. A branch and bound algorithm for solving a
class of nonlinear integer programming problems, Naval Res. Logist. Quart., 33:
559-567, 1986.

[7] Csészér A., Valds analizis I., Tankonyvkiads, Budapest, 1983.

[8] Dyer, M. E. The complexity of vertex enumeration methods Math. Oper. Res.,
8: 381402, 1983.

[9] Dyer, M. E. and Proll, L. G. An algorithm for determining all extreme points
of a convex polytope, Math. Programming, 12: 81-96, 1977.

[10] Falk, J. E. and Soland, R. M. An Algorithm for Separable Nonconvex Pro-
gramming Problems. Management Science, 15: 550-569, 1969.

[11] Friedler, F. and Fan, L. T. and Imreh, B. Process network synthesis: problem
definition, Networks, 31: 119-124, 1998.

[12] Hoffman, K. L. A method for globally minimizing concave functions over convex
sets, Math. Programming, 20: 22-32, 1981.

[13] Kontogiorgis, S. Practical piecewise-linear approximation for monotropic opti-
mization, INFORMS J. Comput., 12: 324-340, 2000.

[14] Kovécs M., A nemlinedris programozds elmélete, Typotex, Budapest, 1997.

[15] Kuno, T. and Utsunomiya, T. Lagrangian based branch-and-bound algorithm
for production-transportation problems, J. Global Optim., 18: 59-73, 2000.

Operations Research Reports No. 2003-02

18 Tibor Illés and Addm B. Nagy

[16] Lamar, B. W. Nonconvex optimization over a polytope using generalized ca-
pacity improvement, J. Global Optim., 7: 127-142, 1995.

[17] Liu, Ming-Long and Sahinidis, N. V. and Shectman, J. P. Planning of chem-
ical process networks via global concave minimization, Global optimization in
engineering design, Kluwer Acad. Publ. 1996. Dordrecht, 195-230.

[18] Locatelli, M. and Thoai, N. V., Finite exact branch-and-bound algorithms for
concave minimization over polytopes, J. Global Optim., 18: 107-128, 2000.

[19] Luenberger, D. G. Intoduction to linear and nonlinear programming, Addison-
Wesley Publishing Co., Massachusetts, 1973.

[20] Murty, K. G. and Kabadi, S. N. Some NP-complete problems in quadratic and
nonlinear programming, Math. Programming, 39: 117-129, 1987.

[21] Moré, J. J. and Vavasis, S. A. On the solution of concave knapsack problems,
Math. Programming, 49: 397-411, 1990/1991.

[22] Phillips, A. T. and Rosen, J. B. Sufficient conditions for solving linearly con-
strained separable concave global minimization problems, J. Global Optim., 3:
79-94, 1993.

[23] Rosen, J. B. Global minimization of a linearly constrained concave function by
partition of feasible domain, Math. Oper. Res., 2: 215-230, 1983.

[24] Shectman, J. P. and Sahinidis, N. V. A finite algorithm for global minimization
of separable concave programs, J. Global Optim., 12: 1-35, 1998.

[25] Tuy, H. and Thieu, T. V. and Thai, Ng. Q., A conical algorithm for globally
minimizing a concave function over a closed convex set, Math. Oper. Res., 10:
498-514, 1985.

[26] Yajima, Y. and Konno, H. An algorithm for a concave production cost network
flow problem, Japan J. Indust. Appl. Math., 16: 243-256, 1999.

Tibor Illés Adém B. Nagy

Department of Operations Research Department of Computer Science
Eo6tves Lorand University of Sciences  University of Veszprém

Pézmény Péter sétany 1/C. Egyetem u. 10.

H-1117 Budapest H-8200 Veszprém

E-mail: illes@math.elte.hu E-mail: nagy@dcs.vein.hu

Operations Research Reports No. 2003-02



Earlier Research Reports

1991-01 T. ILLES, J. MAYER AND T. TERLAKY: A new approach to the
colour matching problem

1991-02 E. KLASZKY, J. MAYER AND T. TERLAKY: A geometric program-
ming approach to the chanel capacity problem

1992-01 Epvi T.: Karmarkar projektiv skaldzasi algoritmusa
1992-02 Kassay G.: Minimax tételek és alkalmazdsaik

1992-03 T. ILLES, I. JoO AND G. KASSAY: On a nonconvex Farkas theorem
and its applications in optimization theory

1992-04 Interior point methods. PROCEEDINGS OF THE IPM 93. WORK-
SHOP JAN. 5. 1993

Recent Operations Research Reports

2003-01 ZsoLT CsizMADIA AND TIBOR ILLES: New criss-cross type algo-
rithms for linear complementarity problems with sufficient matrices

2003-02 TiBOR ILLES AND ADAM B. NaGY: A sufficient optimality criteria
for linearly constrained, separable concave minimization problems



