A Randomized Heuristic for Scene Recognition
by Graph Matching

Maria C. Boeres!, Celso C. Ribeiro?, and Isabelle Bloch?

! Universidade Federal do Espirito Santo, Department of Computer Science,
R. Fernando Ferrari, Campus de Goiabeiras, Vitoria, ES 29060-970, Brazil.
boeres@inf.ufes.br
2 Universidade Federal Fluminense, Department of Computer Science,
Rua Passo da Patria 156, Niterdi, RJ 24210-240, Brazil.
celso@inf.puc-rio.br
3 Ecole Nationale Supérieure des Télécommunications, CNRS URA 820,
46 rue Barrault, 75634 Paris Cedex 13, France.
Isabelle.Bloch@enst.fr

Abstract. We propose a new strategy for solving the non-bijective graph
matching problem in model-based pattern recognition. The search for the
best correspondence between a model and an over-segmented image is
formulated as a combinatorial optimization problem, defined by the re-
lational attributed graphs representing the model and the image where
recognition has to be performed, together with the node and edge simi-
larities between them. A randomized construction algorithm is proposed
to build feasible solutions to the problem. Two neighborhood structures
and a local search procedure for solution improvement are also proposed.
Computational results are presented and discussed, illustrating the ef-
fectiveness of the combined approach involving randomized construction
and local search.

1 Introduction

The recognition and the understanding of complex scenes require not only a
detailed description of the objects involved, but also of the spatial relationships
between them. Indeed, the diversity of the forms of the same object in different
instantiations of a scene, and also the similarities of different objects in the
same scene, make relationships between objects of prime importance in order to
disambiguate the recognition of objects with similar appearance. Graph based
representations are often used for scene representation in image processing [6, 9,
11,20, 21]. Vertices of the graphs usually represent the objects in the scenes, while
their edges represent the relationships between the objects. Relevant information
for the recognition is extracted from the scene and represented by relational
attributed graphs. In model-based recognition, both the model and the scene
are represented by graphs.

The assumption of a bijection between the elements in two instantiations
of the same scene is too strong for many problems. Usually, the model has a
schematic aspect. Moreover, the construction of the image graph often relies on
segmentation techniques that may fail in accurately segmenting the image into
meaningful entities. Therefore, no isomorphism can be expected between both
graphs and, in consequence, scene recognition may be better expressed as an
non-bijective graph matching problem.

Our motivation comes from an application in medical imaging, in which the
goal consists in recognizing brain structures from 3D magnetic resonance im-
ages, previously processed by a segmentation method. The model consists of an
anatomical atlas. A graph is built from the atlas, in which each node represents
exactly one anatomical structure of interest. Edges of this graph represent spatial
relationships between the anatomical structures. Inaccuracies constitute one of
the main characteristics of the problem. Objects in the image are segmented and
all difficulties with object segmentation will be reflected in the representation,
such as over-segmentation, unexpected objects found in the scene (pathologies
for instance), expected objects not found and deformations of objects [13]. Also,
the attributes computed for the image and the model may be imprecise. To il-
lustrate these difficulties, Figure 1 presents slices of three different volumes: (a)
a normal brain, (b) a pathological brain with a tumor, and (c¢) the representa-
tion of a brain atlas where each grey level corresponds to a unique connected
structure. Middle dark structures (lateral ventricles) are much bigger in (b) than
in (a). The white hyper-signal structure (tumor) does not appear in the atlas
(¢) nor in the normal brain (a). Similar problems occur in other applications,
such as aerial or satellite image interpretation using a map, face recognition, and
character recognition.

Fig. 1. Examples of magnetic resonance images: (a) axial slice of a normal brain, (b)
axial slice of a pathological brain with a tumor, and (c) axial slice of a brain atlas.

This paper focuses on algorithms for the non-bijective graph matching prob-
lem [1,7,10,13,15,17,19], which is defined by the relational attributed graphs
representing the model and the over-segmented image, together with the node

and edge similarities between their nodes and edges. Section 2 describes our for-
mulation of the search for the best correspondence between the two graphs as
a non-bijective graph matching problem. We discuss the nature of the objective
function and of the constraints of the graph matching problem. A randomized
construction algorithm is proposed in Section 3 to build feasible solutions. Be-
sides the quality of the solutions found, this algorithm may also be used as a
robust generator of initial solutions for a GRASP metaheuristic [16] or for pop-
ulation methods such as the genetic algorithm described in [14]. A local search
algorithm is proposed in Section 4 to improve the solutions obtained by the
construction algorithm. Numerical results obtained with the randomized con-
struction and the local search algorithms are presented and discussed in Section
5. They illustrate the robustness of the construction algorithm and the improve-
ments attained by the local search algorithm in terms of solution quality and
object identification. Concluding remarks are presented in the last section.

2 Non-bijective graph matching

Attributed graphs are widely used in pattern recognition problems. The defini-
tion of the attributes and the computation of their values are specific to each
application and problem instance. Fuzzy attributed graphs are used for recog-
nition under imprecisions [2-5,12-15]. The construction of a fuzzy attributed
graph depends on the imperfections of the scene or of the reference model, and
on the attributes of the object relations. The common point is that there is al-
ways a single vertex for each region of each image. Differences may occur due
to the strategy applied for the creation of the edge set, as a result of the cho-
sen attributes or of defects in scene segmentation. Once the graph is built, the
next step consists in computing the attributes of vertices and edges. Finally,
vertex-similarity and edge-similarity matrices are computed from the values of
the attributed graphs, relating each pair of vertices and each pair of edges, one
of them from the model and the other from the segmented image.

Two graphs are used to represent the problem: G; = (Ny, E7) represents the
model, while Gy = (N3, E5) represents the over-segmented image. In each case,
N; denotes the vertex set and E; denotes the edge set, ¢ € {1,2}. We assume that
|N1| < |N3|, which is the case when the image is over-segmented with respect to
the model.

A solution to the non-bijective graph matching problem is defined by a set
of associations between the nodes of G; and G5. Each node of G5 is associated
with one node of G;. These assignments are represented by binary variables:
x;; = 1 if nodes 7 € Ny and j € Ny are associated, x;; = 0 otherwise. The set
A(i) = {j € N3 |z;; = 1} denotes the subset of vertices of Ny associated with
vertex i € Nj. To ensure that the structure of G; appears within Ga, we favor
solutions where a correspondence between edges also implies a correspondence
between their extremities (edge association condition). Thus, edge associations

are derived from vertex associations, according to the following rule: edge (a,b) €
E, is associated with all edges (a’,b') € E5 such that (i) o’ € Ny is associated
with @ € Ny and b’ € Ns is associated with b € Ny or (ii) o’ € N» is associated
with b € Ny and V' € Ny is associated with a € Nj.

A good matching is a solution in which the associations correspond to high
similarity values. Similarity matrices are constructed from similarity values cal-
culated from graph attributes. The choice of these attributes depends on the im-
ages. Let SV (resp. S¢) denote an |Ni| x |Ny| (resp. |E1| X |E2|) vertex-similarity
(resp. edge-similarity) matrix, where the elements s” (4, j) (resp. s¢((¢,%'), (4,7')))
€ [0,1] represent the similarity between vertices (resp. edges) ¢ € Ny and j € Na
(resp. (,4') € B and (j,j") € Es). The value of any solution is expressed by an
objective function, defined for each solution z as

gy, (A0
A AR AR RN TARTA T
with
@)= (1= |z — "))
i€ENy jJEN2
and

= > > (= fmax{wgzig, wigwigt — 91,7, (G,5)),

(i,i")EEL (§,5)EE2

where « is a parameter used to weight each term of f. This function consists of
two terms which represent the vertex and edge contributions to the measure of
the solution quality associated with each correspondence. Vertex and edge asso-
ciations with high similarity values are privileged, while those with low similarity
values are penalized. The first term represents the average vertex contribution to
the correspondence. The second term represents the average edge contribution
to the correspondence and acts to enforce the edge association condition. For
instance, if s((4,4'), (4,4’)) is high and there are associations between the ex-
tremities of edges (4,7') and (4, '), then max{z;;x; j/, z;j7x;;} = 1 and the edge
contribution is high. On the contrary, if the extremities of edges (i,4’) and (j, j')
are not associated, then max{z;;xy;/,z;yxy;} = 0 and the edge contribution
is null. This function behaves appropriately when the image features are well
described by the graph attributes.

The search is restricted only to solutions in which each vertex of Ny has to be
associated with exactly one vertex of N;. The rationale for this condition is that
image segmentation is performed by an appropriate algorithm which preserves
the boundaries and, in consequence, avoids situations in which one region of the
segmented image is located in the frontier of two adjacent regions of the model:

Constraint (1): For every j € Na, there exists exactly one node i € Ny such that
z; =1, 1e |[A71(j)| = 1.

The quality of the input data (vertex and edge similarity matrices) is primor-
dial for the identification of the best correspondence. However, as this quality is
not always easy to be achieved in real applications, we emphasize some aspects
that can be used as additional information to improve the search. Vertices of G2
associated with the same vertex of GG; should be connected among themselves in
real situations, since an over-segmentation method can split an object in several
smaller pieces, but it does not change the piece positions. Regions of the seg-
mented image corresponding to the same region of the model should necessarily
be connected. A good strategy to avoid this type of solution is to restrain the
search to correspondences for which each set A(7) of vertices induces a connected
subgraph in G, for every model vertex ¢ € Ny (connectivity constraint):

Constraint (2): For every i € Ny, the subgraph induced in Ga(Na, Es) by A(7)
is connected.

Pairs of vertices with null similarity cannot be associated. Such associations
are discarded by the constraint below, which strengthens the penalization of
associations between vertices with low similarity values induced by the objective
function:

Constraint (3): For every i € Ny and j € N, if s¥(4,7) = 0, then z;; = 0.

Finally, to ensure that all objects of the model appear in the image graph,
one additional constraint is imposed:

Constraint (4): For every i € Ny, there exists at least one node j € N5 such that
(i,7) € E' (Le., [A()] = 1)).

3 Randomized construction algorithm

The construction algorithm proposed in this section is based on progressively
associating a node of N; with each node of Ny, until a feasible solution x is
built. The objective function f(z) does not have to be evaluated from scratch
at each iteration. Its value is initialized once for all and progressively updated
after each new association between a pair of vertices from N; and Ns. Since

Foa) =3 S0 (= fay — 5" g)]) =

i€N1 jEN2

= D (=s"GaN+ Do (2G5 -1,
(4,7)EN1 X N2 (4,9):@s =1
then f(z') = f(z) + 2s¥(i,j) — 1 for any two solutions x and 2’ that differ
only by one additional association between vertices i € N1 and j € Ny. Similar
considerations are used in the evaluation of the term f¢(x), which is increased by
2s¢((a,a’), (b,b")) — 1 whenever a new pair of edges (a,a’) € E1 and (b, V') € Es
are associated.

procedure RandomizedConstruction(seed,MaxTrials,MaxSolutions)
1. trials < 1, solutions <— 1, and feasible <— .FALSE.;
2. ff e oo
3. while trials < MaxTrials and solutions < MaxSolutions do
4. x 0, A(i) «— 0 Vi € N1, and A7(j) — B Vj € No;
5. I <_Z(i,j)eleNg(l_Su(i:j))§
6 Ie = Z((i,i/),(]’,j/))eEleQ(l —s°((4,4), (4,3");
7 V2 Noj;
8. while V2 # () do
9. Randomly select a node j from V2 and update Vo — Vo — {j};
10. Vi« Ny;
11. while V1 # 0 and A~ !(j) = do
12. Randomly select a node ¢ from V; and update Vi «— Vi — {i};
13. if s”(i,7) > 0 and
the graph induced in G2 by A(i) U {j} is connected
14. then do
15. Tij < 1;
16. A(3) «— A@) U {5} and A7(5) « {i};
17. PO FU 4 280 (i,5) — 1
18. forall i’ € I'z, (i) do
19. forall j' € I'z,(j) do
20. if Xt g = 1
21. then fe<_fe+25v((i7i,)a(j7j,))_1;
22. end _forall;
23. end _forall;
24. end_if;
25. end_while;
26. end_while;
27. if A(i) A0 Vi€ Ny and A7 (j) A0 Vj € Ny
28. then do
29. feasible < .TRUE.;
30. solutions <« solutions + 1;
31. Compute f « a/(|N1| - [Na|) - f* + (1 — a)/(|Ex| - |E2]) - f%
32. if f > f* then update f* «— f and " «— x;
33. end_if;
34. trials < trials + 1;
35. end_while;
36. return z*, f;
end RandomizedConstruction.

Fig. 2. Pseudo-code of the randomized construction algorithm.

The pseudo-code of the RandomizedConstruction randomized algorithm is
given in Figure 2. The algorithm takes as parameters the initial seed, the maxi-
mum number M axTrials of attempts to build a feasible solution before stopping,
and the maximum number M axSolutions of solutions built. We denote by I'c(j)
the nodes adjacent to vertex j in a graph G. The number of attempts, the num-

ber of solutions built, and the indicator that a feasible solution has been found
are initialized in line 1. The optimal value is initialized in line 2. The loop in lines
3-3b performs at most MazxTrials attempts to build at most MaxSolutions so-
lutions. Lines 4-7 prepare and initialize the data for each attempt. The solution
z, the set A(i) of nodes associated with each node i € Ny, and the node A~1(5)
associated with each node j € N, are initialized in line 4. The terms f" and f¢
are initialized respectively in lines 5 and 6. A temporary copy V5 of the node set
N5 is created in line 7. The loop in lines 8-26 performs one attempt to create a
feasible solution and stops after the associations to each node in V5 have been
investigated. A node j € V5 is randomly selected and eliminated from V5 in line
9. A temporary copy V; of the node set IV is created in line 10. The loop in lines
11-25 searches for a node in N7 to be associated with node j € V5. It stops after
all possible associations to nodes in N7 have been investigated without success
or if one possible association was found. A node i € V; is randomly selected and
eliminated from V; in line 12. The algorithm checks in line 13 if node ¢ can be
associated with node j, i.e., if their similarity is not null and if the graph induced
in G2 by A(#) U {j} is connected. If this is the case, the current solution and
its objective function value are updated in lines 14-24. The current solution is
updated in lines 15-16. The term fV corresponding to the node similarities is
updated in line 17. The term f€¢ corresponding to the edge similarities is updated
in lines 18-23. The algorithm checks in line 27 if the solution = built in lines
826 is feasible, i.e., if there is at least one node of N, associated with every
node of N7 and if there is exactly one node of N; associated with every node of
Ny. If this is the case, the indicator that a feasible solution was found is reset
in line 29 and the number of feasible solutions built is updated in line 30. The
value of the objective function for the new solution is computed in line 31. If the
new solution is better than the incumbent, then the latter is updated in line 32.
The number of attempts to build a feasible solution is updated in line 34 and a
new iteration resumes, until the maximum number of attempts is reached. The
best solution found z* and its objective function value f* are returned in line
36. In case no feasible solution was found, the returned value is f* = —oo. The
complexity of each attempt to build a feasible solution is O(|N1|? - [N2|?).

4 Local search

The solutions generated by a randomized construction algorithm are not neces-
sarily optimal, even with respect to simple neighborhoods. Hence, it is almost
always beneficial to apply a local search to attempt to improve each constructed
solution. A local search algorithm works in an iterative fashion by successively
replacing the current solution by a better solution in the neighborhood of the
current solution. It terminates when a local optimum is found, i.e., when no
better solution can be found in the neighborhood of the current solution.

We define the neighborhood N%(x) associated with any solution x as formed
by all feasible solutions that can be obtained by the modification of A~1(5)

for some j € N,. For each vertex j € N, the candidate set C(j) is formed
by all vertices in N; that can replace the node currently associated with Ns,
ie. C(j) = {k € N1 | o is a feasible solution, where 2}, = 1ifi = k and ¢ =
j,xh, =01if i = A7(j) and £ = j, 2}, = 24, otherwise}. The number of solutions
within this neighborhood is bounded by |Ny| - |Na|.

procedure LS(z™, f*)

1. improvement «— .TRUE.;

2. Build sets C(j),Vj € Na;

3. while improvement do

4. improvement < .FALSE.;

5. forall j € N> while .NOT.improvement do

6. i— ATY();

7. forall k£ € C(j) while .NOT.improvement do
8. AV —2-5"(k,j)—2-5"(4,7);

9. A° — 0;

10. forall j' € I'z,(j) do

11. forall i’ € I'¢, (i) do

12. ifif = A71(5)

13. then A° — A°4+1—2-5°((4,7),(4,7)));
14. end _forall;

15. forall £’ € I'c, (k) do

16. if k' = A7(5)

17. then A® «— A° —1+2-5°((k, k'), (4,5)));
18. end _forall;

19. end _forall;

20. A a/(INi] - [Nal) - A" + (1 — @) /(|| - | Eal) - A
21. ifA>0

22. then do

23. improvement < .TRUE.;

24. Ty — 1,25 « 0;

25. A(i) — AG) — {7}

26. A(k) — A(k) U {j};

27. fre= T+ A

28. Update sets C(j),Vj € No;

29. end_if;

30. end _forall;

31. end _forall;

32. end_while;

33. return z*, f*;

end LS.

Fig. 3. Pseudo-code of the basic local search algorithm using neighborhood N*.

The pseudo-code of the local search algorithm LS using a first-improving
strategy based on the neighborhood structure N defined above is given in Fig-

ure 3. The algorithm takes as inputs the solution x* built by the randomized
construction algorithm and its objective function value f*. Initializations are
performed in lines 1-2. The loop in lines 3-32 performs the local search and
stops at the first local optimum of the objective function with respect to the
neighborhood defined by the sets C'(j). The control variable is initialized at each
local search iteration in line 4. The loop in lines 5-31 considers each node j of
graph Gs. The replacement of the node i = A~!(j) currently associated with j
(line 6) by each node belonging to the candidate set C(j) is investigated in the
loop in lines 7-30. The increase in the value of the objective function due to the
node similarity contributions is computed in line 8, while that due to the edge
similarity contributions is computed in lines 9-19. If the total increase in the
objective function value computed in line 20 is strictly positive (line 21), then
the current solution and the control variables are updated in lines 22-28. The
procedure returns in line 33 the local optimum found and the corresponding so-
lution value. Each local search iteration within neighborhood N® has complexity
O(IN| - |Nof? + [No| - | Ea).

We notice that if A(i) = {j} for some i € Ny and j € Ny (i.e. |A(i)] = 1)
then |C'(j)| = 0, because in this case vertex ¢ would not be associated with any
other vertex. It can also be the case that a node j € A(i) cannot be associated
with any other node because A(4) \ {j} induces a non-connected graph in Gs.
In consequence, in these situation the vertex associated with node j cannot be
changed by local search within the neighborhood N¢, even if there are other
feasible associations. As an attempt to avoid this situation, we define a second
neighborhood structure N°(z) associated with any feasible solution z. This is
a swap neighborhood, in which the associations of two vertices j,j € No are
exchanged. A solution 2’ € N®(z) if there are two vertices i’,i"” € N; and two
vertices j', j” € Ny such that z;jy = 1, xp v = 1, x;,j,, =1, and x;,,j, =1, with
all other associations in solutions x and z’ being the same.

Local search within the swap neighborhood N has a higher time complexity
O(|N5|? - | E,|) than within neighborhood N®. Also, [N®(z)| >> |[N%(x)| for any
feasible solution x. Accordingly, we propose an extended local search procedure
LS+ which makes use of both neighborhoods. Whenever the basic local search
procedure LS identifies a local optimum x* with respect to neighborhood N,
the extended procedure starts a local search from the current solution z* within
neighborhood N?. If this solution is also optimal with respect to neighborhood
N?, then the extended procedure stops; otherwise algorithm LS resumes from
any improving neighbor of 2* within N?.

5 Computational results

The algorithms described in the previous sections were implemented in C and
compiled with version 2.96 of the gcc compiler. We used an implementation in

10

C of the random number generator described in [18]. All computational exper-
iments were performed on a 450 MHz Pentium II computer with 128 Mbytes
of RAM memory, running under version 7.1 of the Red Hat Linux operating
system.

Unlike other problems in the literature, there are no benchmark instances
available for the problem studied in this paper. We describe below a subset of
seven test instances used in the evaluation of the model and the algorithms
proposed in Sections 3 and 4.

Instances GM-5, GM-8, and GM-9 were randomly generated [1], with node
and edge similarity values in the interval [0,1]. Instance GM-8 was also used
in the computational experiments reported in [1]. Instances GM-5 and GM-8
have isolated nodes: two in the image graph G5 of GM-5 and three in the model
graph G of GM-8. Instances GM-5a and GM-8a are derived from them, by the
introduction of additional edges to connect the isolated nodes.

Instances GM-6 and GM-7 were provided by Perchant and Bengoetxea [12,
14] and built from real images. Instance GM-6 was built from magnetic resonance
images of a human brain, as depicted in Figure 4. Instance GM-7 was created
for the computational experiments reported in [14] from the 2D images given in
Figure 5. The image (a) was over-segmented in 28 regions (¢) and compared
with a model with only 14 well defined regions (b). The model graph G; has 14
vertices and 27 edges, while the over-segmented image graph G2 has 28 vertices
and 63 edges. Grey levels were used in the computation of node similarities, while
distances and adjacencies were used for the computation of edge similarities.

Fig. 4. Instance GM-6: (a) original image, (b) model, and (c) over-segmented image.

We summarize the characteristics of instances GM-5 to GM-9 in Table 1.
For each instance, we first give the number of nodes and edges of the model
and image graphs. We also give the optimal value f* obtained by the exact
integer programming formulation proposed by Duarte [8] using the mixed integer
programming solver CPLEX 9.0 and the associated computation time in seconds

11

(b) (c)

Fig.5. Cut of a muscle (instance GM-T7): (a) original 2D image, (b) model, and (c)
over-segmented image.

on a 2.0 GHz Pentium IV computer (whenever available), considering exclusively
the vertex contribution to the objective function. In the last two columns, we
give the value 9% of the solution obtained by the randomized construction
algorithm followed by the application of the extended local search procedure
LS+ and the total computation time in seconds, with the maximum number of
attemps to find a feasible solution set at MaxTrials = 500 and the maximum
number of feasible solutions built set at MaxSolutions = 100.

Table 1. Characteristics and exact results for instances GM-5 to GM-9.

Instance |Ni| |Ei| |N2| B2 f* time (s) FE5T time (s)
GM-5 10 15 30 39 0.5676 7113.34 0.5534 0.01
GM-5a 10 15 30 41 0.5690 2559.45 0.5460 0.02
GM-6 12 42 95 1434 0.4294 23668.17 0.4286 2.68
GM-7 14 27 28 63 0.6999 113.84 0.6949 <1073
GM-8 30 39 100 297 (a) 0.5331 (a) 4.27 0.5209 1.02
GM-8a 30 42 100 297 (a) 0.5331 (a) 412 0.5200 1.02
GM-9 50 88 250 1681 - - 0.5204 42.26

(a) linear programming relaxation
—: not available

The results in Table 1 illustrate the effectiveness of the heuristics proposed
in this work. The non-bijective graph matching problem can be exactly solved
only for small problems by a state-of-the-art solver such as CPLEX 9.0. Even
the medium size instances GM-8 and GM-8a cannot be exactly solved. Only the
linear programming bounds can be computed in resonable computation times for
both of them. On the other hand, the combination of the randomized construc-
tion algorithm with the local search procedure provides high quality solutions in

12

very small computation times. Good approximate solutions for the medium size
instances GM-8 and GM-8a (which were not exactly solved by CPLEX) within
2.3% of optimality can be easily computed in processing times as low as one
second.

Table 2 illustrates the results obtained by the randomized construction al-
gorithm and the extended local search procedure for instances GM-5 to GM-9
with a = 0.9. The maximum number of attemps to find a feasible solution was
fixed at MaxTrials = 500 and the maximum number of feasible solutions built
was fixed at MaxSolutions = 100. For each instance, we give the number of
attempts necessary to find the first feasible solution, the value f() of the first
feasible solution found, the number of attempts necessary to find the best among
the first 100 feasible solutions built, the value f(109 of the best feasible solution
found, and the average computation time per attempt in seconds. The last three
columns report statistics for the extended local search algorithm: the number of
local search iterations until local optimality, the value f“* of the best solution
found, and the average computation time per iteration in seconds.

Table 2. Results obtained by the randomized construction algorithm and the extended
local search procedure with MaxTrials = 500 and MaxSolutions = 100.

Instance first @ best FA% time (s) iteration fEST time (s)
GM-5 297 0.5168 297 0.5168 <1077 19 0.5474 0.002
GM-5a 9 0.4981 417 0.5243 <1073 13 0.5434 0.002
GM-6 1 04122 40 0.4168 0.001 320 0.4248 0.020
GM-7 5 0.6182 34 0.6282 <1077 12 0.6319 0.001
GM-8 26 0.4978 292 0.5022 0.002 118 0.5186 0.014
GM-8a 26 0.5014 292 0.5058 0.002 120 0.5222 0.014
GM-9 1 0.5049 207 0.5060 0.010 511 0.5187 0.134

The computation time taken by each attempt of the randomized construc-
tion algorithm to build a feasible solution is very small, even for the largest
instances. The algorithm is very fast and finds the first feasible solution in only
a few attempts, except in the cases of the difficult instances with isolated nodes.
However, even in the case of the hard instance GM-5, the algorithm managed
to find a feasible solution after 297 attempts. For the other instances, the con-
struction algorithm found a feasible solution in very few iterations. Even better
solutions can be obtained if additional attempts are performed.

The local search algorithm improved the solutions built by the construction
algorithm for all test instances. The average improvement with respect to the
value of the solution obtained by the construction algorithm was approximately

3%.

13

6 Concluding remarks

We formulated the problem of finding the best correspondence between two
graphs representing a model and an over-segmented image as a combinatorial
optimization problem.

A robust randomized construction algorithm was proposed to build feasible
solutions for the graph matching problem. We also proposed a local search algo-
rithm based on two neighborhood structures to improve the solutions built by
the construction algorithm. Computational results were presented to different
test problems. Both algorithms are fast and easily found feasible solutions to
realistic problems with up to 250 nodes and 1681 edges in the graph represent-
ing the over-segmented image. The local search algorithm consistently improved
the solutions found by the construction heuristic. Both algorithms can be easily
adapted to handle more complex objective function formulations.

Besides the quality of the solutions found, the randomized algorithm may also
be used as a robust generator of initial solutions for population methods such as
the genetic algorithm described in [14], replacing the low quality randomly gener-
ated solutions originally proposed. The construction and local search algorithms
can also be put together into an implementation of the GRASP metaheuristic
[16].

References

1. E. Bengoetxea, P. Larranaga, I. Bloch, A. Perchant, and C. Boeres. Inexact graph
matching by means of estimation distribution algorithms. Pattern Recognition,
35:2867-2880, 2002.

2. 1. Bloch. Fuzzy relative position between objects in image processing: a morpho-
logical approach. IEEE Transactions on Pattern Analysis Machine Intelligence,
21:657-664, 1999.

3. I. Bloch. On fuzzy distances and their use in image processing under imprecision.
Pattern Recognition, 32:1873-1895, 1999.

4. 1. Bloch, H. Maitre, and M. Anvari. Fuzzy adjacency between image objects.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
5:615-653, 1997.

5. K.P. Chan and Y.S. Cheung. Fuzzy-attribute graph with application to chi-
nese character recognition. IEEE Transactions on Systems, Man and Cybernetics,
22:402-410, 1992.

6. A.D.J. Cross and E.R. Hancock. Relational matching with stochastic optimiza-
tion. In International Conference on Computer Vision, pages 365—-370, 1995.

7. A.D.J. Cross, R.C. Wilson, and E.R. Hancock. Inexact graph matching using
genetic search. Pattern Recognition, 30:953-970, 1997.

8. A.R. Duarte. New heuristics and an exact integer programming formulation for
an inezact graph matching problem (in Portuguese). M.Sc. Dissertation, Catholic
University of Rio de Janeiro, 2004.

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Y. El-Sonbaty and M. A. Ismail. A new algorithm for subgraph optimal isomor-
phism. Pattern Recognition, 31:205-218, 1998.

A. W. Finch, R. C. Wilson, and E. R. Hancock. Symbolic Graph matching with
the EM algorithm. Pattern Recognition, 31:1777-1790, 1998.

H. Moissinac, H. Maitre, and I. Bloch. Markov random fields and graphs for
uncertainty management and symbolic data fusion in a urban scene interpreta-
tion. EUROPTO Conference on Image and Signal Processing for Remote Sensing,
2579:298-309, 1995.

A. Perchant. Morphisme de graphes d’attributs flous pour la reconnais-
sance structurelle de scénes. Doctorate thesis, Ecole Nationale Supérieure des
Télécommunications, 2000.

A. Perchant and I. Bloch. A new definition for fuzzy attributed graph homo-
morphism with application to structural shape recognition in brain imaging. In
Proceedings of the 16th IEEE Conference on Instrumentation and Measurement
Technology, pages 402-410, 1999.

A. Perchant, C. Boeres, I. Bloch, M. Roux, and C.C. Ribeiro. Model-based scene
recognition using graph fuzzy homomorphism solved by genetic algorithm. In 2nd
IAPR-TC-15 Workshop on Graph-based Representations, pages 61-70, 1999.
H.S. Ranganath and L.J. Chipman. Fuzzy relaxaton approach for inexact scene
matching. Image and Vision Computing, 10:631-640, 1992.

M.G.C. Resende and C.C. Ribeiro. “Greedy randomized adaptive search proce-
dures”. Handbook of Metaheuristics (F. Glover and G. Kochenberger, eds.), pages
219-249, Kluwer, 2002.

A. Rosenfeld, R. Hummel, and S. Zucker. Scene labeling by relaxation operations.
IEEFE Transactions on Systems, Man and Cybernetics, 6:420-433, 1976.

L. Schrage. A more portable FORTRAN random number generator. ACM Trans-
actions on Mathematical Software, 5:132-138, 1979.

M. Singh and A. C. S. Chaudhury. Matching structural shape descriptions using
genetic algorithms. Pattern Recognition, 30:1451-1462, 1997.

A.K.C. Wong, M. You, and S.C. Chan. An algorithm for graph optimal monomor-
phism. IEEE Transactions on Systems, Man and Cybernetics, 20:628—636, 1990.
E.K. Wong. Model matching in robot vision by subgraph isomorphism. Pattern
Recognition, 25:287-303, 1992.

