
A matrix generation approach for eigenvalue

optimization ∗

M. R. Oskoorouchi† J.-L. Goffin‡

March 2004

Abstract

We study the extension of a column generation technique to eigen-
value optimization. In our approach we utilize the method of analytic
center to obtain the query points at each iteration. A restricted mas-
ter problem in the primal space is formed corresponding to the relaxed
dual problem. At each step of the algorithm, an oracle is called to
return the necessary columns to update the restricted master. Since
eigenvalue optimization yields to a nonpolyhedral model, at some query
points the oracle generates matrices, rather than traditional columns.
In this case, we update the restricted master problem by enlarging the
matrix variable by a block-diagonal element. We discuss the issues of
recovering feasibility after the restricted master is updated by a col-
umn or a matrix. The numerical result of implementing the algorithm
on randomly generated problems is reported.

Keywords: Column generation, cutting plane technique, eigenvalue op-
timization, analytic center, semidefinite inequality.

∗This work has been completed with the support of a research grant from the College
of of Business Administration, California State University San Marcos.

†College of Business Administration, California State University San Marcos, San Mar-
cos, California 92096, Email: moskooro@csusm.edu

‡GERAD/Faculty of Management, McGill University, 1001 Sherbrooke West, Mon-
treal, QC, H3A 1G5, Canada, Email: jlg@crt.umontreal.ca

1

1 Introduction

Many applications in Engineering and Management can be modeled as opti-
mization problems and solved using computational algorithms. Depending
on the mathematical model, an appropriate optimization technique should
be employed in order to enhance efficiency. Essentially, a large class of appli-
cations, due to their complicated disposition, give raise to models that have
huge number of variables or constraints or both. These models are often
too large or too complex to be handled by classical optimization techniques.
Fortunately these problems often have special structures.

The idea of decomposition and column generation, introduced by Dantzig
and Wolfe [4] in the late fifties, provides an efficient approach to large prob-
lems with special structure. Column generation technique was first im-
plemented by Gilmore and Gomory [7, 8] in the context of cutting stock
problem. Since then, enormous number of applications used this technique
to solve models with large number of variables.

In linear programming context, classical decomposition technique is ap-
plied to problems with special structure and exponentially large number of
constraints. In this approach, the original problem is transformed into an
identical model with substantially fewer constraints but exponentially large
number of columns (variables), called the master problem. The master prob-
lem is then restricted to a reasonably small subset of variables. The dual of
the restricted master is solved by simplex and the optimal dual is used to
determine new columns to add to the restricted master problem.

In the economics literature, this appears under the headings of decen-
tralization and coordination by prices. The idea of this principle is that if a
model is too large, or a function is too complex, it is better not to know it
entirely, but to discover it as needed by intelligent queries.

Many methodologies for linear and integer programs, that make use
of the column generation idea, have been developed over the past four
decades. Kelley’s cutting plane method [14], Benders decomposition [2],
Bundle method [15], Lagrangean relaxation [6, 12], and analytic center cut-
ting plane method [27] are amongst the most efficient techniques of this
nature. Although all of these techniques are similar in principle, there is a
key difference between them. The disparity is in their tactic in selecting the
query points or the columns to add to the restricted master. One interesting
methodology is the cutting plane method that uses analytic center.

Analytic center cutting plane method (ACCPM) combines the decompo-
sition principle with the interior point methodologies (discovered by Naren-
dra Karmarkar in 1984). This method was introduced by Sonnevend [27],

2

and developed by Goffin, Haurie, and Vial [10], and Ye [30]. ACCPM has
been very successful in practice. Goffin, Gondzio, Sarkissian and Vial [9]
discuss the implementation of this technique to multicommodity flow prob-
lem, Mitchell [20, 21, 22] applies ACCPM to combinatorial applications, and
Elhedhli and Goffin[5] integrate ACCPM with branch-and-bound.

Recently some applications gave raise to models where vector variables
are replaced by matrices and nonnegativity constraint is replaced by positive
semidefiniteness. The fundamental difference between the new class of opti-
mization problems and LP models is that the feasible region of these models
is nonpolyhedral. Classical optimization techniques for nonpolyhedral mod-
els were discovered in early 90s. Although these techniques are polynomial
in their theoretical complexity, but they are not very efficient when applied
to large problems.

Nonpolyhedral models have been recently combined with decomposition
techniques. Helmberg and Rendl [13] implement a Spectral Bundle method
to the semidefinite relaxation arising from the max-cut problem and report
nice numerical results. Oskoorouchi and Goffin [24] combine semidefinite
programming and analytic center cutting plane method and report a fully
polynomial approximation scheme. In a separate paper Oskoorouchi and
Goffin [25] employ second-order cone cuts into the cutting plane techniques.
Sun, Toh, and Zhao [28], Toh, Zhao, and Sun [29], and Chua, Toh, and Zhao
[3] study ACCPM for convex semidefinite feasibility problem; Krishnan and
Mitchell [16] use LP cutting plane scheme for semidefinite programming;
and Basescu [1] studies a general form that is applied to conic optimization.
Two survey papers by Krishnan and Mitchell [17] and Krishnan and Terlaky
[18] include a summary of these techniques.

In this paper we implement an extension of column generation technique
to nonpolyhedral models. We employ the method of centers and use the an-
alytic center to obtain a query point at each step of the algorithm. Since we
are dealing with matrix variables, at each query point our algorithm gener-
ates a matrix, rather than the traditional column, to add to the restricted
master problem. The new matrix is added to the restricted master as a block
diagonal. We call this extension a matrix generation algorithm. We show
that the dual of the restricted master problem is a convex nondifferentiable
optimization problem whose epigraph consists of semidefinite surfaces. We
closely follow the primal and dual problems. The dual space is used to give
a geometric insight to the reader. However, we keep our search directions
and query points in the primal space.

3

Theoretical issues and convergence of the algorithm were studied in [24],
where a fully polynomial approximation scheme is established. In this paper
we explore the implementation issues of this algorithm. Although we imple-
ment matrix generation technique to eigenvalue optimization with bounds,
however, the algorithm can be naturally extended to solve unbounded prob-
lems.

The paper is organized as follows: In Section 2 we discuss the mathemat-
ical properties of eigenvalue optimization. Section 3 deals with the trans-
formation of the eigenvalue optimization into a feasibility problem. We also
present the framework of the algorithm in the dual space in this section.
In Section 4 we present the KKT optimality conditions and the primal al-
gorithm for computing an approximate weighted analytic center. Section
5 presents a procedure to recover feasibility when a matrix is generated
and the restricted master is updated. Finally Section 6 presents the ma-
trix generation algorithm and numerical results when applied to eigenvalue
optimization.

Notations: We use lower case letters for vectors and upper case letters
for matrices. The space of n × n symmetric matrices is denoted by Sn,
trace of matrix X is indicated by tr(X), and for two matrices X and Y
X • Y = tr(XT Y). We use X � 0 (X � 0) to show that matrix X is
positive semidefinite (positive definite). Operator A is a linear operator
from Sn to �m defined by (AX)i = Ai •X, for Ai ∈ Sn, and AT : �m → Sn

is its adjoint operator defined by

ATy =
m∑

i=1

yiAi.

2 Eigenvalue optimization

In this section we introduce the eigenvalue optimization problem with bound
and linear constraints and study the properties of the maximum eigenvalue
function in detail.

Consider the following optimization problem:

min λmax(F (y))
s.t

GT y ≤ h
l ≤ y ≤ u,

(1)

4

where F (y) = F0 +
∑m

i=1 yiFi, and Fi ∈ Sn are linearly independent, G ∈
�m×r, r ≤ m, is a full rank matrix, and h ∈ �r. The m-vector y is the
vector variable which is bounded from above by u and from below by l. We
call m the size of the problem and n the dimension. We assume that the
feasible set of Problem (1) satisfies a Slater’s condition. That is there exists
a point y that strictly satisfies all inequalities. We refer to such a point as
an interior point of the feasible set.

The maximum eigenvalue of the affine combination of symmetric matri-
ces is well studied in the literature. In a survey paper, Lewis and Over-
ton [19] provide a comprehensive analysis of the mathematics of eigenvalue
functions. To keep the paper self-contained we present the most important
facts selected from the above paper and from Overton [26]. Let

f(y) = λmax(F0 +
m∑

i=1

yiFi)

It is known that the maximum eigenvalue of a symmetric matrix is a convex
nondifferentiable function and can be written as a semidefinite program-
ming problem. More precisely, if A is a symmetric matrix, then the largest
eigenvalue of A can be obtained via

λmax(A) = max {A • U : tr(U) = 1, U � 0} , (2)

The following example gives a geometric insight of the maximum eigenvalue
function.

Example 1 Let F1 =

(
1 0
0 −1

)
, F2 =

(
0 1
1 0

)
, and F0 = I, then

F (y) =

(
1 + y1 y2

y2 1 − y1

)
,

and λmax(F (y)) = 1 +
√

y2
1 + y2

2.

Figure 1 plots the maximum eigenvalue function of Example 1. It illus-
trates a clear pictorial view of the properties of the maximum eigenvalue
function that were mentioned above. In this example f(y) is a convex cone
that is nondifferentiable at y = 0 which happens to be the minimum. In
general, f is differentiable at y if the maximum eigenvalue has multiplicity
one. However, in practice we are dealing with functions that do not pos-
sess this smooth property. In such situations, one can work with the set of
subgradients of f at each query point rather than the gradient.

5

−6
−4

−2
0

2
4

6

−6
−4

−2
0

2
4

6
0

2

4

6

8

10

y
1

1+sqrt(x2+y2)

y
2

Figure 1: Graph of the maximum eigenvalue of the affine combination of
symmetric matrices F0, F1 and F2

The subdifferential of function f at point ȳ can be obtained using the
chain rule and the Clark generalized gradient:

Theorem 2 Let ȳ be in domain of f and the maximum eigenvalue of f(ȳ)
has multiplicity p, with a corresponding orthonormal basis of eigenvectors
Q̄ = [q̄1, ..., q̄p]. The generalized gradient of f at ȳ is

∂f(ȳ) = {w ∈ �m : wi = Fi • Q̄UQ̄T : U � 0, tr(U) = 1}. (3)

The eigenvector matrix Q̄ plays a key role in our algorithm. In the next
section we discuss the transformation of the optimization problem into a
feasibility problem.

3 From optimization to feasibility

In this section we first transform the eigenvalue optimization into a convex
feasibility problem by means of subgradients of the maximum eigenvalue
function. We then present the framework of our algorithm in the dual space.
The matrix generation algorithm is presented in detail in Section 6. Let

F =
{
y ∈ �m : GT y ≤ h, and l ≤ y ≤ u

}
be the feasible set of Problem (1). F is a convex set described by linear
inequalities, which is bounded and contains a strictly feasible point as as-
sumed. Now consider the objective function of Problem (1). In view of (2)
we have

f(y) = max {F (y) • U : tr(U) = 1, U � 0} . (4)

6

Problem (4) is a semidefinite programming problem. By restricting positive
semidefinite matrix U to a subcone generated by the faces of the cone at a
feasible point ȳ ∈ F , we obtain a lower bound for f(y). Let ȳ ∈ F and the
maximum eigenvalue of F (ȳ) has multiplicity p and Q̄ ∈ �n×p be a matrix
whose columns form a basis for the eigenspace of the maximum eigenvalue.
That is (

F0 +
∑

ȳiFi

)
Q̄ = λmax

(
F0 +

∑
ȳiFi

)
Q̄ (5)

and define

f̄(y) = max
{
F (y) • Q̄UQ̄T : tr(U) = 1, U � 0

}
= λmax

(
Q̄T F (y)Q̄

)
(6)

f̄(y) is a convex function that establishes a lower bound on f(y). That is

f̄(y) ≤ f(y), for all y ∈ �m.

Moreover f̄(ȳ) = f(ȳ).

Let θ̄ and θ be upper and lower bounds on the optimal objective value
of Problem (1) respectively, and let

ΩD =
{
y ∈ F , z ∈ � : θ ≤ z ≤ θ̄, f̄(y) ≤ z

}
.

Note that ΩD is the area bounded by the feasible region of Problem (1),
a set of subgradients of f at ȳ and the hyperplanes z = θ̄ and z = θ.
Furthermore, since

f̄ ≤ f∗ = min f(y) ≤ θ̄,

ΩD contains the optimal solution of the eigenvalue optimization.

Let us study the inequality f̄(y) ≤ z more closely. From (6)

λmax

(
Q̄T F (y)Q̄

)
≤ z.

This implies that
Q̄T

(
F0 +

∑
yiFi

)
Q̄ 	 zI,

or
m∑

i=1

yi

(
Q̄T FiQ̄

)
− zI 	 −Q̄T F0Q̄.

Thus the set ΩD can be expressed as

ΩD =
{
ŷ = (y, z) ∈ �m+1 : GT y ≤ h, l ≤ y ≤ u, θ ≤ z ≤ θ̄, AT ŷ 	 C

}
,

7

where A is the linear operator defined in Section 1: AT ŷ =
∑m+1

i=1 ŷiAi. Here

Ai = Q̄T FiQ̄, i = 1, ...,m, and Am+1 = −I,

and C = −Q̄TF0Q̄.

We call AT ŷ 	 C a semidefinite cut (SDC) of dimension p, and refer
to Ai as the semidefinite cut matrices. Note that ŷ is an (m + 1)-vector
composed of y ∈ �m and z ∈ �. Let us write the linear inequalities of ΩD

(except for the upper bound cut) in the matrix form:

ΩD =
{
ŷ ∈ �m+1 : AT ŷ 	 C, AT ŷ ≤ c, ŷm+1 ≤ θ̄

}

where AT ŷ ≤ c represents the feasible region of Problem (1) including the
bound constraints and the lower bound on the objective function (z ≥ θ).
We refer to A as the linear cut matrix. The set ΩD, also known as the set
of localization, is a compact convex set with nonempty interior composed
of linear inequalities and linear matrix inequalities. Moreover ΩD contains
the optimal solution set Ω∗ of Problem (1). The eigenvalue optimization
problem is therefore reduced to a convex feasibility problem. We develop
a matrix generation algorithm based on a weighted analytic center cutting
surface method to find a point in Ω∗. The algorithm starts from a strictly
feasible point of ΩD. At each iteration k, ŷk a weighted analytic center of Ωk

D

is computed and a separation oracle is called. The oracle determines if either
ŷk is in Ω∗ or returns a cut which contains the optimal solution set. If f is
differentiable at ŷk, the oracle returns the gradient of f as a single linear cut
(LC) and the set of localization is updated by adding this cut as a column
of matrix A (traditional column generation technique). Otherwise the new
cut is an SDC and we update ΩD by adding the SDC to the diagonal of the
semidefinite cut matrix (new matrix generation technique). The analytic
center is recovered for the updated set by obtaining an optimal updating
direction. The detail follows.

Consider the set of localization at the kth iteration as

Ωk
D =

{
ŷ ∈ �m+1 : (Ak)T ŷ 	 Ck, (Ak)T ŷ ≤ ck, ŷm+1 ≤ θk

}

If ŷk is not in the solution set the oracle evaluates f at ŷk and returns
an orthonormal matrix Qk ∈ �n×pk , where pk is the multiplicity of the
maximum eigenvalue of F (yk). The matrix Qk is used to create a new cut
and to update the set of localization Ωk

D. If pk > 1, then the new cut is a

8

semidefinite cut and the set of localization is updated via

Ωk+1
D = Ωk

D ∩
{
ŷ ∈ �m+1 : (Bk)T ŷ 	 Dk, ŷm+1 ≤ θk+1

}
,

where

(Bk)T ŷ =
m+1∑
i=1

ŷiB
k
i ,

Bk
i = (Qk)T FiQ

k, i = 1, ...,m, and Bk
m+1 = −I,

Dk = −(Qk)T F0Q
k,

and
θk+1 = min{θk, f(yk)}. (7)

The semidefinite cut matrices Ak
i and the matrix Ck, in this case are updated

by

Ak+1
i =

(
Ak

i 0
0 Bk

i

)
, and Ck+1 =

(
Ck 0
0 Dk

)
,

That is, the dimension of the semidefinite cut matrices Ak
i is enlarged, by

pk when adding a pk-dimensional SDC as a block diagonal.

If pk = 1, i.e., f is differentiable at yk, then Bk
i , for i = 1, ...,m + 1 are

scalars and therefore the new cut is a single linear cut. In this case we store
Bk

i , for i = 1, ...,m + 1 in a column vector bk ∈ �m+1 and update the linear
cut matrix Ak via

Ak+1 =
[
Ak bk

]
.

Likewise, Dk is a scalar and is used to update ck:

ck+1 =

(
ck

Dk

)

Thus the updated set of localization in the case of linear cut is

Ωk+1
D = Ωk

D ∩
{
ŷ ∈ Rm+1 : (Ak+1)T ŷ ≤ ck+1, ŷm+1 ≤ θk+1

}
,

where θk+1 is defined as in (7).

In practice, as k increases the dimension of the cut matrix also increases.
This, makes the analytic center of Ωk

D to get close to the upper bound θk and
results in loss of centrality. To overcome this difficulty, we put a weight on

9

the upper bound cut z ≤ θk, i.e., we repeat this constraint ρ times, (ρ ≥ 1),
and compute the weighted analytic center. By trial and error we found the
best value for ρ to be equal to the dimension of the current cut matrix.

In the next section we introduce the weighted analytic center and derive
its optimality conditions and present a computational algorithm.

4 Weighted analytic center: optimality conditions
and computational algorithms

Let nsd and nl be the number of semidefinite cuts (matrices generated) and
linear cuts (columns generated) respectively and let Nsd =

∑nsd
j=1 pj be the

dimension of the current semidefinite cut matrix. For the sake of simplicity
let us indicate ŷ by y and drop the index in the dual set of localization

ΩD =
{
y ∈ �m+1 : ATy 	 C, AT y ≤ c, ym+1 ≤ θ

}
,

where AT y 	 C, with Ai ∈ SNsd and C ∈ SNsd represents an SDC with the
dimension of Nsd; A ∈ �(m+1)×nlp is a matrix whose columns correspond to
the linear cuts, c ∈ �m+1; and ym+1 ≤ θ is the upper bound cut.

The weighted analytic center of ΩD is defined as the minimizer of the
weighted dual potential function over the interior of ΩD. The weighted dual
potential function is defined via

φD(y) = − log det(C −AT y) −
nlp∑
j=1

log(cj − aT
j y) − ρ log(θ − ym+1),

where aj is the jth column of matrix A, and ρ ≥ 1 is the weight on the upper
bound cut. We sometimes denote the dual potential function by

φD(S, s, σ) = − log det S −
nlp∑
j=1

log sj − ρ log σ,

where S = C − AT y, s = c − AT y, and σ = θ − ym+1. Notice that φD is
a strictly convex function on the interior of ΩD and therefore the analytic
center is uniquely defined by

min
y∈ΩD

φD(y). (8)

10

The first order optimality conditions of Problem (8) are
⎛
⎜⎜⎜⎜⎝

A1 • S−1

...
Am • S−1

Am+1 • S−1

⎞
⎟⎟⎟⎟⎠+ As−1 + ρσ−1em+1 = 0.

Let X = S−1, x = s−1 and ξ = σ−1, then the optimality conditions read

AX + Ax + ρξem+1 = 0
ATy + S = C
AT y + s = c
ym+1 + σ = θ

XS = I
xs = e
σξ = 1.

(9)

Note that xs is the coordinate-wise product of vectors x and s, and s−1 is
the component-wise inverse of vector s.

The optimality conditions for the weighted analytic center can be alter-
natively derived by the weighted primal potential function. Let

ΩP =
{
X ∈ SNsd

+ , x ∈ �nl
+ , ξ ∈ �+ : AX + Ax + ρξem+1 = 0

}
,

and let

φP (X,x, ξ) = C • X + cT x + ρθξ − log detX −
nl∑

j=1

log xj − ρ log ξ.

Then the optimal solution of the following problem

min φP (X,x, ξ)
s.t.

AX + Ax + ρξem+1 = 0
X � 0, x ≥ 0, ξ ≥ 0,

satisfies system (9).
Abusing notation we sometimes denote the analytic center by (X,x, ξ)

or (X,x, ξ, y, S, s, σ).
Let

η(X,x, ξ) =
√
‖XS − I‖2 + ‖xs − e‖2 + ρ|σξ − 1|2, (10)

11

be a measure of proximity around the center. We call (X̄, x̄, ξ̄, ȳ, S̄, s̄, σ̄) a
τ -approximate analytic center if it satisfies the linear equalities of (9) and

η(X,x, ξ) ≤ τ < 1.

We employ the Newton method to compute an approximate analytic cen-
ter of ΩP . Consider the quadratic approximation of the the primal potential
function

φP (X + dX, x + dx, ξ + dξ) =
C • (X + dX) + cT (x + dx) + ρθ(ξ + dξ) − log det(X + dX)
−
∑

log(xj + dxj) − ρ log(ξ + dξ),

= φP (X,x, ξ) + (C − X−1) • dX + (c − x−1)T dx + ρ(θ − ξ−1)dξ

+
1
2
trX−1(dX)X−1(dX) +

1
2
dxT X−2

lp dx +
ρ

2
ξ−2dξ2,

where Xlp is a diagonal matrix made up of x. Let (X,x, ξ) be a strictly
feasible point of ΩP . Feasible directions dX, dx and dξ should satisfy

A(X + dX) + A(x + dx) + ρ(ξ + dξ)em+1 = 0,

or
AdX + Adx + ρdξem+1 = 0. (11)

Thus, we solve

min φP (X + dX, x + dx, ξ + dξ)
s.t.

AdX + Adx + ρdξem+1 = 0.
(12)

Using the KKT optimality conditions, y, dX, dx, and dξ are optimal if
and only if

C − X−1 + X−1(dX)X−1 −AT y = 0 (13)
c − x−1 + X−2

lp dx − AT y = 0 (14)

ρθ − ρξ−1 + ρξ−2dξ − ρym+1 = 0. (15)

Note that y is indeed a function of X, x, and ξ. However, to simplify
the notations we ignore the arguments.

12

By multiplying X from the right side and from the left side to (13) and
then applying operator A one has

A(XCX) −AX + AdX − (APAT
P)y = 0. (16)

where AP : Sn → �m+1 is a linear operator and AT
P : �m+1 → Sn is its

adjoint operator, defined via

AP Y =

⎛
⎜⎝

X .5A1X
.5 • Y

...
X .5AmX .5 • Y

⎞
⎟⎠ , and AT

P y =
m+1∑
i=1

yiX
.5AiX

.5,

Note that (APAT
P) ∈ Sm+1 with (APAT

P)ij = trAiXAjX. Since the matri-
ces Ai are linearly independent then APAT

P � 0.

By multiplying AX2
lp to (14) from the left side, we have

AX2
lpc − Ax + Adx − AX2

lpA
T y = 0, (17)

and by multiplying ξ2em+1 to (15), we have

ρθξ2em+1 − ρξem+1 + ρdξem+1 − ρym+1ξ
2em+1 = 0. (18)

Let
G = APAT

P + A(Xlp)2AT + ρξ2em+1e
T
m+1, (19)

and
g = AP CP + AX2

lpc + ρθξ2em+1, (20)

where CP = X .5CX .5. Then summing up (16), (17) and (18), implies

Gy = g, (21)

and thus
y = G−1g.

We refer to G as the primal Gram matrix.
Substituting y into (16), (17) and (18) we derive the primal directions

for computing the weighted analytic center

dX = (XAT X)y + X − XCX

= X − XSX (22)

dx = x − X2
lps (23)

dξ = ξ − ξ2σ, (24)

13

where S = C −AT y, s = c−AT y, and σ = θ − ym+1 are functions of X, x,
and ξ.

Feasible directions dX, dx, and dξ should satisfy (11). This condition
may not be satisfied due to the computational round-off error. We therefore
project dX, dx, and dξ back to the primal null space:

Let Ḡ be the same as G where ρ = 1. That is

Ḡ = APAT
P + A(Xlp)2AT + ξ2em+1e

T
m+1, (25)

and let q ∈ �m+1 be defined via

q = Ḡ−1 (AdX + Adx + dξem+1) . (26)

The projection of the directions dX, dx, and dξ onto the primal null space
can be derived as

¯dX = dX − X(AT q)X, (27)
d̄x = dx − X2

lpA
T q, (28)

d̄ξ = dξ − ξ2q. (29)

Observe that

A ¯dX + Ad̄x + d̄ξem+1

= AdX + Adx + dξem+1 − (APAT
P)q − (AX2

lpA
T)q − (ξ2em+1)q

= AdX + Adx + dξem+1 −
(
APAT

P + AX2
lpA

T + ξ2em+1e
T
m+1

)
q

= AdX + Adx + dξem+1 − Ḡq

= 0.

Note that Ḡ differs from G in only one element

Ḡ = G −
(

(ρ + 1)ξ2

ρ

)
em+1e

T
m+1. (30)

and hence computing Ḡ is not an expensive task.

The following lemma shows that S(X,x, ξ), s(X,x, ξ), and σ(X,x, ξ) can
be characterized as a least square problem:

14

Lemma 3 Let (X,x, ξ) be a strictly feasible point of ΩP . Then the dual
solutions S(X,x, ξ), s(X,x, ξ), and σ(X,x, ξ) are the minimizer of the fol-
lowing least square problem:

min
√
‖X .5SX .5 − I‖2 + ‖xs − e‖2 + ρ|σξ − 1|2

s.t.
ATy + S = C
AT y + s = c

ym+1 + σ = θ.

(31)

Proof. First observe that

‖X .5SX .5 − I‖2

= trXSXS − 2trXS + trI

= trX(C −ATy)X(C −ATy) − 2trX(C −AT y) + n

= tr(CP −AT
P y)2 − 2tr(CP −AT

P y) + n

= yT (APAT
P)y − 2yTAP CP + 2trAT

P y + trC2
P − 2trCP + n. (32)

and

‖xs − e‖2

= (c − AT y)T X2
lp(c − AT y) − 2(c − AT y)T x + n

= yT (AX2
lpA

T)y − 2yT AX2
lpc + cT X2

lpc − 2cT x + 2yT Ax + n (33)

and

ρ|σξ − 1|2 = ρξ2σ2 − 2ρξσ + ρ

= ρξ2y2
m+1 − 2ρθξ2ym+1 + 2ρξym+1 + ρ(θξ − 2)θξ + ρ.(34)

The proof follows by multiplying (34) by em+1 and adding it up with (32)
and (33) and noting that (X,x, ξ) ∈ ΩP , and taking the first order optimality
conditions.

Next lemma shows the strict feasibility of the primal direction and the
rate of convergence when η(X,x, ξ) < 1.

Lemma 4 If η(X,x, ξ) ≤ α < 1, then,

η(X+, x+, ξ+) ≤ η2(X,x, ξ) < 1,

and
X+ � 0, x > 0, ξ > 0.

15

Proof. Let PX = X .5SX .5 − I, px = xs − e, and pξ = ξσ − 1. In view
of (22)– (24)

dX = −X .5PXX .5, dx = −Xlppx, and dξ = −ξpξ,

and since ‖PX‖ < 1, ‖px‖ < 1, and |pξ| < 1, then

X+ = X + dX = X .5(I − PX)X .5 � 0,

x+ = x + dx = Xlp(e − px) > 0, and ξ+ = ξ + dξ = ξ(1 − pξ) > 0.

To prove the rate of convergence, first observe that from Lemma 3

‖PX+‖2 + ‖px+‖2 + ρ|pξ+ |2 ≤
‖(X+).5S(X,x, ξ)(X+).5 − I‖2 + ‖X+

lps(X,x, ξ) − e‖2

+ρ|ξ+σ(X,x, ξ) − 1|2. (35)

Now since

dX = −X .5PXX .5 = X − XS(X,x, ξ)X,

then X+ = 2X − XS(X,x, ξ)X and (in what follows we denote S(X,x, ξ)
by S)

‖S.5X+S.5 − I‖2 = ‖S.5(2X − XSX)S.5 − I‖2

= ‖(S.5XS.5 − I)2‖2

= tr(S.5XS.5 − I)4

=
∑

(λj(S.5XS.5) − 1)4

≤ (
∑

(λj(S.5XS.5) − 1)2)2

=
(
‖S.5XS.5 − I‖2

)2
.

Thus
‖(X+).5S(X,x, ξ)(X+).5 − I‖ ≤ ‖PX‖2.

Similarly, we can prove that ‖X+
lps(X,x, ξ) − e‖ ≤ ‖px‖2. The lemma

now follows from (35).
Lemma 4 guarantees quadratic convergence within the primal Dikin el-

lipsoid. Given a strictly feasible point in ΩP one can prove that the Newton
algorithm reduces the primal potential function by a constant amount in
each iteration and after a finite number of steps the measure of proximity
η(X,x, ξ) lies in the quadratic convergence region (see Oskoorouchi [23]).

16

In our algorithm we apply a step size α to move as far as possible along
the primal direction while respecting strict primal feasibility. Consider the
quadratic approximation of the weighted primal potential function with the
step size α:

φP (X + αdX, x + αdx, ξ + αdξ)

= C • (X + αdX) + cT (x + αdx) + ρθ(ξ + αdξ) − log det(X + αdX)
−
∑

log(xj + αdxj) − ρ log(ξ + αdξ),

= C • X + αC • dX + cT x + αcT dx + ρθξ + ραθdξ − log det X

−
∑

log(1 + αλj) −
∑

log xj −
∑

log(1 + αγj)

−ρ log ξ − ρ log(1 + αξ−1dξ),

where λjs are the eigenvalues of the symmetric matrix X−.5(dX)X−.5 and
γj = x−1

j dxj . Taking the derivative of φP with respect to α and setting it
to zero one has

C • dX + cT dx + ρθdξ −
∑ λj

1 + αλj
−
∑ γj

1 + αγj
− ρξ−1dξ

1 + αξ−1dξ
= 0.

We solve the above equation by a line search, where we initiate the step size
α to be in the feasible interval [0, αmax]. The upper bound of the step size
interval will be determined such that the updated matrix X(α) is positive
definite and the updated vector x(α) and ξ(α) are positive.

Lemma 5 Let X(α) = X+αdX, x(α) = x+αdx and ξ(α) = ξ+αdξ, where
dX, dx and dξ are primal directions computed by the primal algorithm, and
let λi and γj be defined as above. Then X(α) � 0, x(α) > 0 and ξ(α) > 0
for any α ∈ [0, αmax], where

αmax =
−1

mini,j (λi, γj , ξ−1dξ)
(36)

Proof. Note that

X(α) = X + αdX = X .5(1 + αX−.5dXX−.5)X .5,

and X(α) � 0 only if αλi > −1, for all i = 1, ..., nsd, or

α(min
i

λi) > −1.

17

Similarly,
x(α) = x + αdx = x(e + αx−1dx),

and x(α) > 0 only if αγj > −1, for all j = 1, ..., nlp, or

α(min
j

γj) > −1,

and finally, ξ(α) = ξ + αdξ = ξ(1 + ξ−1dξ) > 0, if

αξ−1dξ > −1.

Thus a feasible step size should satisfy

α

(
min
i,j

(
λi, γj , ξ

−1dξ
))

> −1

The proof is immediate now.

We now formally present the primal algorithm to compute an approxi-
mate weighted analytic center.

Algorithm 1 (Primal Algorithm) Given X0 � 0, x0 > 0, ξ0 > 0, and
ρ ≥ 1, let ε = 0.25 and k=0.

Step 1. Compute Gk and gk from (19) and (20), and use the Cholesky
factorization of Gk to compute yk from (21).

Step 2. Compute Sk = C −ATyk, sk = c − AT yk and σk = θ − yk
m+1.

Step 3. Calculate η(Xk, xk, ξk) from (10). If η(Xk, xk, ξk) < ε, stop. Oth-
erwise, continue.

Step 4. Compute Ḡ from (30) and vector q from (26).

Step 5. Compute the projection directions ¯dX, d̄x and d̄ξ from (27)–(29)

Step 6. Compute αmax from (36) and perform a line search to obtain the
step size α.

Step 7. Let Xk+1 = Xk + αdX, xk+1 = xk + αdx and ξk+1 = ξk + αdξ.

Step 8. Set k = k + 1 and return to step 1.

18

So far, we showed that Problem (1) can be transformed into a feasibility
problem and discussed the issues related to the computational algorithm for
the weighted analytic center in primal setting.

At each iteration, the algorithm calls an oracle to return a single linear
or a semidefinite cut. We must recover centrality after updating the set of
localization by adding cuts. To this end, we need a strictly feasible point of
ΩP as an initial point for the Newton algorithm. We address this issue in
the next section.

5 Recovering feasibility

In this section we deal with the issues in recovering the primal feasibility
after adding a column or a matrix to the restricted master problem. Theo-
retically, a column (linear cut) can be considered as a matrix (semidefinite
cut). However, in practice the distinction between the two categories is im-
portant. Treating a linear cut as a semidefinite cut would drastically increase
the computation time of the algorithm. It is mostly due to the computation
of the Gram matrix G. We first discuss adding a matrix:

5.1 Adding a p- dimensional matrix

Let
ΩD =

{
y ∈ �m+1 : ATy 	 C, AT y ≤ c, ym+1 ≤ θ

}
,

be the current dual set of localization and (X̄, x̄, ξ̄, ȳ, S̄, s̄, σ̄) be an approx-
imate analytic center where

AX̄ + Ax̄ + ξ̄em+1 = 0
AT ȳ + S̄ = C
AT ȳ + s̄ = c
ȳm+1 + σ̄ = θ

X̄S̄ = I
x̄s̄ = e
σ̄ξ̄ = ρ.

(37)

Assume that the oracle returns a p-dimensional semidefinite cut BTy 	 D
at the current iteration. The semidefinite cut is called deep (respectively
shallow) if D ≺ BT ȳ (respectively D � BT ȳ). If D = BT ȳ, the semidefinite
cut is called central. In any other situation, the cut is called partially deep.

The analytic center can efficiently be recovered after adding a shallow or
a central cut to the dual set of localization as it is done in [24] for semidefinite

19

cuts and in [11] and [31] for linear cuts. However, there is no efficient way
to recover centrality in the case of deep or partially deep cuts when working
in the dual space. This is the main reason that we work in the primal space
and focus on the matrix generation approach. The advantage of the primal
algorithm is that computing the analytic center of the updated primal set of
localization can be performed efficiently, regardless of the depth of the cut.
The corresponding primal set of localization reads

ΩP =
{
X ∈ SNsd

+ , x ∈ �nl
+ , ξ ∈ �+ : AX + Ax + ξem+1 = 0

}
.

Let

Ω+
P ={(

X
T

)
∈ SNsd+p

+ , x ∈ �nlp

+ , ξ′ ∈ �+ : AX + BT + Ax + ξem+1 = 0

}

be the updated primal set of localization after adding the semidefinite cut
BT y 	 D. To obtain a strictly feasible point of Ω+

P , we compute the optimal
updating direction ˜dX by maximizing log det of the new slack matrix over
a neighborhood of the primal feasible region.

max log detT
s.t.

AdX + BT + Adx + dξem+1 = 0√
‖X−1dX‖2 + ‖X−1

lp dx‖2 + |ξ−1dξ|2 ≤ 1
T � 0.

(38)

The optimality conditions of problem (38) are

−T̃−1 + BTv = 0 (39)
ATv + μX−1(dX)X−1 = 0 (40)

AT v + μX−2
lp dx = 0 (41)

v + μξ−2dξ = 0 (42)
μ(1 − ‖X−1dX‖2 + ‖X−1

lp dx‖2 + |ξ−1dξ|2) = 0 (43)
AdX + BT + Adx + dξem+1 = 0, (44)

where μ ≥ 0 is the Lagrange multiplier associated with the norm constraint.
By multiplying equation (40) from the left and from the right by X and
then applying the operator A we have,

(APAT
P)v + μAdX = 0. (45)

20

Applying the same strategy to (41)

(AX2
lpA

T)v + μAdx = 0. (46)

Multiplying Equation (42) by ξ2em+1 and adding it up to (45) and (46) and
in view of (44) one has

v = μḠ−1BT̃ ,

where Ḡ is defined as in (25).
Now the primal directions dX, dx and dξ from (40)– (42) can be derived

as

˜dX = −XAT Ḡ−1BT̃X, (47)
d̃x = −X2

lpA
T Ḡ−1BT̃ , (48)

d̃ξ = −ξ2Ḡ−1BT̃ em+1, (49)

Notice that d̃X is symmetric since AT Ḡ−1BT̃ is symmetric. Finally
from (39), T̃ is the unique solution of the following optimization problem:

T̃ = arg min
T�0

{p

2
trTVT − log det T}, (50)

where V = BT Ḡ−1B.
Let

X+ =

(
X + α ˜dX

αT̃

)
,

x+ = x + αd̃x and ξ+ = ξ + αd̃ξ, for α < 1. Starting from (X+, x+, ξ+),
a strictly feasible point of Ω+

P , Algorithm (1) is employed to compute an
approximate analytic center of ΩP .

Problem (50) can be solved using the Newton method. Let

F (T) =
p

2
trTV(T) − log detT.

Let T � 0 be given. For small symmetric dT

F (T + dT) =
p

2
tr(T + dT)V(T + dT) − log det(T + dT).

Using the quadratic approximation of log det(T + dT)−1, one has

F (T + dT) − F (T) =

ptr(dT)V(T) +
p

2
tr(dT)V(dT) − trT−1dT +

1
2
trT−1(dT)T−1(dT).

21

Note that

trTV(dT) = trTBT (Ḡ)−1BdT

= (BT)T (Ḡ)−1BdT

= (BdT)T (Ḡ)−1BT

= tr(dT)BT (Ḡ)−1BT

= tr(dT)V(T).

The Newton step dT is obtained by setting the gradient of F (T + dT)
with respect to dT , to zero. That is

pV(T) + pV(dT) − T−1 + T−1(dT)T−1 = 0.

By multiplying the above equation from the left side and from the right side
by T , we have

pTV(T)T + pTV(dT)T − T + dT = 0. (51)

An explicit form of dT cannot be obtained from (51) and therefore com-
puting an exact Newton direction seems to be impossible. To over pass
this problem, in our algorithm, we approximate the quadratic term trTVT
in F (T) by a linear term. That is we ignore tr(dT)V(dT) in F (T + dT).
Consequently (51) becomes

pTV(T)T − T + dT = 0,

and hence
dT = T − pTV(T)T.

This approximation does not significantly change the direction. Our nu-
merical results show that the rate of convergence is still quadratic in most
cases and super linear in some. As an initial point we use T 0 defined in [24,
Theorem 6.2] and apply a line search to compute the step size.

5.2 Adding a column

Let ΩP , the current set of localization, be defined as in previous Section 5.1
and assume that the oracle returns a single linear cut bT y ≤ d. We update
ΩP by adding a column

Ω+
P =

{
X ∈ SNsd

+ , x ∈ �nlp+1
+ , ξ ∈ R+ : AX + Ax + bx + ξem+1 = 0

}
.

22

To find a strictly feasible point of Ω+
P , we maximize log x subject to the

primal feasibility

max log x
s.t.

AdX + Adx + bx + dξem+1 = 0√
‖X−1dX‖2 + ‖X−1

lp dx‖2 + |ξ−1dξ|2 ≤ 1
x ≥ 0.

(52)

Similar to the previous section, one can derive the optimal updating direc-
tions d̃X, d̃x, and d̃ξ as

˜dX = −XAT Ḡ−1bx̃X, (53)
d̃x = −X2

lpA
T Ḡ−1bx̃, (54)

d̃ξ = −ξ2Ḡ−1bx̃em+1, (55)

where
x̃ =

(√
bT Ḡ−1b

)−1
.

6 Numerical results

In this section we present the matrix generation algorithm and its numerical
results. In our test problems we assume that Problem (1) consists of only
the bound constraints. Clearly, problems with additional linear constraints
are solved slightly faster (with less cuts) since the presence of additional
linear constrains results in smaller initial set of localization and therefore
faster convergence.

Consider

min λmax(F (y))
s.t

l ≤ y ≤ u,
(56)

where F (y) = F0 +
∑m

i=1 yiFi, and Fi are linearly independent. Let us
formally present the algorithm.

Algorithm 2 Let ε = 5 × 10−3, ρ = 1, θ̄0 and θ be large positive and
negative numbers respectively, and k = 0.

Input: Fi, i = 0, 1, ...,m, where Fi ∈ Sn; limits l ∈ �m and u ∈ �m.

23

Step 0. Compute initial points m-vector y0 = 1
2(l + u), (2m + 1)-vector

x0 = [(u − y0)−1; 1
2(θ̄0 − θ)−1; (y0 − l)−1], and scalars z0 = 1

3(θ̄0 + θ)
and ξ0 = 1

2(θ̄0 − θ)−1.

Step 1. Evaluate F (yk) and obtain the maximum eigenvalue with multiplic-
ity pk and its orthonormal matrix Qk.

Step 2. If F (yk) < θ̄k, then θ̄k+1 = F (yk).

Step 3. If pk = 1, then update the set of localization as in Section 5.2,
and calculate a strictly primal feasible directions ˜dX, d̃x, and d̃ξ via
(53)–(55).

Step 4. If pk > 1, then compute the primal directions ˜dX, d̃x, and d̃ξ via
(47)–(49).

Step 5. Project the primal directions back to the primal null space by (27)–
(29).

Step 6. Set ρ =
∑k

j=0 pj and implement Algorithm 1 to compute an ap-
proximate weighted analytic center of the updated set of localization,
starting from the strictly feasible point derived in Step 5.

Step 7. If θ̄k − zk < εzk, stop.

Step 8. Set k = k + 1 and return to step 1.

We use the mathematical package MATLAB 6.0 to code Algorithm 2.
The data for the test problems were generated using the MATLAB func-
tion RANDN that generates Normally distributed random numbers. The
program was run on an 1.60 GHz Intel Pentium 4 with 384 MB of RAM.

Figure 2 shows the convergence of Algorithm 2 when implemented on a
problem of size 200 and dimension 100 with full density. The upper curve
plots the values of θ̄k at each iteration and the lower curve shows the values
of zk. The algorithm stops when the relative error between the two points
is less than ε as it is specified by Step 7 of the algorithm.

Note that the lower bound θ on the objective function will never get up-
dated. This is because there is no efficient way to approximate a good lower
bound on the objective function. We overcome this difficulty by using the
weighted analytic center. That is, since we compute the weighted analytic
center at each iteration, zk gets close to the upper bound cut only when the

24

0 20 40 60 80 100 120 140 160
20

21

22

23

24

25

26

27

28

29

Figure 2: The convergence behavior of Algorithm 2

set of localization is small enough, thus solving the problem. We use this
strategy as the stopping criterion.

Figure 2 gives a clear pictorial view of the behavior of Algorithm 2. In the
beginning, the upper bound cut z ≤ θ̄k is not updated very often. Speaking
in dual terminologies, the reason is that the set of localization is large at the
start of the algorithm. As the iterations advance, the oracle creates more
cuts and the set of localization is shrunk. Once the localization set is small
enough, the algorithm starts generating query points that yield to a lower
objective and therefore updating the upper bound cut. Obviously, problems
with more constraints have a smaller set of localization to start with, and
the upper bound cut starts getting updated sooner, which of course, results
in faster convergence. This is the reason to our earlier statement that the
algorithm performs better on problems with more linear constraints.

Tables 1–4 present numerical results of Algorithm 2 when applied to
problems with various sizes, dimensions and densities. The first two columns
indicate the size (m) and dimension (n) of the problem. The third column
shows the density of the problem. The density is determined when the
random data is generated by the MATLAB function SPRANDN. For in-
stance, an m × n matrix with the density of 5% means that the number
of nonzero entrees of the matrix is approximately 0.05 × m × n. We use
problems with 5%, 50%, and 100% density. The next column represents
nl, the number of columns generated (linear cuts). The number of matrices
generated (semidefinite cuts) throughout the algorithm is given by nsd in the
fifth column. Finally, the last column shows the CPU time in the format
minute:second.

A close study of the numerical results presented in Tables 1–4 reveals that

25

Table 1: Performance of the matrix generation algorithm for m = 50 and
n = 50, 100, 200, 300, and 500.

size dimension density columns matrices CPU time
m n % nl nsd mm:ss

5 97 23 00:24
50 50 108 22 00:31

100 8 0 00:00

5 82 33 00:51
100 50 89 34 01:05

100 26 0 00:03

5 79 40 02:19
50 200 50 104 35 02:59

100 44 21 00:37

5 76 50 04:30
300 50 87 34 05:56

100 97 36 03:29

5 99 42 12:52
500 50 66 54 16:31

100 75 53 11:33

problems with higher density need less cuts to optimize. This observation
suggests that Algorithm 2 is more effective when applied to dense problems.
This is even more visible when the algorithm is applied to larger problems.
For instance in Table 2, a problem with m = 100 and n = 100 and density
of 5% needs 189 columns and 47 matrices, whereas the same problem with
100% density needs only 39 columns and 3 matrices. and substantially less
CPU time.

For problems where the bound constraint is active, the CPU time dra-
matically increases. For example, consider a problem with size m = 800 and
dimension n = 50 in Table 4. When the density of this problem is 5% the
bound constraint for some of the yi’s becomes active. In this case, since the
upper bound and the value of zk decrease simultaneously (Figure 3), the
algorithm needs to add too many cuts before the set of localization is small

26

Table 2: Performance of the matrix generation algorithm for m = 100 and
n = 50, 100, 200, 300 and 500.

size dimension density columns matrices CPU time
m n % nl nsd mm:ss

5 200 36 02:05
50 50 200 42 02:22

100 13 0 00:01

5 189 47 03:25
100 50 181 52 04:25

100 39 3 00:09

5 158 64 08:25
100 200 50 170 57 10:02

100 101 31 02:51

5 153 71 16:49
300 50 161 72 22:05

100 147 75 12:12

5 137 89 43:12
500 50 283 27 69:19

100 132 92 34:03

enough to satisfy the stopping criterion.
Note that, in this paper we are dealing with the eigenvalue optimization

with bound constrains. therefore, the initial set of localization is bounded.
Algorithm 2 can also be implemented for unbounded problems. For such
problems one can define an artificial bound on the variables, also known as
box constrains. When an iteration gets close to the boundary of the box
constrain, the bound is moved away to give flexibility to the algorithm.

One weakness of Algorithm 2 is the fact that we have to compute the
Gram matrix G several times at Step 6 (see Algorithm 1). As we mentioned
earlier, when the maximum eigenvalue has multiplicity more than 1 the
oracle returns a semidefinite cut. To update the set of localization in this
case, each matrix Ai is enlarged by adding the semidefinite cut matrices to

27

0 200 400 600 800 1000 1200
−10

−8

−6

−4

−2

0

2

4

6

8

Figure 3: The convergence behavior of Algorithm 2 for problems with active
bound constraint

its diagonal. Although we exploit the block-diagonal structure of Ai’s, as the
number of semidefinite cuts increases the computation time of APAT

P grows
drastically. The use of MATLAB makes this problem even worse. MATLAB
is extremely vulnerable in large loops. To overcome this difficulty, we used
“C++” to compute the Gram matrix and then imported it to MATLAB by
writing MEX files. This modification reduced the computation time of G
by a factor of 20! But it is still very expensive for large problems.

One remedy, which is to be tested in the future, is the use of weaker
but less expensive cuts. One candidate is second-order cone relaxations on
semidefinite inequalities. Using a set of second-order cone cuts to relax a
semidefinite cut can significantly improve the computational time. However,
the theoretical issues of this integration should be explored first.

7 Conclusion

We extended the column generation technique to nonpolyhedral models and
implemented this extension to eigenvalue optimization. In the algorithm
described in this paper, the method of analytic center is used to obtain query
points at each step and update the restricted master problem. We showed
that the restricted master problem is updated by a single column when the
objective function in the dual space is differentiable at the query point. In
the cases where this function if nondifferentiable, the oracle returns a set of
subgradients and the restricted master is updated by adding a matrix to its
diagonal.

28

Table 3: Performance of the matrix generation algorithm for m = 200 and
300 and n = 50, 100, 200, and 300.

size dimension density columns matrices CPU time
m n % nl nsd hh:mm:ss

5 409 72 00:12:45
50 50 401 76 00:10:22

100 22 1 00:00:06

5 335 96 00:20:31
100 50 375 83 00:20:35

100 74 11 00:00:48
200

5 326 106 00:36:14
200 50 323 108 00:43:22

100 184 55 00:10:04

5 283 119 01:02:49
300 50 294 128 01:23:05

100 317 121 00:49:12
5 595 99 00:40:35

50 50 581 108 00:47:12
100 43 9 00:00:55

5 541 124 01:04:34
100 50 570 123 00:59:15

100 85 25 00:03:08
300

5 460 156 01:44:25
200 50 495 155 02:01:02

100 275 71 00:27:31

5 406 176 02:43:40
300 50 418 52 01:16:33

100 458 171 02:06:22

29

The numerical results of implementing this method on randomly gen-
erated problems illustrate that the matrix generation technique is more ef-
ficient on problems whose coefficient matrix is full rather than on sparse
problems.

This technique can be improved and extended in several ways. The
use of the second-order cone inequalities as an alternative to semidefinite
cuts provides one line of approach. such a relaxation could improve the
computational time of the algorithm. It is particularly useful when the
matrix generation algorithm is integrated with branch-and-price or branch-
and-cut techniques to solve integer programming problems to optimality.
Such integration would be another extension to this paper.

References

[1] V. L. Basescu, An analytic center cutting plane method in conic opti-
mization, Doctoral Thesis, Rensselaer Polytechnic Institute, Troy, NY
12180, August 2003.

[2] J. F. Benders, Partitioning procedures for solving mixed-variables pro-
gramming problems, J. Soc. Ind. Appl. Math, 8 (1961), pp. 703–712.

[3] S. K. Chua, K. C. Toh, and G. Y. Zhao, An analytic center cut-
ting plane method with deep cuts for semidefinite feasibility problems,
Working paper, Department of Mathematics, National University of
Singapore, (2002).

[4] G. B. Dantzig and P. Wolfe, Decomposition principle for linear
programs, Operations Research, 8 (1960), pp. 101–111.

[5] S. Elhedhli and J.-L. Goffin, The integration of an interior point
cutting plane method with branch and price algorithm, Mathematical
Programming, to appear.

[6] M. L. Fisher, The Lagrangean relaxation method for solving integer
programming problems, Management Science 27 (1981), pp. 1–18.

[7] P. C. Gilmore and R. E. Gomory, A linear programming approach
to the cutting-stock problem, Operations Research, 9 (1961), pp. 849–
859.

[8] P. C. Gilmore and R. E. Gomory, A linear programming approach
to the cutting-stock problem–Part II, Operations Research, 11 (1963),
pp. 863–888.

30

Table 4: Performance of the matrix generation algorithm for m = 500, 800
and 1000, and n = 10, 20 and 50.

size dimension density columns matrices CPU time
m n % nl nsd hh:mm:ss

10 5 88 0 00:02:28
100 23 0 00:00:39

500 20 5 203 0 00:06:46
100 30 0 00:00:51

50 5 1418 90 01:12:05
100 59 2 00:01:59

10 5 68 8 00:07:50
100 16 1 00:01:36

800 20 5 297 1 00:31:23
100 52 0 00:04:33

50 5 1311 99 07:18:23
100 73 0 00:05:08

10 5 57 12 00:12:16
100 27 2 00:03:07

1000 20 5 231 13 00:45:19
100 56 0 00:09:24

50 5 1187 73 06:22:10
100 105 0 00:17:41

31

[9] J.-L. Goffin, J. Gondzio, R. Sarkissian, and J.-P. Vial, Solving
nonlinear multicommodity flow problems by the analytic center cutting
plane method, Mathematical programming, 76(1) (1997), pp. 131–154.

[10] J.-L. Goffin, A. Haurie, and J.-P. Vial, Decomposition and non-
differentiable optimization with the projective algorithm, Management
Science, 38 (1992), pp. 284–302.

[11] J.-L. Goffin and J.-P. Vial, Multiple cuts in the analytic center cut-
ting plane methods, SIAM Journal on Optimization, 11 (2000), pp. 266–
288.

[12] M. Guignard and S. Kim, Lagrangean decomposition: A model yield-
ing stronger lagrangean bounds, Mathematical Programming, 39 (1987),
pp. 215–228.

[13] C. Helmberg and F. Rendl, A spectral bundle method for semidef-
inite programming, SIAM Journal on Optimization, 10(3) (2000)
pp. 673–696.

[14] J. E. Kelley Jr., The cutting-plane method for solving convex pro-
grams, J. Soc. Ind. Appl. Math, 8 (1961), pp. 703–712.

[15] K. C. Kiwiel, An aggregate subgradient method for nonsmooth convex
minimization, Mathematical Programming, 27 (1983), pp. 320–341.

[16] K. Krishnan and J. Mitchell, Semi-infinite linear programming ap-
proaches to semidefinite programming, Novel Approaches to Hard Dis-
crete Optimization (P. M. Pardalos and H. Wolkowicz editors), Fields
Institute Communication Series, AMS, (2003) pp. 123–142.

[17] K. Krishnan and J. E. Mitchell, A unifying framework for sev-
eral cutting plane methods for semidefinite programming, Technical re-
port, Mathematical Sciences, Rensselaer Polytechnic Institute, Troy,
NY 12180, November 2002. Revised: December 15, 2003.

[18] K. Krishnan and T. Terlaky, Interior point and semidefinite ap-
proaches in combinatorial optimization, Technical Report, Advanced
Optimization Laboratory, AdvOL-Report No. 2004/2, January 2004.

[19] A. S. Lewis and M. L. Overton, Eigenvalue Optimization, Acta
Numerica, (1996), pp. 149–190.

32

[20] J. E. Mitchell, Computational experience with an interior point cut-
ting plane algorithm, SIAM Journal on Optimization, 10(4) (2000),
pp. 1212–1227.

[21] J. E. Mitchell, Restarting after branching in the SDP approach to
MAX-CUT and similar combinatorial optimization problems, Journal
of Combinatorial Optimization, 5(2):151–166, 2001.

[22] J. E. Mitchell, Polynomial interior point cutting plane methods, Op-
timization Methods and Software, 18(5):507–534, 2003.

[23] M. R. Oskoorouchi, The analytic center cutting plane method with
semidefinite cuts, Ph.D. Dissertation, Faculty of Management, McGill
University, Montreal, Canada July 2002.

[24] M. R. Oskoorouchi and J. L. Goffin, The analytic center cutting
plane method with semidefinite cuts, SIAM Journal on Optimization,
13 (4) (2003), 1029–1053.

[25] M. R. Oskoorouchi and J. L. Goffin, An interior point cutting
plane method for the convex feasibility problem with second-order cone
inequalities, Technical Report, California State University San Marcos,
San Marcos, California 92096, April 2003 submitted to Mathematics of
Operations Research. Revised: October 2003 and March 2004.

[26] M. L. Overton, Large-scale optimization of eigenvalue, SIAM Journal
on Optimization, 2 (1992), pp. 88–120

[27] G. Sonnevend, New algorithms in convex programming based on a
notation of center and on rational extrapolations, International Series
of Numerical Mathematics, Birkhauser Verlag, Basel, Switzerland, 84
(1988), pp. 311–327.

[28] J. Sun, K. C. Toh, and G. Y. Zhao, An analytic center cutting plane
method for semidefinite feasibility problems, Mathematics of Operations
Research, 27 (2002), pp. 332–346.

[29] K. C. Toh, G. Y. Zhao, and J. Sun, A multiple-cut analytic center
cutting plane method for semidefinite feasibility problems, SIAM Jour-
nal on Optimization, 12 (2002), pp. 669–691.

[30] Y. Ye, A potential reduction algorithm allowing column generation,
SIAM Journal on Optimization, 2 (1992), pp. 7–20.

33

[31] Y. Ye, Complexity analysis of the analytic center cutting plane method
that uses multiple cuts, Mathematical Programming, 78 (1997), pp. 85–
104.

34

