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Abstract

Linear programming problems with fuzzy coefficients in the objective
function are considered. Emphasis is on the dependence of the optimal
solution from linear perturbations of the membership functions of the
objective function coefficients as well as on the computation of a robust
solution of the fuzzy linear problem if the membership functions are not
surely known.
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1 Fuzzy linear optimization

We consider fuzzy linear optimization problems given by

F (x) =
n∑

j=1

c̃jxj → max
n∑

j=1

aijxj = bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n.

 (1)

The coefficients c̃ = (c̃1, c̃2, . . . , c̃n) of the objective function are fuzzy numbers
of the type L− L [4]:

c̃j = (cj ; cj ;αj ;βj)L−L, j = 1, 2, ..., n, (2)

where cj , cj - are the left and right borders of the fuzzy number c̃j corresponding
to the maximal reliability level (λ = 1) and αj and βj are non-negative real
numbers (see Fig. 1).

A fuzzy number c̃j , (j = 1, 2, ..., n) is defined as a fuzzy set in the space of
real numbers with the following membership function [4]:

µ
c̃
(z) =


1 if c ≤ z ≤ c,

L

(
c− z

α

)
if z ≤ c,

L

(
z − c

β

)
if z ≥ c,

(3)
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Figure 1: A membership function

where L is a shape function, which satisfies to following conditions:
- L is a continuous non-increasing function on [0,∞) with L(0) = 1;
- L is strictly decreasing on that part of [0,∞) on which it is positive.
Problem (1) can be associated with a set of the following problems (4), which
depend on a parameter λ ∈ (0, 1) [2]:

F (x) =
n∑

j=1

cλ
j xj → max

n∑
j=1

aijxj = bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n.

 (4)

where the coefficients cλ
j in the objective function represent intervals correspond-

ing to the λ-level of the fuzzy number c̃j , j = 1, 2, ..., n:

cλ
j := {y : µ

c̃j
(y) ≥ λ} = [cj − L−1(λ)αj , cj + L−1(λ)βj ].

Define the abbreviations

cλ
j := cj − L−1(λ)αj , c

λ
j := cj + L−1(λ)βj .

Similar as in [2] we use the following definition of an optimal solution of problem
(4).

Definition 1 A point x ≥ 0 with Ax = b is called an t0, t1-optimal solution
of the problem (4) iff there is no x′ ≥ 0 with Ax′ = b satisfying the following
inequalities

n∑
j=1

(cλ
j + t0(cλ

j − cλ
j ))xj ≤

n∑
j=1

(cλ
j + t0(cλ

j − cλ
j ))x′j

n∑
j=1

(cλ
j + t1(cλ

j − cλ
j ))xj ≤

n∑
j=1

(cλ
j + t1(cλ

j − cλ
j ))x′j

with at least one strict inequality.

Using this definition it is easy to see that x is an t0, t1-optimal solution iff it is a
Pareto-optimal solution of the following bicriterial optimization problem, where
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θ = L−1(λ) is used [2]:

f1(x) =
n∑

j=1

(
p1
1(j) + p1

2(j)θ
)
xj → max

f2(x) =
n∑

j=1

(
p2
1(j) + p2

2(j)θ
)
xj → max

n∑
j=1

aijxj = bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n,


(5)

where

p1
1(j) = cj + t0(cj − cj),

p1
2(j) = t0(αj + βj)− αj ,

p2
1(j) = cj + t1(cj − cj),

p2
2(j) = t1(αj + βj)− αj ,

To compute t0, t1-optimal solutions for all λ-levels of the problem (1) we have
to compute Pareto-optimal solutions of problem (5) for all θ ∈ [θ, θ] with θ =
L−1(1), θ = L−1(0).

The selection of different values for t0, t1 corresponds to different preference
relations between intervals [3].

For simplicity of our investigations we shall be limited only to the consid-
eration of the following preference relation between intervals a = [a, a] and
b = [b, b]:

a ≤ b ⇐⇒ a ≤ b ∧ a ≤ b, (6)
a < b ⇐⇒ a ≤ b ∧ a 6= b, (7)

In accordance with [3] this case corresponds to the problem (5) with t0 = 0 and
t1 = 1.

Substituting t0 = 0 and t1 = 1 in (5) we obtain the following model:

f1(x) =
n∑

j=1

(
cj − αjθ

)
xj → max

f2(x) =
n∑

j=1

(cj + βjθ) xj → max
n∑

j=1

aijxj = bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n.


(8)

Summing up we have to compute the sets of Pareto-optimal solutions of problem
(8) for all θ ∈ [θ, θ].

Definition 2 A point x ≥ 0 with Ax = b is a Pareto-optimal solution [5] of
problem (8) iff there does not exist x′ ≥ 0 with Ax′ = b satisfying

f1(x) ≤ f1(x′), f2(x) ≤ f2(x′)

with at least one strict inequality.
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Figure 2: First objective function for θ ∈ [0, 1]

Figure 3: Second objective function for θ ∈ [0, 1]

We denote the set of Pareto-optimal solutions of problem (8) for fixed θ by Ψ(θ).
Since the objective functions in model (8) depend on the parameter θ, each

objective function in (8) is one element in a set of functions which are located
between two borders, according to θ = 0 and θ = 1. This is shown in Fig. 2 and
3.

Coming back to problem (1) and using the above approach for treating
fuzziness we see that it is necessary to find all the feasible points which are
Pareto-optimal for problem (8) for at least one value of θ ∈ [0, 1].

Definition 3 A point x which is Pareto-optimal for problem (8) for at least
one value of θ ∈ [0, 1] is called essential.

The solution of a fuzzy optimization problem is again a fuzzy set in the set
of feasable solutions. To define a membership function for this solution, we
compute the set of all θ for which one essential point is Pareto-optimal for
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problem (8) [2]. Then,

µFS(x) =
∣∣∣∣{ λ ∈ [0, 1] : x is a Pareto-optimal solution

of the problem (8) for θ = L−1(λ)

}∣∣∣∣ =

=
l∑

i=1

(L(θ2i−1)− L(θ2i)) (9)

where {θi}2l
i=1 is such that x is Pareto-optimal for problem (8) for all θ ∈

[θ2i−1, θ2i], i = 1, . . . , l. Here, |Q| means the geometric measure of the set Q.

2 Computing Pareto-optimal points

In the following we will assume for simplicity that the set M := {x ≥ 0 : Ax = b}
is not empty and bounded. Then,

M = conv {x1, x2, ..., xr}.

For the motivation, we will restrict us to the computation of the set of all vertices
of M belonging to the set of Pareto-optimal solutions Ψ(θ) for problem (8) for
fixed θ. Clearly, this can be done since the set of Pareto-optimal solutions itself
can easily be determined if we know the subset of vertices in this set. Let Ψv(θ)
denote the subset of vertices of M in Ψ(θ). Then,

Ψv(θ) = {xi1, ..., xip} ⊆ {x1, ..., xr}. (10)

We sort these Pareto-optimal points such that

f1(xi1) > f1(xi2) > ... > f1(xip),
f2(xi1) < f2(xi2) < ... < f2(xip). (11)

This means that the solution xi1 is optimal for the first objective function with-
out consideration of the second one and xip is an optimal solution for the second
objective function if the first function is not taken into account.

For simplicity assume that the optimization problems of maximizing the
function f1(x) respectively the function f2(x) on the set M are non-degenerate,
i.e. that they have unique optimal solutions. If this would not be the case
then we have to select certain optimal solutions out of the sets of optimal ones.
Then, to compute Ψv(θ) we can proceed as follows. We solve linear optimization
problems

f2(x) → max
f1(x) ≤ z
x ∈ M

 (12)

with parameter z on the right-hand side of the first constraint. It follows from
the Charnes-Cooper observation [7] that we obtain Ψ(θ) as

Ψ(θ) =
⋃

z∈[f1(xip),f1(xi1)]

Φ(z),

where Φ(z) is the set of optimal solutions of problem (12). Let ϕ(z) denote
the optimal value function of the parametric optimization problem (12). The
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function ϕ(z) is piecewise linear and concave [6]. The kinks of this function
correspond to vertices of M , hence, to compute Ψv(θ) we have to find the kinks
of the function ϕ(z).

Theorem 4 Let the function ϕ(z) be (affine) linear on both the intervals [z0, z1]
and [z1, z2] with different slopes. Then, there exists a vertex x of the set M with
x ∈ Φ(z1). Vice versa, if |Φ(z)| = 1 for all z and if there is a vertex x of the
set M in Φ(z1) then the function ϕ(z) has a kink at z = z1.

Proof: If the constraint f1(x) = z is not active, the optimal solution of the
problem (12) is equal to xip independent of z, i.e. ϕ(z) is constant. Hence,
assume that f1(x) = z is active.

For right-hand side perturbed linear programming problems there exists a
piecewise (affine-) linear solution function x(z) (which can be an arbitrary selec-
tion function of Φ(·) in case of nonuniquely optimal solutions) [6]. To verify this
consider the optimality conditions of problem (12) and use that the characteris-
tic index set is piecewise constant [6]. This means that ϕ(z) = f2(x(z)) is linear
whenever x(z) is linear and that this function is not differentiable whenever x(z)
is not.

If the function x(z) does not go through a vertex of M , i.e. if no vertex of M
belongs to Φ(z1), the functions x(z) and ϕ(z) are locally (affine-) linear. The
assumption that no vertex of M belongs to Φ(z1) equivalently means that the
characteristic index set is constant for z near z1.

Now let the characteristic index set change at the point z1. Since the con-
straint f1(x) = z is active this means that the characteristic index set corre-
sponding to the inequalities x ≥ 0 changes. Due to the assumption |Φ(z1)| = 1
this means that a unique vertex x of M is the optimal solution of (12) at z = z1.
Hence, the function x(z) is not differentiable at the point z = z1 and so is the
function ϕ(z). q.e.d.

3 Sensitivity analysis

Now we assume that the fuzzy numbers c̃j are perturbed by δj , j = 1, ..., n.
Applying these perturbations to the problem (8) with the two objective functions
f1(x) and f2(x), we obtain the following model:

f1(x) =
n∑

j=1

[(
cj − αjθ

)
+ δj

]
xj → max

f2(x) =
n∑

j=1

[(cj + βjθ) + δj ]xj → max
n∑

j=1

aijxj = bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n.


(13)

Here we are interested to determine how much the fuzzy numbers c̃j , j = 1, ..., n
can be perturbed such that one Pareto-optimal solution of the initial fuzzy
linear optimization problem remains optimal. Problem (13) is called a changed
problem and the set

R(x, θ) := {δ : x ∈ Ψδ(θ)}
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Figure 4: Perturbation of a membership function

is called region of stability of the feasible point x, where Ψδ(θ) denotes the set
of Pareto-optimal solutions of problem (13). The corresponding perturbation of
the membership function of one fuzzy number is illustrated in Fig. 4.

Theorem 5 For fixed θ and each feasible point x the set cl R(x) is a convex
polyhedron.

Proof: Let NM (x) denote the normal cone to the feasible set M of problem
(13) at a feasible point x:

NM (x) = {z : ∃u, ∃v ≥ 0 with z = A>u− Ev, x>v = 0}.

Then, x is Pareto-optimal for problem (13) iff there exists w ∈ (0, 1) such that
x is an optimal solution of the problem

wf1(x) + (1− w)f2(x) → max
n∑

j=1

aijxj = bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n,

 (14)

cf.e.g. [7]. Now, x is an optimal solution of problem (14) if and only if

w∇f1(x) + (1− w)∇f2(x) ∈ NM (x)

by linear programming where ∇fi(x) is constant since fi(x) is a linear function
of x. Evaluating this condition we get

w(c− αθ + δ) + (1− w)(c + βθ + δ) ∈ NM (x). (15)

Here, c = (c1, . . . , cn)>, and c, α, β are accordingly determined vectors. Now,
putting the equations (15) and w ∈ (0, 1) and the definition of NM (x) together
we see that the closure of the set of all solutions (w, δ, u, v) of the resulting system
is equal to the set of solutions of a linear system of equations and inequalities.
Hence, this set is a convex polyhedron and this is also true for the projection of
this set onto the δ-space. q.e.d.

To illustrate this theorem let us consider in the following example the special
case that δi = 0 for all i > 1.

F (x) = c̃1x1 + c̃2x2 → max
x1 + 2x2 ≤ 6
−x1 + x2 ≤ 2
2x1 + x2 ≤ 6
x1, x2 ≥ 0,

 (16)
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Figure 5: Set of solutions for the perturbed bicriterial problem

where c̃1 = (2; 5; 1; 2) and c̃2 = (8; 9; 2; 5) (see (2)).
If we change this problem by perturbing the membership function of the first

fuzzy number c̃1 by δ1 we obtain the following problem:

f1(x) = [(2− θ) + δ1]x1 + (8− 2θ) x2 → max
f2(x) = [(5 + 2θ) + δ1]x1 + (9 + 5θ)x2 → max
x1 + 2x2 ≤ 6
−x1 + x2 ≤ 2
2x1 + x2 ≤ 6
x1, x2 ≥ 0.


(17)

Consider the bicriterial problem (17) with θ = 0. Then the set of Pareto-optimal
solutions for δ = 0 is Ψ0(θ = 0) = conv {x2, x3} = conv {(2/3, 8/3)>, (2, 2)>}
(see Fig. 5).

Now we consider a changed problem (17) with the parameter δ. We intend
to find all such δ1 for which x2 is no longer Pareto-optimal, i.e. we need to find
{δ1 : x2 6∈ Ψδ1(θ = 0)}.

Now we transform the problem (17) into the problem (14).

w((2 + δ1)x1 + 8x2) + (1− w)((5 + δ1)x1 + 9x2) → max
x1 + 2x2 ≤ 6
−x1 + x2 ≤ 2
2x1 + x2 ≤ 6
x1, x2 ≥ 0.

 (18)

Applying the optimality conditions (15) to problem (18) we obtain

−w · (2 + δ1)− (1− w) · (5 + δ1) + u1 − u2 = 0
−w · 8− (1− w) · 9 + 2u1 + u2 = 0
u1, u2 ≥ 0, w ∈ [0, 1].

 (19)

Note that the Lagrange multipliers to the constraints xi ≥ 0 and to the last
inequality 2x1 + x2 ≤ 6 are zero since these conditions are not active. After the
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transformation of equations (19) the following equalities are obtained:

δ1 = 3w − 5 + u1 − u2

w + 2u1 + u2 = 9
u1, u2 ≥ 0, w ∈ [0, 1].

 (20)

This implies that the following inequality gives an upper bound for δ1 such
that the Pareto-optimal point x2 remains Pareto-optimal, i.e. it is no longer
Pareto-optimal for the problem (17) if δ1 is larger than the right-hand side of
the following inequality:

δ1 ≤ d, (21)

where d is the optimal objective function value of the problem

3w − 5 + u1 − u2 → max
w + 2u1 + u2 = 9
u1, u2 ≥ 0, w ∈ [0, 1].


The optimal function value of the last problem is equal to two. Hence,

R(x2) = (−∞, 2]

which can easily be verified in figure 5. It should be remarked that the region
of stability is closed here since the problem (17) is nondegenerate.

Remark 6 By the same way as in the proof of Theorem 5 we get the conditions
for the computation of the bounds θi for evaluating the membership function (9)
of the solution of problem (1). For this, set δ = 0 in equation (15). If this
condition is satisfied then the feasible solution x is Pareto-optimal for problem
(8) and, hence, belongs to the solution of problem (1) with positive membership
function value. The θi are the bounds of θ for which x enters the set of Pareto-
optimal solutions respectively leaves this set. Note that the equation (15) is no
longer linear if θ is not constant which results in a nonconvex region of stability.
The latter result is reflected also by the investigations in the paper [2].

4 Robust solution

Let us assume now that the coefficients in the objective function in problem (1)
are unknown. This is another situation than that in the previous section where
we analysed the dependency of one Pareto-optimal solution and hence of one
feasible solution with positive value of the membership function on the fuzzy
objective function coefficients.

In [1] linear optimization problems with unkown coefficients in the con-
straints have been considered. To treat the uncertainty resulting from the
unknown coefficients the authors developed a robust counterpart of the linear
programming problem demanding that a robust feasible solution has to satisfy
all the constraints resulting from all possible realizations of the coefficients. And
a robust optimal solution is a best robust feasible solution with respect to the
original objective function.

Here the situation is slightly different in that we assume that the membership
functions of the fuzzy coefficients in the objective function are uncertain. Again
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we solve the fuzzy optimization problem (1) using the union of the sets of
Pareto-optimal solutions of the problem (8) for θ ∈ [0, 1]. Then, to adopt
the approach in [1] we move the objective functions of this problem for fixed θ
into the constraint set. This results in

z1 → max
z2 → max

f1(x) =
n∑

j=1

(
cj − αjθ

)
xj ≥ z1

f2(x) =
n∑

j=1

(cj + βjθ) xj ≥ z2

n∑
j=1

aijxj = bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n.


(22)

Now the conception in [1] was to call a point x a robust feasible point if it
satisfies all the constraints for all the possible realizations. This means for our
problem that we get

z1 → max
z2 → max

f̃1(x) := min
n∑

j=1

(
cj − αjθ

)
xj ≥ z1

f̃2(x) := min
n∑

j=1

(cj + βjθ) xj ≥ z2

n∑
j=1

aijxj = bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n.


(23)

where the minimum in the first two constraints is to be taken with respect to all
possible functions obtained for all possible realizations of the fuzzy coefficients
in the objective function of (1). This problem is equivalent to

f̃1(x) := min
n∑

j=1

(
cj − αjθ

)
xj → max

f̃2(x) := min
n∑

j=1

(cj + βjθ) xj → max
n∑

j=1

aijxj = bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n.


(24)

Hence, if we also construct a robust counterpart of our problem (1) we should
demand feasibility of a solution with respect to the constraints of the original
problem but call a feasible solution robust optimal if it is “nearly optimal” with
respect to all possible realizations of the fuzzy objective function.

A fuzzy coefficient c̃j in the objective function of problem (1) is character-
ized by (cj , cj , αj , βj). If the fuzzy number c̃j is uncertain this means that its
membership function is uncertain and this is reflected by (cj , cj , αj , βj) being
taken as one element of a certain set. Let P be the set of all possible vectors of
tuples (cj , cj , αj , βj) resulting from all possible realizations of the fuzzy coeffi-
cients in (1). Then, the minimum in the objective functions in problem (24) is
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to be taken w.r.t. p =
(
(cj , cj , αj , βj)

)n

i=1
∈ P. We assume in the following that

the set P is a compact polyhedron.
A robust solution for problem (1) is a feasible solution of this problem, which

is essential for problem (24). Its membership function value can be determined
accordingly to (9) with (8) being replaced by (24).

To solve the resulting problem (24) we use a similar approach as in Section
2. For that, let the compact polyhedron P be given as convex hull of its vertices
P = conv {(ck

j , ck
j , αk

j , βk
j )n

i=1, k = 1, . . . ,K}. Then,

f̃1(x) := min
p∈P

n∑
j=1

(
cj − αjθ

)
xj = min

k=1,...,K

n∑
j=1

(
ck
j − αk

j θ
)
xj

and

f̃2(x) := min
p∈P

n∑
j=1

(cj + βjθ) xj == min
k=1,...,K

n∑
j=1

(
ck
j + βk

j θ
)
xj .

To compute the bounds for the variations of both objective functions f̃1(x) and
f̃2(x) we again solve the two problems of maximizing only one of both functions
on the feasible set M . These problems can be transformed into

ξ → max
n∑

j=1

(
ck
j − αk

j θ
)
xj ≥ ξ, k = 1, . . . ,K

n∑
j=1

aijxj = bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n


(25)

and
ξ → max
n∑

j=1

(
ck
j + βk

j θ
)
xj ≥ ξ, k = 1, . . . ,K

n∑
j=1

aijxj = bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n.


(26)

Let x1 be an optimal solution of (25) and xp denote an optimal solution of (26),
then the first objective f̃1(x) varies between f̃1(x1) and f̃1(xp), while f̃2(x) runs
from f̃2(xp) to f̃2(x1).

Now the problem according to (12) reads as

ξ → max
n∑

j=1

(
ck
j + βk

j θ
)
xj ≥ ξ, k = 1, . . . ,K

f̃1(x) ≤ z
n∑

j=1

aijxj = bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n.


(27)

Similarly to Section 2, if we solve this problem for z ∈ [f̃1(xp), f̃1(x1)], then we
trace the set of Pareto-optimal solutions of the problem (24). Note, that using
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the regions of stability

R(k, θ) :=

x :
n∑

j=1

(
ck
j − αk

j θ
)
xj ≤

n∑
j=1

(
cs
j − αs

jθ
)
xj ∀ s = 1, . . . ,K


we can further transform problem (27) into a sequence of linear optimization
problems.

5 Computation of the membership function

To compute values of the membership function of a robust solution of the prob-
lem (1) we go along the lines of (9), i.e. we compute for each feasible point
x ∈ M the set of all θ for which this point is Pareto-optimal with respect to the
problem (24). Problem (24) again is a convex bicriterial optimization problem.
Hence, for each Pareto-optimal solution x of this problem there is w ∈ [0, 1]
such that x is an optimal solution of the problem

wf̃1(x) + (1− w)f̃2(x) → max
n∑

j=1

aijxj = bi, i = 1, 2, ...,m,

xj ≥ 0, j = 1, 2, ..., n.

 (28)

Vice versa, if x is an optimal solution of (28) for some w ∈ (0, 1) (and this is
also true for w ∈ {0, 1} if the solution is unique) then it is also Pareto-optimal
for problem (24).

Let ∂
(
wf̃1 + (1− w)f̃2

)
(x) denote the superdifferential (in the sense of con-

vex analysis [8]) of the function
(
wf̃1 + (1− w)f̃2

)
(x).

Theorem 7 ([8]) Let all optimal solutions of the problems (25) and (26) be
uniquely determined. Then, a feasible solution x ∈ M is Pareto-optimal to (24)
if and only if there is w ∈ [0, 1] with(

−∂
(
wf̃1 + (1− w)f̃2)

)
(x)

)
∩NM (x) 6= ∅.

By convex analysis,

∂
(
wf̃1 + (1− w)f̃2

)
(x) = w∂f̃1(x) + (1− w)∂f̃2(x).

To compute ∂f̃1(x) remember that

f̃1(x) = min
k=1,...,K

n∑
j=1

(
ck
j − αk

j θ
)
xj

and let

K(x, θ) :=

k :
n∑

j=1

(
ck
j − αk

j θ
)
xj = f̃1(x)

 .
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Then,
∂f̃1(x) = conv {ck − αkθ : k ∈ K(x, θ)}.

Hence, to compute the region of stability of some Pareto-optimal solution x for
problem (24) we have to solve a system of nonlinear equations resulting from
insertion of the last equation into the result of Theorem 7.
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