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Abstract

We describe an implementation of an infinite-dimensional primal-dual
algorithm based on the Nesterov-Todd direction. Several applications to
both continuous and discrete-time multi-criteria linear-quadratic control
problems and linear-quadratic control problem with quadratic constraints
are described. Numerical results show a very fast convergence (typically,
within 3-4 iterations) to optimal solutions.

1 Introduction

One of the current trends in the development of interior-point algorithms of
optimization is the extension of the domain of their applicability. While at
first the linear programming problem was the major target, subsequent devel-
opments led to creation of algorithms and software for much broader class of
symmetric programming problems. This class includes semidefinite program-
ming and second-order cone programming problems. See e.g. [2] for numerous
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engineering applications. Of course, these extensions are not without a price.
While the general theory (very similar to the linear programming case) has
been developed and cast in a very elegant form with the help of the technique of
Euclidean Jordan algebras (see e.g. [1, 3, 4, 5, 6, 13, 14, 16, 18] ), the computa-
tional cost of implementation grew quite significantly (mostly due to the cost of
implementation of the major computational ”Newton-like” step). In the present
paper we make the next natural step along this road. We consider a class of
infinite-dimensional optimization problems and a primal-dual algorithm based
on the Nesterov-Todd direction. We implemented this algorithm for a class
of control problems: multi-criteria linear-quadratic control problem and linear-
quadratic control problem with quadratic constraints (in both continuous and
discrete-time settings). A computation of Nesterov-Todd direction is an infinite-
dimensional (linear) problem. Thus, the cost of the major computational step is
even higher in comparison with previous essentially finite-dimensional schemes.
What is crucial here is a careful consideration of the structure of the problem.
In particular, in control applications mentioned above ”the infinite-dimensional
part” of the Newton-like step is reduced to solving the linear-quadratic con-
trol problem with extra linear term in the cost function. As we show in this
paper, the presence of this extra linear term does not lead to any significant
complications and (as in the standard control-theoretic setting) the solution of
this problem is essentially reduced to solving one of the standard Riccati equa-
tions (differential, difference or algebraic depending on the concrete setting of
the problem). The conceptual difference in implementation of the algorithm for
continuous-time and discrete-time systems is quite minimal: it is essentially in
the organization of data, different schemes for computation of scalar products
in various functional spaces, and solving the linear-quadratic problem briefly
described above.

A ”Newton-like” step for continuous-time problem is computationally ex-
pensive operation. Good news here is that it is much cheaper for discrete-time
systems. Combining this with an experimental fact (which can be partially ex-
plained by t heoretical complexity estimates [10] ) that three-four iterations of
the algorithm lead to very reasonable approximations of optimal solutions, one
can hope t hat on-line versions of the algorithm can be implemented. This, in
turn, may lead to entirely new and exciting methodologies for the multi-criteria
regulation of control systems.

2 Primal-dual interior-point algorithms

In this section, following [10], we describe a general set up for a class of infinite-
dimensional optimization problems. We then proceed with the optimality cri-
terion and describe a primal-dual algorithm based on Nesterov-Todd (NT) di-
rection.

Let (H, <,>) be a Hilbert space, V1 be a vector space: V1 = IR× H. Let,
further, V = V1 × · · · × V1 (m-times), X ⊂ V be a closed vector subspace in V .
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Consider the following standard optimization problem:

< a, z >V→ min (2.1)

z ∈ (b + X) ∩ Ω̄ (2.2)

and its dual
< b,w >V→ min (2.3)

b ∈ (a + X⊥) ∩ Ω̄∗ (2.4)

where our cone Ω1 is a second order cone(open convex set in V1):

Ω1 = {(s, y) ∈ IR×H : s > ‖y‖H}

(sometimes also called the cone of squares) and

Ω = Ω1 × · · · × Ω1 (m-times).

It is known that
Ω1 = {(s, y) ∈ IR×H : s ≥ ‖y‖H}.

Suppose z, w ∈ V,
z = {(s1, x1), · · · , (sm, xm)}
w = {(t1, y1), · · · , (tm, ym)}.

Then we define an inner product on V as follows:

< z, w >V =
m∑

i=1

(siti+ < xi, yi >H).

The cone Ω is self-dual, i.e.

Ω
∗

= {z ∈ V :< w, z >≥ 0, ∀w ∈ Ω} = Ω.

Denoted by X⊥ the orthogonal complement of X in V with respect to <, >V .
Let, further,

F = [(x + X) ∩ Ω̄]× [(a + X⊥) ∩ Ω̄∗].

We assume that

int(F) = [(x + X) ∩ int(Ω̄)]× [(a + X⊥) ∩ int(Ω̄∗)] 6= 0. (2.5)

It is easy to see that if a pair of z̃, w̃ satisfies (2.2),(2.4) and

< z̃, w̃ >= 0,

then z̃ is an optimal solution to (2.1)-(2.2) and w̃ is an optimal solution to
(2.3)-(2.4).
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Definition 2.1. Given (z, w) then the duality gap µ(z, w) is defined as follows:

µ(z, w) =
< z, w >

2m

where r is a positive constant.

A typical primal-dual algorithm generates a sequence of pairs primal and
dual feasible points (z(k), w(k)) ∈ int(F), k = 1, 2, . . . such that

µ(z(k+1), w(k+1)) ≤ (1− δ

rω
)µ(z(k), w(k)), (2.6)

for some positive δ and ω (see e.g. [19]).
The following theorem (see [10] ) provides necessary and sufficient conditions

for a pair (z∗, w∗) to be an optimal solution to (2.1),(2.2) and (2.3),(2.4).

Theorem 2.2. Suppose the conditions (2.5) holds. Then both (2.1),(2.2) and
(2.3),(2.4) have optimal solutions. Moreover, z∗ is an optimal solution to(2.1),(2.2)
and w∗ is an optimal solution to (2.3),(2.4) if and only if

< z∗, w∗ >V = 0.

One of the most important steps in the implementation of primal-dual al-
gorithms is a computation of a descent direction which drives duality gap µ to
zero.

One of these directions (the so-called NT-direction) is described below. Let
zi = (ti, xi), wi = (si, yi) ∈ V1. We define a determinant of zi as follows:

det(zi) = t2i − ‖xi‖2.

And the multiplication in V1 is defined as follows:

(ti, xi) ◦ (si, yi) = (tisi+ < xi, yi >H , sixi + tiyi)

Observe that the above multiplication is commutative but not associative. This
defines the structure of a Jordan algebra (see e.g. [10] for more details). Then
the inverse z−1

i of zi is given by the formula

z−1
i =

1
det(zi)

(ti,−xi).

Next we consider a function

f(zi) = − ln det(zi) = − ln(t2i − ‖xi‖2).

The quadratic representation P (zi) is defined as follows:

P (zi) = H(zi)−1

where H(zi) is the Hessian of f(zi).
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Remark: Since V is a product of m copies of V1. We define a quadratic
representation P (z) for z = (z1, · · · , zm) ∈ V as follows:

P (z) = (P (z1), · · · , P (zm)).

One of the main ingredients in the construction of NT-direction is the so-
called scaling point.

Proposition 2.3. Given (z1, z2) ∈ Ω × Ω. Then there exists a unique z3 ∈ Ω
such that

P (z3)z1 = z2. (2.7)

The following Corollary gives an explicit formula for the scaling point.

Corollary 2.4. Let z1, z2 ∈ Ω, z1 = (s, y), z2 = (t, x). Then consider z3 = (r, u)
with

r =
√

µ1

µ2

µ1s + µ2t√
2 + µ1µ2 < (s, y), (t, x) >

u =
√

µ1

µ2

µ2x− µ1y√
2 + µ1µ2 < (s, y), (t, x) >

µi =
1√

det(zi)
, i = 1, 2.

Then z3 ∈ Ω1 is a unique solution to (2.7) for V1 = IR×H.

Proposition 2.5. Every element z ∈ V1 admits the following spectral decom-
position

z = λ1e1 + λ2e2

where λi ∈ IR, ei ◦ ej = δijei for i, j = 1, 2.

The following proposition gives us an explicit formula for the spectral de-
composition of an element z ∈ V1.

Proposition 2.6. Let z = (s, y) ∈ V1, y 6= 0. Consider

e1 =
1
2
(1,

y

‖y‖ ), e2 =
1
2
(1,− y

‖y‖ )

λ1 = s + ‖y‖, λ2 = s− ‖y‖.
Then

(s, y) = λ1e1 + λ2e2

and ei ◦ ej = δijei for i, j = 1, 2.

Proposition 2.7. Let Ω1 be the cone of squares of V1 and (s, y) ∈ Ω1. Consider

z = (
µ

2
,
y

µ
), µ =

√
s + ‖y‖+

√
s− ‖y‖.
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Then z ∈ Ω1 and z2 = (s, y). Moreover if

z2 = λ1e1 + λ2e2

is the spectral decomposition of z2, then

z =
√

λ1e1 +
√

λ2e2.

Denote z by (s, y)
1
2 .

Proposition 2.8. We have

P (z
1
2 )2 = P (z).

Hence,
P (z

1
2 ) = P (z)

1
2 . (2.8)

For proofs of the above propositions and corollary, see [10]. We are now in a
position to introduce Nesterov-Todd direction (see e.g. [15]). Given z1, z2 ∈ Ω,
let z3 ∈ Ω be the scaling point of z1 and z2 defined in (2.7). Then the NT-
direction (ξ, η) ∈ X ×X⊥ is defined to be the solution to the following system
of linear equations:

P (z3)ξ + η = γµ(z1, z2)z−1
1 − z2, (2.9)

ξ ∈ X, η ∈ X⊥. (2.10)

Here 0 < γ < 1 is a real parameter. One can show (see [10]) that (2.9),(2.10)
admits a unique solution.

Proposition 2.9. By following the NT-direction, the duality gap decreases.

Proof Let (z(k)
1 , z

(k)
2 ) ∈ Ω × Ω, (ξ(k), η(k)) be NT-direction at (z(k)

1 , z
(k)
2 ),

and t(k) > 0. Define

z
(k+1)
1 = z

(k)
1 + t(k)ξ(k),

z
(k+1)
2 = z

(k)
2 + t(k)η(k).

Then, consider the following equality:

< z
(k+1)
1 , z

(k+1)
2 > = < z

(k)
1 + t(k)ξ(k), z

(k)
2 + t(k)η(k) >

= < z
(k)
1 , z

(k)
2 > +t(k)(< z

(k)
1 , η(k) > + < z

(k)
2 , ξ(k) >)

So it suffices to show that < z
(k)
1 , η(k) > + < z

(k)
2 , ξ(k) >< 0.

< z
(k)
1 , η(k) > + < z

(k)
2 , ξ(k) > = < z

(k)
1 , η(k) > + < P (z3)z

(k)
1 , ξ(k) >

= < z
(k)
1 , η(k) + P (z3)ξ(k) >

= < z
(k)
1 , γµ(z(k)

1 , z
(k)
2 )(z(k)

1 )−1 − z
(k)
2 >

= (γ − 1) < z
(k)
1 , z

(k)
2 >

< 0 ( since: 0 < γ < 1).
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Here we used (2.9). Hence we have

< z
(k+1)
1 , z

(k+1)
2 > < < z

(k)
1 , z

(k)
2 >

µ(z(k+1)
1 , z

(k+1)
2 ) < µ(z(k)

1 , z
(k)
2 ).

¤
We conclude this section by a brief description of a primal-dual algorithm

based on NT-direction.
For a fix ε > 0, suppose that

(z(0), w(0)) ∈ int(Ω) ∩ (b + X)× int(Ω) ∩ (a + X⊥).

Let (ξk, ηk) be the descent NT-direction obtained by solving the system of linear
equations (2.9),(2.10), t > 0 be the largest value such that

(z(k) + tξk, w(k) + tηk) ∈ int(Ω) ∩ (b + X)× int(Ω) ∩ (a + X⊥).

Then we set (z(k+1), w(k+1)) = (z(k) + tξk, w(k) + tηk). We stop the iteration
when µ(z(k), w(k)) ≤ ε. In [10], it is shown that by choosing the right stepsize
carefully, the algorithm runs in polynomial-time, i.e. it generates a sequence of
primal and dual feasible iterates satisfying (2.6) with ω = 0.5 or 1 and with δ
being an independent positive constant.

3 Abstract Formulation of the Problem and Im-
plementation

Let H be a Hilbert space. Consider the following optimization problem:

t → min, (3.1)

‖Wi(y − yi)‖H ≤ t, i = 1, .., m, (3.2)

y ∈ c + Z. (3.3)

Here ‖ ‖H is the norm induced by the scalar product < | >H , yi ∈ H are
fixed ; Z is a closed vector subspace in H, Wi : H → H is a bounded linear
operator for i = 1, · · · ,m. The problem (3.1)-(3.3) is an example of an infinite-
dimensional second-order cone programming problem which has been analyzed
in detail in [10].

We have implemented a version of a primal-dual algorithm based on Nestreov-
Todd direction described in [10].

The problem (3.1)-(3.3) can be easily rewritten in the conic form: Let

Ω1 = {(s, y) ∈ R×H : s ≥ ‖y‖H}; V1 = IR×H;

Ω = Ω1 × Ω1 × ...× Ω1 (m-times) ; V = V1 × ...× V1 (m-times).

Let, further, Λ : V1 → V be a linear operator such that:
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Λ(s, y) = {(s,W1y), ..., (s,Wmy)},
a = ((1, 0), (0, 0), ..., (0, 0)) ∈ V , b = ((0,W1(c − y1), ..., (0,Wm(c − ym))), and
X = Λ(IR× Z). The scalar product <,>V in V is defined as follows:

< (t1, x1), ..., (tm, xm), (s1, y1), ..., (sm, ym) >V =
m∑

i=1

{tisi+ < xi, yi >H}b.

With these notations we can rewrite the problem (3.1)-(3.3) in the conic
form (2.1),(2.2).

Proposition 3.1. We have

X⊥ = {(r1, u1), ..., (rm, um) ∈ V ; r1 + ... + rm = 0,

m∑

i=1

W ∗
i ui ∈ Z⊥} (3.4)

where Z⊥ is the orthogonal complement of Z and W ∗
i is the adjoint of Wi for

each i.

A conic dual to (2.1),(2.2) will have the following form ([10]):

m∑

i=1

< Wi(c− yi), ui >H→ min, (3.5)

m∑

i=1

W ∗
i ui ∈ Z⊥, ‖ui‖ ≤ ri, i = 1, ...,m, (3.6)

m∑

i=1

ri = 1. (3.7)

Here W ∗
i is the adjoint of Wi.

3.1 Calculation of NT-direction

Given (z1, z2) a pair of feasible solutions to the problem (2.1),(2.2), and (2.3),(2.4).
To obtain NT-direction for each iteration, we need to solve the following equa-
tion for (ξ, η),

P (z3)ξ −∆ ∈ X⊥, ξ ∈ X (3.8)

where z3 is the scaling point of z1 and z2 ,and ∆ = γµ(z1, z2)z−1
1 −z2. (Compare

with (2.9), (2.10).)
The equation (3.8) is equivalent to :

< P (z3)ξ, ξ >

2
− < ξ, ∆ >→ min,

ξ ∈ X.
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Let

z3 = ((t1, x2), (t2, x2), · · · , (tm, xm)) and ∆ = ((r1, u1), · · · , (rm, um)).

For (µ, ζ) ∈ IR× Z, ξ = Λ(µ, ζ),

ρ(µ, ζ) =
< P (z3)ξ, ξ >

2
− < ξ, ∆ >

=
1
2

m∑

i=1

(t2i −‖xi‖2)‖Wiζ‖2 +
m∑

i=1

< xi,Wiζ >2 −
m∑

i=1

< ui,Wiζ > +
ν1µ

2

2
+ν2µ,

where

ν1 =
m∑

i=1

(t2i + ‖xi‖2), ν2 = 2
m∑

i=1

ti < xi,Wiζ > −
m∑

i=1

ri.

Hence, if we denote by

φ(ζ) = min{ρ(µ, ζ) : µ ∈ IR}

φ(ζ) =
< ζ,Mζ >

2
+

1
2

m+1∑

i=1

εi < υi, ζ >2 + < υ0, ζ > − (
∑m

i=1 ri)2

2ν1
, (3.9)

where

M =
m∑

i=1

(t2i − ‖xi‖2)
[

Qi 0
0 Ri

]
(3.10)

υ0 =
√

1
ν1

(
m∑

i=1

ri)υm+1 −
m∑

i=1

Wiui. (3.11)

υi =
√

2W ∗
i xi, i = 1, 2, ..., m, υm+1 =

2√
ν1

m∑

i=1

tiW
∗
i xi, (3.12)

εi = 1, i = 1, ...,m, εm+1 = −1, (3.13)

As a result, to obtain NT-direction, it suffices to solve the following optimization
problem:

φ(ζ) → min,

ζ ∈ Z.

which is equivalent to solving:

< ζ, Mζ >

2
+

1
2

m+1∑

i=1

εi < υi, ζ >2 + < υ0, ζ > → min, (3.14)

ζ ∈ Z.

The following theorem further simplifies the problem (3.14).
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Theorem 3.2. Let ζ0 be the optimal solution to the problem:

〈ζ,Mζ〉
2

+ 〈v0, ζ〉 → min, (3.15)

ζ ∈ Z, (3.16)

and ζi, i = 1, 2, · · · ,m + 1, be optimal solutions to the problems:

〈ζ, Mζ〉
2

+ 〈Vi, ζ〉 → min, (3.17)

ζ ∈ Z, (3.18)

where Vi = εivi.
Let S = (sij), sij = 〈vi, ζj〉, i, j = 1, 2, · · · ,m + 1.
Then the set of optimal solutions to the problems (3.14) is in one-to-one

correspondence with the set of the solutions of the system of linear equations

(I − S)




δ1

...
δm+1


 =




〈v1, ζ0〉
...

〈vm+1, ζ0〉


 (3.19)

More precisely, if (δ1, ..., δm+1) is a solution to (3.19), then

ζ(δ) = ζ0 +
m+1∑

i=1

δiζi (3.20)

is the optimal solution to the problem (3.14).

For a proof see [8, 10].
Remark: The procedure of reduction of (3.14), (3.15), (3.17) is a version of

Sherman-Morrison-Woodbury formula.
Solving (3.14) is therefore equivalent to solve m+2 problems of the following

type

< Mζ, ζ >

2
+ < υ, ζ > → min, ζ ∈ Z (3.21)

and a system of (m + 1)× (m + 1) linear algebraic equations.
Let ζ be an optimal solution to (3.14). Since dρ

dµ = 0. Hence µ = − ν2
ν1

.
Therefore, we obtain

ξ = Λ(µ, ζ) = ((µ, W1ζ), ..., (µ,Wmζ))

which is the primal descent direction. A dual descent direction is simply

η = P (z)ξ −∆.
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3.2 Computation of the step size

The Jordan algebraic techniques significantly simplifies the computation of the
step-size. Observe that

z + tξ = P (z
1
2 )(e + tP (z−

1
2 )ξ).

Hence, z + tξ ∈ Ω1, is equivalent to e + tP (z−
1
2 )ξ ∈ Ω1.

If
tP (z−

1
2 )ξ = µ1f1 + µ2f2

is the spectral decomposition, then z + tξ ∈ Ω1 is equivalent to

1 + tµ1 ≥ 0, 1 + tµ2 ≥ 0. (3.22)

Since the primal-dual cone is the product of several copies of Ω1, we obtain
step size t as the maximal value of t for which all inequalities (3.22) are satisfied.
We use 0.9t for the actual step size in out algorithm.

The stopping rule we used is quite standard: the duality gap µ < ε for a
given ε > 0.

Recall (see [10]) that Nesterov-Todd direction (ξ, η) is determined by the
following conditions

ξ + P (z)−1η = γµ(z1, z2)z−1
2 − z1,

ξ ∈ X, η ∈ X⊥,

where (z1, z2) ∈ Ω× Ω and z3 ∈ Ω is the scaling point uniquely determined by
the equation:

P (z3)z1 = z2.

As a result of numical experiments,we arrived at γ = 0.5 as a value which
minimizes the number of iterations.

4 Examples of concrete problems

We now consider several concrete examples of the problem (3.1)-(3.3).

4.1 Multi-criteria linear quadratic control problem

Denote by Ln
2 [0, T ] the Hilbert space of square integrable functions f : [0, T ] →

IRn, T > 0. Let (x, u) ∈ H = Ln
2 [0, T ] × Ll

2[0, T ]. Consider the following
optimization problem:

J(x, u) = max
i∈[1,m]

∫ T

0

(x− xi)T Qi(x− xi) + (u− ui)T Ri(u− ui)dt → min (4.1)

ẋ(t) = Ax(t) + Bu(t), x(0) = x0. (4.2)
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Here (xi, ui) ∈ H, i = 1, 2, ...,m; A,B, Qi, Ri, i = 1, 2, ...,m are given ma-
trices of appropriate dimensions. We will assume that Qi, Ri are symmetric
positive definite matrices. The problem (4.1),(4.2) can be easily rewritten in
the second order cone programming problem of the form (3.1)- (3.3)

Here ‖ ‖H is the norm induced by the scalar product < | >H , yi =
(xi, ui), i = 1, 2, ...,m; Z is a closed vector subspace in H described as fol-
lows:

Z = {(x, u); ẋ(t) = Ax(t) + Bu(t), x(0) = 0}; (4.3)

Wi =
[

LT
Qi

0
0 LT

Ri

]
, i = 1, ...,m,

where LQi
, LRi

are lower-triangular matrices obtained by Cholesky factorization
of Qi and Ri respectively.

Then by following the scheme described in the previous section, we have to
show that the condition (2.5) is satisfied, and then compute NT-direction.

Constructing feasible solutions

Primal problem: After some numerical experiments, we end up with the
following construction.

Let K0 be a unique stabilizing solution to the algebraic Riccati equation:

KBBT K −AT K −KA− I = 0.

Here stabilizing means that the close-loop matrix A−BBT K0 is stable. Let x
be the solution to the following system of linear differential equations:

ẋ = (A−BBT K0)x; x(0) = x0, u = −BT K0x.

It is quite obvious that y = (x, u) ∈ c + Z. and hence if we choose

s = max
i∈[1,m]

‖Wi(y − yi)‖+ δ

for some δ > 0, the initial point for primal problem is Λ(s, y).
Dual problem: We simply take ui = 0, ri = 1

m , i = 1, 2, ..., m.

Computation of NT-direction

For T < ∞, the problem (3.21) is simply classical LQ problem with a linear
term on a finite interval (see e.g. [8, 11]). Hence on each iteration, we need to
solve a differential Riccati equation, system of linear differential equations and
a system of (m + 1)× (m + 1) linear algebraic equations (see [10]).

For the case when T = ∞, the problem (3.21) is LQ problem with a linear
term on a semi-infinite interval. The complete solution to such a problem is
described in the following section.
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4.1.1 Solution to LQ problem with a linear term on a semi-infinite
interval

Let (x, u) ∈ H = Ln
2 [0,∞) × Lm

2 [0,∞), Σ = ΣT . Consider the following LQ-
control problem with a linear term on a semi-infinite

J(x, u) =
1
2

∫ ∞

0

<

[
x
u

]
,Σ

[
x
u

]
> dt +

∫ ∞

0

<

[
x
u

]
,

[
y
v

]
> dt → min

(4.4)

ẋ = Ax + Bu, x(0) = x0 (4.5)

By using block partition, denote

Σ =
[

Σ11 Σ12

ΣT
12 Σ22

]
.

For proofs of the theorems in this section, see [9].

Theorem 4.1. Let A be an antistable n by n matrix ( i.e. real parts of all eigen-
values of A are positive). Consider the following system of linear differential
equations:

ẋ = Ax + f, (4.6)

where f ∈ Ln
2 [0,∞). There exists a unique solution L(f) of (4.6) such that

L(f) ∈ Ln
2 [0,∞). Moreover the map f → L(f) is linear and bounded. Explicitly:

L(f)(t) = −
∫ +∞

0

e−Aτf(τ + t)dτ (4.7)

Theorem 4.2. The following conditions are equivalent:
i) Σ22 is a positive definite (symmetric) matrix and the following Riccati

equation has a stabilizing solution.

KLK + KÃ + ÃT K −Q = 0 (4.8)

where

Ã = A−BΣ−1
22 Σ21, Q = Σ11 − Σ12Σ−1

22 Σ21, L = BΣ−1
22 BT .

ii) The pair (A,B) is stabilizable and there exists ε > 0 such that

Γ(x, u) =
∫ +∞

0

<

[
x
u

]
, Σ

[
x
u

]
> dt ≥ ε

∫ +∞

0

(‖x‖2 + ‖u‖2)dt

for all (x, u) ∈ Z.

Let further Z ⊂ H be as follows:

Z = {(x, u) ∈ H; ẋ = Ax + Bu, x is absolutely continuous, x(0) = 0}.
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Theorem 4.3. Suppose that the pair (A,B) is stabilizable. Then Z is a closed
vector subspace in H. Then

Z⊥ = {
[

ṗ + AT p
BT p

]
: p ∈ Ln

2 [0,+∞), p is absolutely continuous, ṗ ∈ Ln
2 [0, +∞)}

We are now in the position to describe the optimal solution to (4.4).

Theorem 4.4. Suppose that the conditions of theorem 4.2 are satisfied. Then
the problem (4.4)-(4.5) has a unique solution which can be described as follows.

There exists a stabilizing solution K0 to the Riccati equation (4.8). Then the
matrix C = −(Ã + LK0) is antistable, (K0B − Σ12)Σ−1

22 v + y ∈ Ln
2 [0,+∞).

Let ρ be a unique solution from Ln
2 [0, +∞) of the system of differential equa-

tions
ρ̇ = CT ρ + (K0B − Σ12)Σ−1

22 v + y (4.9)

(which exists according to Theorem 4.1), x is the solution to the system of dif-
ferential equations

ẋ = (Ã + LK0)x + Lρ−BΣ−1
22 v, x(0) = x0, (4.10)

p = K0x + ρ, u = Σ−1
22 (BT p− v − Σ21x).

Now back to the problem of finding NT-direction for T = ∞. Solving (3.21)
is reduced to solving an algebraic Riccati equation (4.8), systems of differential
equations (4.9),(4.10) and a system of (m+1)×(m+1) linear algebraic equations
on each iteration.

4.2 Discrete-time Multi-criteria linear quadratic control
problem

In this section, we consider a discrete-time formulation for the problem (4.1)-
(4.2). For simplicity, let us introduce some useful notations.

Let x denote a sequence {xk} ⊂ IRn for k = 0, · · · ,∞. We say that x ∈ ln2 (IN)
if

∑∞
i=1 ‖xi‖2 < ∞ where ‖ · ‖ is a norm induced by an inner product <,> in

IRn. Let (x, u) ∈ ln2 (IN) × lm2 (IN). Then the Discrete-time Multi-criteria Linear
Quadratic Control Problem takes the form:

max
i=1,...,m

∞∑

k=0

{< (xk−ϕ
(i)
k ), Qi(xk−ϕ

(i)
k ) > + < (uk−φ

(i)
k ), Ri(uk−φ

(i)
k ) >} → min

(4.11)
xk+1 = Axk + Buk, k = 0, 1, · · · , x0 = γ0,

where (ϕ(i), φ(i)) ∈ H = ln2 (IN) × lm2 (IN) for i = 1, · · · ,m , A, B, Qi, Ri for i =
1, · · · ,m are matrices of appropriate sizes. We assume that Qi’s and Ri’s are
positive definite.

It is easy to see that the problem (4.11) can be rewritten into the second-
order cone programming problem (3.1)- (3.3).
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Observe now the inner product in H has the following form:

< (x, y), (u, v) >H=
∞∑

k=0

{< xk, uk > + < yk, vk >}. (4.12)

The vector subspace Z now takes the form:

Z = {(x, u) ∈ H : xk+1 = Axk + Buk, k = 0, 1, · · · , x0 = 0}
The constructions of a initial feasible point for primal and dual problems are

similar to the constructions of a feasible points in the continuous case. In the
primal, we solve a discrete LQ problem via discrete Algebraic Riccati equation.
In the dual, we take the same choice as in the continuous case.

Now the problem (3.21) is discrete-time linear-quadratic control problem
with linear term.

4.2.1 Discrete-time linear-quadratic control problem with linear term

In this section, we describe a complete solution to discrete linear-quadratic
control problem with a linear term. In order to derive the solution, we need the
following auxiliary results.

Theorem 4.5. Let A be a d-stable matrix (ie. all eigenvalues of A lie inside a
unit circle on a on a complex plane. ) Consider the following system of linear
difference equation.

xk = Axk+1 + fk, k = 0, 1, · · · (4.13)

where f = {fk} ∈ ln2 (IN). Then there exists a unique solution L(f) of (4.13)
such that L(f) ∈ ln2 (IN). Moreover the map f → L (f) is linear and bounded.
Explicitly,

xk = L(f)k =
∞∑

r=0

Arfr+k, k = 0, 1, · · · . (4.14)

Proof Since A be a stable matrix, there exists S = ST ≥ 0, such that

AT SA− S = −I (4.15)

(see e.g. [12]). Let wk =< xk, Sxk > . Obviously, wk ≥ 0,∀k. Then using (4.13)
and (4.15), we obtain the following:

4wk+1 = wk+1 − wk

= < xk+1, Sxk+1 > − < xk, Sxk >

= < xk+1, Sxk+1 > − < (Axk+1 + fk), S(Axk+1 + fk) >

= < xk+1, Sxk+1 > − < xk+1, A
T SAxk+1 > −

2 < Axk+1, Sfk > − < fk, Sfk >

= < xk+1, xk+1 > −2 < Axk+1, Sfk > − < fk, Sfk >

≥ ‖xk+1‖2 − 2‖xk+1‖‖AT S‖‖fk‖ − ‖S‖‖fk‖2.
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But then it is easy to see that the following inequality is true.

2‖xk+1‖‖AT S‖‖fk‖ ≤ 1
2
‖xk+1‖2 + 2‖AT S‖2‖fk‖2

Then
4wk+1 ≥ 1

2
‖xk+1‖2 − (2‖AT S‖2 + ‖S‖)‖fk‖2

Then it follows that

wk+1 − w0 =
k+1∑
r=1

4wr

≥
k+1∑
r=1

(
1
2
‖xr‖2 − (2‖AT S‖2 + ‖S‖)‖fr−1‖2).

Hence,

k+1∑
r=1

‖xr‖2 ≤ 2
k+1∑
r=1

(2‖AT S‖2 + ‖S‖)‖fr−1‖2 + 2(wk+1 − w0). (4.16)

Let now

xk =
∞∑

r=0

Arfr+k, k = 0, 1, · · · , (4.17)

then we have that

Axk+1 + fk = A

∞∑
r=0

Arfr+k+1 + fk

=
∞∑

r=0

Ar+1fr+k+1 + fk

=
∞∑

r=1

Arfr+k + fk

=
∞∑

r=0

Arfr+k

= xk.

Hence, (4.17) satisfies (4.13). Let us now consider the following inequilities:

‖xk‖ = ‖
∞∑

r=0

Arfr+k‖

≤
∞∑

r=0

‖Arfr+k‖

≤
∞∑

r=0

‖Ar‖‖fr+k‖.
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Then by Cauch-Schawrz inequality we have

‖xk‖2 ≤
∞∑

r=0

‖Ar‖2
∞∑

r=0

‖fr+k‖2

≤
∞∑

r=0

‖A‖2r
∞∑

s=0

‖fs‖2

for all k. But since A is stable and all norms are equivalent, by Householder’s
Theorem [17] we can assume without lost of generality that

‖A‖ < 1.

Therefore,
‖xk‖2 < ∞ for all k.

Hence {xk} is bounded and as a result {wk} is also bounded.
But since x0 =

∑∞
r=0 Arfr ,

‖x0‖2 ≤
∞∑

r=0

‖A‖2r
∞∑

r=0

‖fr‖2

≤ 1
1− ‖A‖2

∞∑
r=0

‖fr‖2.

Then from (4.16) we have,

k+1∑
r=0

‖xr‖2 ≤ 2(2‖AT S‖2 + ‖S‖+
1

1− ‖A‖2 )
k+1∑
r=0

‖fr‖2 + 2(wk+1 − w0)

for all k. Since {wk} is bounded, we conclude from (4.18):

{xk} ∈ ln2 (IN).

Hence
lim

k→∞
xk = 0.

As a result,
lim

k→∞
wk = 0.

From (4.18), we now have

∞∑
r=0

‖xr‖2 ≤ 2(2‖AT S‖2 + ‖S‖+
1

1− ‖A‖2 )
∞∑

r=0

‖fr‖2 − 2w0. (4.18)

But since
w0 =< x0, Sx0 > ≥ 0,

17



we have
∞∑

r=0

‖xr‖2 ≤ 2(2‖AT S‖2 + ‖S‖+
1

1− ‖A‖2 )
∞∑

r=0

‖fr‖2

≤ C

∞∑
r=0

‖fr‖2 (4.19)

for some constant C.
But now suppose that {x̃k} ∈ ln2 (IN) be another solution to (4.13). Then

yk = xk − x̃k

= A(xk+1 − x̃k+1)
= Ayk+1

for k = 0, · · · . Since A is d-stable and {yk} ∈ ln2 (IN), one can easily see that
yk = 0 for all k = 0, · · · .

Therefore the system (4.13) may have only one solution {xk} ∈ ln2 (IN). Hence
we can conclude that the linear map f → L (f) is correctly defined and bounded.
¤

Let now consider the following classical discrete-time LQ problem

1
2

∞∑

k=0

<

[
xk

uk

]
,Σ

[
xk

uk

]
> → min, (4.20)

where xk+1 = Axk + Buk, x0 = x0 ∈ IRn and

Σ =
[

Σ11 Σ12

ΣT
12 Σ22

]
.

It is well known the the following discrete algebraic Riccati equation plays a
very important role in finding the optimal solution to the problem (4.20) [12]:

K = AT KA− (AT KB + Σ12)(Σ22 + BT KB)−1(AT KB + Σ12) + Σ11. (4.21)

Observe that (4.21) is defined under assumption that the matrix Σ22 +
BT KB is invertible. Let

F = (AT KB + Σ12)(Σ22 + BT KB)−1.

Then K0 a symmetric solution to (4.21) is called a stabilizing if Σ22+BT KB > 0
and AT − FBT is d-stable.

Theorem 4.6. Suppose Σ22 is a positive definite matrix, (4.21) has a stabilizing
solution. Then

1
2

∞∑

k=0

<

[
xk

uk

]
, Σ

[
xk

uk

]
> > 0. (4.22)
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for all (xk, uk) satisfying
xk+1 = Axk + Buk, (4.23)

x0 = 0, (x, u) ∈ ln2 (IN)× lm2 (IN).

Proof Let K be a stabilizing solution to (4.21), using (4.22) we obtain the
following equalities:

< xk+1,Kxk+1 > − < xk,Kxk >

= < (Axk + Buk),K(Axk + Buk) > − < xk,Kxk >

= < xk, (AT KA−K)xk > + < xk, AT KBuk > + < uk, BT KAxk > +
< uk, (BT KB + Σ22)uk > − < uk,Σ22uk > .

Let now RK = Σ22 + BT KB, and SK = AT KB + Σ12 then using (4.21), we
obtain:

< xk+1,Kxk+1 > − < xk,Kxk >

= < xk, (SKR−1
K SK − Σ11)xk > + < xk, AT KBuk >

+ < uk, BT KAxk > + < uk, RKuk > − < uk, Σ22uk >

= < xk, (SKR−1
K SK)xk > + < xk, SKuk > + < uk, ST

Kxk > + < uk, RKuk >

− < xk,Σ12uk > − < uk, ΣT
12xk > − < uk, Σ22uk > − < xk, Σ11xk >

= < (R−1
K SKxk + uk), RK(R−1

K SKxk + uk) > − <

[
xk

uk

]
,Σ

[
xk

uk

]
> .

Then take summation with respect to k from k = 0 to k = N to obtain:

N∑

k=0

<

[
xk

uk

]
, Σ

[
xk

uk

]
> =

N∑

k=0

< (R−1
K SKxk + uk), RK(R−1

K SKxk + uk) >

+ < x0, Kx0 > − < xN+1,KxK+1 > .

Since
x0 = 0 and lim

N→∞
xN = 0,

we have

∞∑

k=0

<

[
xk

uk

]
, Σ

[
xk

uk

]
> =

∞∑

k=0

< (R−1
K SKxk + uk), RK(R−1

K SKxk + uk) > .

Hence, since RK > 0, (4.22) is satisfied. Theorem is proved. ¤
Remark Suppose that (A,B) is d-stabilizable and Σ = I (identity matrix).

Then (4.21) has a stabilizing solution (see e.g. [12]).

Theorem 4.7. Let H = ln2 (IN)×lm2 (IN). Suppose the pair (A,B) is d-stabilizable.
Let X be defined as follows:
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X = {(x, u) = ({xk}, {uk}) ∈ H; xk+1 = Axk +Buk, x0 = 0 ∈ IRn k = 0, 1, · · · }.
Let also

Z = {({ξk}, {ηk}); ξ0 = AT p0, ξk = AT pk − pk−1 for k = 1, 2, · · · ,

ηk = BT pk, for k = 0, 1, · · · , {pk} ∈ ln2 (IN)}.
Then X is a closed vector subspace and Z is an orthogonal complement of

X in H, i.e. Z = X⊥.

Proof Let (x, u) ∈ X and ({ξk}, {ηk}) ∈ Z. Then

< (x, u), ({ξk}, {ηk}) >H

= < x0, A
T p0 > + < u0, B

T p0 > + lim
n→∞

n∑

k=1

(< xk, AT pk − pk−1 > + < uk, BT pk >)

= < x1, p0 > + lim
n→∞

n∑

k=1

(< Axk + Buk, pk > − < xk, pk−1 >)

= < x1, p0 > + lim
n→∞

n∑

k=1

(< xk+1, pk > − < xk, pk−1 >)

= lim
n→∞

< xn+1, pn >

= 0.

Next we show that given ({ψk}, {φk}) ∈ H, it admits the following representa-
tion:

ψ0 = x0 − [AT p0] (4.24)

and
ψk = xk − [AT pk − pk−1] (4.25)

for k = 1, 2, · · ·
φk = uk −BT pk (4.26)

for k = 0, 1, · · · , where ({xk}, {uk}) ∈ X and {pk} ∈ ln2 (IN). This will imply
easily that Z = X⊥ and both X and Z are closed.

We look for pk in the form

pk−1 = −Kxk + ρk (4.27)

Then by (4.25), we have

pk−1 = ψk − xk + AT pk

where K = KT is a symmetric matrix. Substituting this into (4.27), we get

ρk = AT pk + ψk − xk + Kxk. (4.28)
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But then (4.26) implies:
uk = BT pk + φk. (4.29)

Our goal now is to eliminate pk. By using (4.27)

pk = −Kxk+1 + ρk+1

−K(Axk + Buk) + ρk+1.

By substituting this into (4.29), we have

uk = BT (−K(Axk + Buk) + ρk+1) + φk

= −BT KAxk −BT KBuk + BT ρk+1 + φk.

Hence,

(I + BT KB)uk = −BT KAxk + BT ρk+1 + φk.

Hence, we have

uk = −(I + BT KB)−1BT KAxk + (I + BT KB)−1(BT ρk+1 + φk). (4.30)

Using
xk+1 = Axk + Buk

we obtain

xk+1 = Axk −B(I + BT KB)−1BT KAxk

+B(I + BT KB)−1(BT ρk+1 + φk). (4.31)

But then since
pk = −Kxk+1 + ρk+1,

we have

pk = −KAxk + KB(I + BT KB)−1BT KAxk

−KB(I + BT KB)−1(BT ρk+1 + φk) + ρk+1.

Then from (4.28) we have the following

ρk = AT pk + ψk − xk + Kxk

= ψk − xk + Kxk −AT KAxk + AT KB(I + BT KB)−1BT KAxk

−AT KB(I + BT KB)−1(BT ρk+1 + φk) + AT ρk+1.

Recall, now, if Σ is the identity matrix then according to Remark which follows
Theorem 4.6 the corresponding discrete algebraic Riccati (4.21) equation has a
stabilizing solution. In this case, Σ11 = In, Σ22 = Im, Σ12 = 0 i.e.

K = AT KA−AT KB(I + BT KB)−1AT KB + I (4.32)
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If we choose K to be stabilizing solution, we obtain

ρk = AT (I−KB(I+BT KB)−1BT )ρk+1−AT KB(I+BT KB)−1φk+ψk (4.33)

It is known that if K0 is a stabilizing solution to DARE (4.32), then the
matrix AT (I −K0B(I + BT K0B)−1BT ) is d-stable. Then by the Theorem 4.5,
there exists a unique solution {ρk} ∈ ln2 (IN) to (4.33). Hence by using (4.31)
where x0 = 0, (4.30) and then (4.27) we have shown that any ({ψk}, {φk}) ∈ H
admits a unique decomposition as a sum of elements in X and X⊥. Hence the
Theorem is proved. ¤

Now we are in the position to describe a solution of the LQ-problem on a
semi-infinite interval.

1
2

∞∑

k=0

<

[
xk

uk

]
, Σ

[
xk

uk

]
> +

∞∑

k=0

<

[
xk

uk

]
,

[
ψk

φk

]
> → min, (4.34)

where

xk+1 = Axk + Buk + gk, x0 = x0 ∈ Rn, {gk} ∈ ln2 (IN), (x, u) ∈ H. (4.35)

Theorem 4.8. Suppose there exists a stabilizing solution K to DARE (4.21):
Then

{fk} ∈ ln2 (IN)

where

fk = (AT KB + Σ12)(Σ22 + BT KB)−1φk + Σ12(Σ22 + BT KB)−1BT Kgk − ψk.

Furthermore, let {ρk} be a unique solution from ln2 (IN) of the system

ρk = Cρk+1 + fk

where
C = AT − (AT KB + Σ12)(Σ22 + BT KB)−1BT .

Then the solution ({xk}, {uk}) to LQ-problem on a semi-infinite interval (4.34)
can be described by the following recurrent relations:

xk+1 = CT xk + B(Σ22 + BT KB)−1(BT ρk+1 −BT Kgk − φk) (4.36)

uk = −(Σ22 + BT KB)−1(BT KA + Σ12)xk

+(Σ22 + BT KB)−1(BT ρk+1 −BT Kgk − φk). (4.37)

Proof By Theorem 4.5, the functional (4.34) restricted to subspace X is con-
vex. Hence necessary and sufficient optimality condition for (4.34) ,(4.35)takes
the form

Σ
[

xk

uk

]
+

[
ψk

φk

]
=

[
AT pk − pk−1

BT pk

]
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when (x, u) satisfy (4.35) for some {pk} ∈ ln2 (IN). Moreover, we are looking for
{pk} in the form

pk = −Kxk+1 + ρk+1

where K is a stabilizing solution to DARE (4.21). We finish the proof exactly
as in Theorem 4.7. ¤

5 Some extensions

5.1 Linear-quadratic control problem with quadratic con-
straints

Consider the following optimization problem:

‖W0(y − y0)‖H → min, (5.1)

‖Wi(y − yi)‖H ≤ ti, i = 1, ...,m (5.2)

y ∈ c + Z. (5.3)

With our choice of H,Z and other parameters, we arrive at the linear-
quadratic control problem with quadratic constraints ( see e.g [7, 20]). We
first consider the problem of checking the feasibility of (5.1) - (5.3):

t → min, (5.4)

‖Wi(y − yi)‖H ≤ t + ti, i = 1, ..., m (5.5)

y ∈ c + Z. (5.6)

To cast (5.4) - (5.6) in the conic form, consider

Λ : IR× Z → (IR×H)× (IR×H)× ...(IR×H), m-times such that

Λ(t, y) = (t,W1y), (t,W2y), ..., (t,Wmy),

a = ((1, 0), (0, 0), ..., (0, 0)), b = ((t1,W1(c− y1)), ..., (tm,Wm(c− ym))) and
X = Λ(IR× Z). Then we can rewrite (5.4)-(5.6) in the form of (2.1),(2.2).
Observe that the only difference between (2.1),(2.2) and our conic formulation
is the choice of b. It is quite obvious that the dual will be of the form

m∑

i=1

tiri +
m∑

i=1

< Wi(c− yi), ui >H→ min, (5.7)

m∑

i=1

W ∗
i ui ∈ Z⊥, ‖ui‖ ≤ ri, i = 1, ...,m, (5.8)

m∑

i=1

ri = 1. (5.9)
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Thus, the whole numerical scheme remain the same for (5.4)-(5.6)( the only
difference is in the choice of initial feasible solution).

Returning to (5.1)-(5.3) consider the following;

Λ̃ : IR× Z → (IR×H)× (IR×H)× ...(R×H), (m+1)-times such that

Λ̃(t, y) = (t,W0y), (0, W1y), ..., (0,Wmy),

X̃ = Λ̃(IR× Z),

a = ((1, 0), (0, 0), ..., (0, 0)),

b = ((0,W0(c− y0)), (t1,W1(c− y1)), ..., (tm,Wm(c− ym))).

We can rewrite (5.1)-(5.3) in the conic form

< a, z >→ min,

z ∈ (b + X̃) ∩ Ω.

One can easily see that the dual will have the following form

m∑

i=1

tiri +
m∑

i=0

< Wi(c− yi), ui >H→ min, (5.10)

m∑

i=0

W ∗
i ui ∈ Z⊥, ‖ui‖ ≤ ri, i = 1, ...,m, (5.11)

‖u0‖ ≤ 1. (5.12)

It is quite easy to work out a scheme for the computation of the Nesterov-
Todd direction following the ideas developed in [10].

6 Numerical results

In this section we consider several examples for both continuous and discrete-
time formulations. The major difference between the two methods is in solving
linear-quadratic control problem with linear term. For continuous-time case for
finite interval (respectively, infinite interval), solving linear-quadratic control
problem with linear term requires solving differential Riccati equation (continu-
ous algebraic Riccati equation) and systems of linear differential equations. For
discrete-time case, we have to solve discrete Riccati equation and systems of
difference equations.

The numerical experiments confirm fast convergence to optimal solution and
good approximation of the continuous formulations by discrete formulations.

The algorithms are implemented in MATLAB and integrations of the ordi-
nary differential equations are carried out with ODE45, a MATLAB ODE solver
function for nonstiff problems.
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6.1 Example 1: Multi-criteria Linear Quadratic Control
Problem

We consider Multi-criteria Linear Quadratic Control Problem in both contin-
uous and discrete cases. For continuous formulations, we first consider the
problem (4.1),(4.2) (i.e. problem on the finite interval [0, T ]) with m = n = 3
and the following data:

1 2 3 4 5 6
x1i e−3t e−3t sin(t)e−4t e−2t cos(t)e−4t cos(t)e−3t

x2i cos(t)e−4t sin(t)e−4t e−3t sin(t)e−5t e−3t e−4t

x3i cos(t)e−4t cos(t)e−4t cos(t)e−4t sin(t)e−5t e−2t e−3t

u1i
1

t2+5
1

t2+3
1

t2+3
1

t2+5
1

t2+8
1

t2+8

u2i
1

t2+8
1

t2+8
1

t2+8
1

t2+8
1

t2+6
1

t2+8

u3i
1

t2+6
1

t2+6
1

t2+6
1

t2+6
1

t2+6
1

t2+6

7 8
x1i cos(t)e−4t sin(t)e−3t

x2i e−4t e−4t

x3i e−3t e−3t

u1i
1

t2+7
1

t2+8

u2i
1

t2+8
1

t2+6

u3i
1

t2+6
1

t2+6

A =




2 5 2
4 2 3
2 3 2


 , B =




3 2 4
5 2 2
3 4 2


 , α0 =




1
2
5




Q1 = diag(169, 196, 225), Q2 = diag(169, 169, 9), Q3 = diag(196, 121, 25),
Q4 = diag(225, 81, 49), Q5 = diag(196, 49, 81), Q6 = diag(289, 25, 121),
Q7 = diag(324, 9, 169), Q8 = diag(361, 121, 225),

R1 = diag(196, 144, 196), R2 = diag(144, 9, 16), R3 = diag(169, 225, 36),
R4 = diag(196, 49, 64), R5 = diag(225, 81, 100), R6 = diag(256, 121, 144),
R7 = diag(289, 169, 196), R8 = diag(324, 225, 36),

Then by applying a primal-dual algorithm based on NT-direction, we obtain
the following table of solutions for different ”T” for ε = 0.01

T 1 2 3 4 5
Opt V alue 2035 2071 2075 2076 2077

Number of Iterations 6 6 6 6 6

T 6 7 8 9 10
Opt V alue 2077 2077 2077 2077 2077

Number of Iterations 6 6 6 6 6
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Figure 1: Plot of approximation of optimal control and Optimal control: T = 3

Note also that the approximation of the optimal control approaches to the
optimal control only after a few iterations. In fact, only after 3-4 iterations,
we obtain a very good approximation to the optimal solution. Figure 1 and 2
are graphs of the approximate optimal solution after three iterations and the
optimal solution. The dotted line is the plot of the approximation and the
solid line is the actual optimal solution (the actual optimal solution means the
solution obtained in the last iteration).

Our next goal is to use the discrete formulations to estimate the optimal
solution and optimal value for the above problem. The construction is quite
straightforward. First,we choose a sufficiently large K > 0, then we discretize
the partition [0, T ] in to K sub-intervals uniformly. Next we let h = T

K . Hence,
our targets in the discrete formulation can be easily computed by the following
simple procedure: for state components




x
(1i)
k

x
(2i)
k

x
(3i)
k


 =




x1i(kh)
x2i(kh)
x2i(kh)


 ,

for i = 1, · · · ,m, and k = 0, 1, · · · ,K. Similarly, for control components



u
(1i)
k

u
(2i)
k

u
(3i)
k


 =




u1i(kh)
u2i(kh)
u2i(kh)


 ,

for i = 1, · · · ,m, and i = 0, 1, · · · ,K.
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Figure 2: Plot of approximation of optimal state and Optimal state: T = 3

The corresponding discrete-time problem will have the form

max
i=1,...,m

∞∑

k=1

{< (xk−ϕ
(i)
k ), Q̃i(xk−ϕ

(i)
k ) > + < (uk−φ

(i)
k ), R̃i(uk−φ

(i)
k ) >} → min

(6.1)
xk+1 = Ãxk + B̃uk, x0 = γ0

where Q̃i = hQi, R̃i = hRi, Ã = (I + hA) and B̃ = hB.
We choose K = 300. Then using above formulation, we obtain a optimal

solution which is very close to the optimal solution to the continuous case. As
it is shown in the Figure 3-4, we take the difference pointwise of the optimal
solutions obtained from the continuous and discrete formulation. The result is
quite good. The two optimal solutions are almost identical.

6.2 Example 3: Discrete-time linear-quadratic control prob-
lem with quadratic constraints

In this section we solve linear-quadratic control problem with quadratic con-
straints using discrete formulation. Let us first consider the checking feasibility
problem (5.4)-(5.6) in the discrete formulation of the linear-quadratic control
problem with quadratic constraints where Z, c,Wi, yi for i = 1, ..., m will be the
same as in the Example 1, and ti be given by the following table.

i 1 2 3 4 5 6 7 8
ti 41 20 39 30 32 38 43 45

It is easy to see that there exists a feasible solution to the problem (5.1)-(5.3)
if and only if the optimal value of the problem (5.4)-(5.6) is negative.
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3.1) Discrete-time optimal state
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Figure 3: Plot of discrete-time optimal state for Multi-criteria Linear Quadratic
Control Problem.

4.1) Discrete-time optimal control
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4.2) Difference between discrete-time
and continuous-time Optimal control

0 500 1000 1500 2000 2500 3000
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1
Pointwise difference in control spaces between discrete and continuous formulations 

Figure 4: Plot of discrete-time optimal control for Multi-criteria Linear
Quadratic Control Problem.
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5.1) Plot of optimal state for T = 20.
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5.2) Plot of optimal control for T = 20.
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Figure 5: Plot of Discrete-time linear-quadratic control problem with quadratic
constraints.

Then by applying a primal-dual algorithm described in [10] based on NT-
direction for T = 3, we obtain the following data of optimal value t after some
number of iterations.

#iterations 1 2 3 4 5 6 7 8
Opt Value 1.87 15.91 1.86 0.91 −0.16 −0.42 −0.49 −0.50

As it is shown in the above table, after the forth iteration we obtain a feasible
solution to the linear-quadratic control problem with quadratic constraints(5.1)-
(5.3). Once we obtain a feasible solution for the optimization problem (5.1)-
(5.3), we then can apply primal-dual algorithms to solve the problem. The
calculations for the NT-direction for this problem are quite similar to the cal-
culation for (6.1). The only differences are in the definition of a closed vector
subspace X and its complement X⊥. The optimal solution to the problem
(5.1)-(5.3) for T = 20 based on NT-direction is shown in the Figure 5.
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