
Pointillism via LinearProgramming

Robert Bosch� and Adrianne Herman
Dept. of Mathematics, Oberlin College,Oberlin, Ohio, 44074

(bobb@cs.oberlin.edu , aherman@cs.oberlin.edu)

May 24, 2004

Abstract

Pointillism is a painting technique in which the painter places dots of
paint on the canvas in such a way that they blend together into desired
forms when viewed from a distance. In this brief note, we describe how
to use linear programming to construct a pointillist portrait.

1 In tro duction

Pointillism is a painting technique in which the painter placesdots of paint on
the canvasin such a way that they blend together into desiredforms whenviewed
from a distance. Pointillism was invented by the French Neo-Impressionist
GeorgesSeurat (1859-1891).

In this brief note, we describe how to uselinear programming to construct a
pointillist portrait. In the next section, we discusshow we prepare and process
the photograph of the subject of our portrait. In the following section, we
present the linear program we solve to construct our portrait. In the �nal
section, we display someof our artwork. For other examplesof \Opt Art" (art
produced using mathematical optimization techniques), see[1], [2], and [3].

2 The Photograph

We begin the construction of our portrait by converting a r photo � cphoto digital
photograph of the subject of our portrait into PGM (portable graymap) format.
By doing this, we are converting the photograph into black-and-white, treating
each of its r photo cphoto pixels as an integer between 0 and 255. These integers
are grayscalevalues. A grayscalevalue of 0 tells us that the pixel is completely
black, while a grayscalevalue of 255 tells us that the pixel is completely white.
A grayscalevalue strictly between 0 and 255 indicates that the pixel is some
shade of gray other than completely black or completely white. The larger

� corresponding author

1

the grayscalevalue, the lighter the shadeof gray. Note that at this point, our
photograph can be thought of as a list of r photo cphoto integers,each one between
0 and 255.

Next, we compressour photograph. (We reduceboth the number of integers
in our list and the largest integer in our list.) First, we �nd positive integers
r p ortrait and cp ortrait and a small positive integer k such that r photo = kr p ortrait and
cphoto = kcp ortrait . (If necessary, we crop the photograph.) Next, we divide the
canvasinto r p ortrait rowsand cp ortrait columnsof unit squares,and wepartition the
pixels of our photograph into r p ortrait rows and cp ortrait columns of k � k squares
of pixels. Then, for each row 1 � i � r p ortrait and column 1 � j � cp ortrait of our
photograph, we compute the mean grayscalevalue � i;j of the pixels in square
(i; j) and set

gi;j = � b � i;j =256c;

where is a positive integer. By doing this, we are de�ning gi;j to be the
averagedarknessof square (i; j) of our photograph on a 0 (completely white)
to (completely black) gray scale. Note that at this point, our photograph can
be thought of as a list of r p ortrait cp ortrait integers,each one between0 and .

Figure 1 illustrates this \photo processing." Figure 1(a) is a portion of a
photograph of DaVinci's Mona Lisa (her right eye). Figure 1(b) is a table of the
resulting gi;j 's. Here r photo = 40, cphoto = 32, r p ortrait = 20, cp ortrait = 16, k = 2,
and = 9.

Figure 1: (a) A portion of DaVinci's Mona Lisa, (b) the resulting gi;j 's

3 The Linear Program

The pointillist painter paints a portrait by placing dots of paint on the canvas,
placing the dots wherever he or shechooses,making each dot as dark as he or
shepleases.

We construct a pointillist portrait by placing disks of tin ted glass on the
canvas. We assumethat the canvas is completely white. We do not allow
ourselves to place disks wherever we wish; instead, we force ourselves to place
onedisk at the center of each squareof the canvas. All of our disks have radius
� , and all are the samethickness. All of our disks have constant opacity, but
we allow the opacity to vary from disk to disk. To do this, we let x i;j equal the
opacity of the disk centered at square(i; j). The opacity of a disk is the fraction
of light the disk absorbs. So if x i;j = 0, the disk centered at (i; j) is completely
transparent. If x i;j = 1, the disk is completely opaque.

Oncewe haveassignedvaluesto the x i;j 's, it is easyto compute the darkness
of any point on the canvas. We de�ne the darknessof a point to be the combined
opacity of the disks that cover it. Suppose, for example, that a beam of light
is aimed at the center of square(2; 4) in �gure 2. This point is covered by two
nontransparent disks, each having opacity 1=3. Two thirds of the light passes
through the �rst disk. And two thirds of the light that passesthrough the �rst
disk passesthrough the seconddisk. So four ninths of the light passesthrough
both disks, which meansthat �v e ninths of the light is absorbed. Consequently ,
the darknessof the point is 5=9. The general rule is that the darknessequals
one minus the product of the complements of the opacities of the disks that
cover the point (e.g. 5

9 = 1 � (1 � 1
3)(1 � 1

3)).

Figure 2: � = 2, x3;3 = x3;5 = 1
3 , x i;j = 0 for all other (i; j):

Now that we know how to compute the darknessof any point on the canvas,
we can talk about how to compute the darknessdi;j of any square(i; j) of the
canvas. One possibility is to construct a darknessfunction that takesas input
the coordinates of a point and returns as output the darknessof that point. If

we had such a function, we could integrate it over all points in square(i; j) to
get the darknessof square(i; j). Unfortunately , if we do this, di;j will end up
being a very complicated nonlinear function of the x i;j 's. Another possibility is
to de�ne

Ci;j = f (i 0; j 0) : 1 � i 0 � r ; 1 � j 0 � c; (i 0 � i)2 + (j 0 � j)2 � � 2g;

the set of all squares(i 0; j 0) within � of square(i; j). Note that we are measuring
from center-of-squareto center-of-square. Then we could set

di;j = 1 �
Y

(i 0;j 0)2 C i;j

(1 � x i 0;j 0): (1)

But here, too, di;j is a nonlinear function of the x i;j 's. A third approach|the
one we adopted|is to usea linear approximation of equation (1):

di;j =
X

(i 0;j 0)2 C i;j

x i 0;j 0:

Now we are �nally ready to present the linear program we solve to construct
our portrait. Clearly our goal, in plain English, is to place our tin ted disks
in such a way that the canvas ends up resembling our photograph as much as
possible. In mathematical terms, our goal is to assignvalues to the x i;j 's that
make each di;j term (the darkness of square (i; j) of the canvas on a 0-to-
 scale) as closeas possible to the corresponding gi;j (the darknessof square
(i; j) of the photograph). One way to do this is to solve the following nonlinear
programming problem:

(NLP) minimize
X

i;j

j di;j � gi;j j

subject to di;j =
X

(i 0;j 0)2 C i;j

x i 0;j 0 8i; j;

0 � di;j � 1 8i; j;

0 � x i;j � 1 8i; j:

The problem (NLP) can be \linearized" using a standard tric k described in
most textb ooks on linear programming (seepage 222 of [4], for example). For
each absolute value term, j di;j � gi;j j, we intro duce a variable zi;j and two
constraints, zi;j � di;j � gi;j and zi;j � � di;j + gi;j . We end up with the
following linear program:

(LP) minimize
X

i;j

zi;j

subject to zi;j � di;j � gi;j 8i; j;

zi;j � � di;j + gi;j 8i; j;

di;j =
X

(i 0;j 0)2 C i;j

x i 0;j 0 8i; j;

0 � di;j � 1 8i; j;

0 � x i;j � 1 8i; j:

Note that at optimalit y, zi;j will equal j di;j � gi;j j. Also note that linear
program (LP) has 3r p ortrait cp ortrait variables and 3r p ortrait cp ortrait constraints.

4 Results

Figure 3 displays two examplesof our pointillist artwork. We constructed them
by solving the linear program (LP), running version6.6of CPLEX on an 800Mz
Pentium II I PC. Figure 3(a) is basedon a photograph of a portion of DaVinci's
Mona Lisa, and Figure 3(b) is basedon a photograph of a portion of Vermeer's
Girl with a Pearl Earring. For each piece,we usedr = 90, c = 70, k = 2, � = 2,
and = 9. For �gure 3(a), the solution of (LP) required 12158seconds. For
�gure 3(b), 15586secondswere needed. For �gure 3(a), the optimal objective
value was approximately 905:81; for �gure 3(b), it was 782:93. Consequently ,
for �gure 3(a), the \a verageerror" (i.e. the averageof the j di;j � gi;j j terms)
was 0:14378. For �gure 3(b), the averageerror was 0:12428.

Figure 3: (a) Mona Lisa, (b) Girl with a Pearl Earring

References

[1] Bosch, R. 2002.Domino Art work. http://www.dominoart work.com.

[2] Bosch, R. 2003.Dominizing Venus. OR/MS Today. April 20-21.

[3] Bosch, R., A. Herman. 2004. Continuous line drawings via the traveling
salesmanproblem. Oper. Res. Lett. 32 302-303.

[4] Chv�atal, V. 1983.Linear Programming. WH Freeman,New York.

