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Abstract

We examine the problem of approximating, in the Frobenius-norm sense, a positive, semidefinite symmetric
matrix by a rank-one matrix, with an upper bound on the cardinality of its eigenvector. The problem arises in the
decomposition of a covariance matrix into sparse factors, and has wide applications ranging from biology to finance.
We use a modification of the classical variational representation of the largest eigenvalue of a symmetric matrix,
where cardinality is constrained, and derive a semidefiniteprogramming based relaxation for our problem. We also
discuss Nesterov’s smooth minimization technique appliedto the SDP arising in the direct sparse PCA method. The
method has complexityO(n4

√

log(n)/ǫ), wheren is the size of the underlying covariance matrix, andǫ is the
desired absolute accuracy on the optimal value of the problem.

1 Introduction

Principal component analysis (PCA) is a popular tool for data analysis and dimensionality reduction. It has applica-
tions throughout science and engineering. In essence, PCA finds linear combinations of the variables (the so-called
principal components) that correspond to directions of maximal variance in the data. It can be performed via a singular
value decomposition (SVD) of the data matrixA, or via an eigenvalue decomposition ifA is a covariance matrix.

The importance of PCA is due to several factors. First, by capturing directions of maximum variance in the data,
the principal components offer a way to compress the data with minimum information loss. Second, the principal
components are uncorrelated, which can aid with interpretation or subsequent statistical analysis. On the other hand,
PCA has a number of well-documented disadvantages as well. Aparticular disadvantage that is our focus here is the
fact that the principal components are usually linear combinations ofall variables. That is, all weights in the linear
combination (known asloadings), are typically non-zero. In many applications, however, the coordinate axes have
a physical interpretation; in biology for example, each axis might correspond to a specific gene. In these cases, the
interpretation of the principal components would be facilitated if these components involve very few non-zero loadings
(coordinates). Moreover, in certain applications, e.g., financial asset trading strategies based on principal component
techniques, the sparsity of the loadings has important consequences, since fewer non-zero loadings imply fewer fixed
transaction costs.

It would thus be of interest to be able to discover “sparse principal components”, i.e., sets of sparse vectors
spanning a low-dimensional space that explain most of the variance present in the data. To achieve this, it is necessary
to sacrifice some of the explained variance and the orthogonality of the principal components, albeit hopefully not too
much.

Rotation techniques are often used to improve interpretation of the standard principal components [1]. [2] consid-
ered simple principal components by restricting the loadings to take values from a small set of allowable integers, such
as0, 1, and−1. [3] propose an ad hoc way to deal with the problem, where the loadings with small absolute value
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are thresholded to zero. We will call this approach “simple thresholding.” Later, a method called SCoTLASS was
introduced by [4] to find modified principal components with possible zero loadings. In [5] a new approach, called
sparse PCA (SPCA), was proposed to find modified components with zero loadings, based on the fact that PCA can be
written as a regression-type optimization problem. This allows the application of LASSO [6], a penalization technique
based on theL1 norm.

In this paper, we propose a direct approach (called DSPCA in what follows) that improves the sparsity of the prin-
cipal components by directly incorporating a sparsity criterion in the PCA problem formulation and then relaxing the
resulting optimization problem, yielding a convex optimization problem. In particular, we obtain a convex semidefinite
programming (SDP) formulation.

SDP problems can be solved in polynomial time via general-purpose interior-point methods [7, 8], and our current
implementation of DSPCA makes use of these general-purposemethods. This suffices for an initial empirical study
of the properties of DSPCA and for comparison to the algorithms discussed above on problems of small to medium
dimensionality. For high-dimensional problems, the general-purpose methods are not viable and it is necessary to
attempt to exploit special structure in the problem. It turns out that our problem can be expressed as a special type of
saddle-point problem that is well suited to recent specialized algorithms, such as those described in [9, 10, 11]. These
algorithms offer a significant reduction in computational time compared to generic SDP solvers. In the current paper,
however, we restrict ourselves to an investigation of the basic properties of DSPCA on problems for which the generic
methods are adequate.

Our paper is structured as follows. In Section 2, we show how to efficiently derive a sparse rank-one approximation
of a given matrix using a semidefinite relaxation of the sparse PCA problem, and briefly explain how to generalize the
approach to non-square matrices. In Section 3, we derive an interesting robustness interpretation of our technique, and
in Section 4 we describe how to use this interpretation in order to decompose a matrix into sparse factors. Section 5
outlines different algorithms that can be used to solve the problem, while Section 6 presents numerical experiments
comparing our method with existing techniques.

Notation

In this paper,Sn is the set of symmetric matrices of sizen, and∆n the corresponding spectahedron (set of positive
semi-definite matrices with unit trace). We denote by1 a vector of ones (with size inferred from context), while
Card(x) denotes the cardinality (number of non-zero elements) of a vectorx. ForX ∈ Sn, we denote by‖X‖F is
the Frobenius norm ofX , i.e.,‖X‖F =

√

Tr(X2), by λmax(X) the maximum eigenvalue ofX and by‖X‖∞ =
max1≤i,j≤n |Xij |, while |X | is the matrix whose elements are the absolute values of the elements ofX .

2 Sparse eigenvectors

In this section, we derive a semidefinite programming (SDP) relaxation for the problem of approximating a symmetric
matrix by a rank one matrix with an upper bound on the cardinality of its eigenvector. We first reformulate this as a
variational problem, we then obtain a lower bound on its optimal value via an SDP relaxation (we refer the reader to
[12] or [13] for an overview of semidefinite programming).

2.1 Single factor,A positive semidefinite

Let A ∈ Sn be a givenn×n positive semidefinite, symmetric matrix andk be an integer with1 ≤ k ≤ n. We consider
the problem:

Φk(A) := min ‖A − xxT ‖F

subject to Card(x) ≤ k,
(1)

in the variablex ∈ Rn. We can solve instead the following equivalent problem:

Φ2
k(A) = min ‖A − λxxT ‖2

F

subject to ‖x‖2 = 1, λ ≥ 0,
Card(x) ≤ k,
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in the variablex ∈ Rn andλ ∈ R. Minimizing overλ, we obtain:

Φ2
k(A) = ‖A‖2

F − νk(A),

where
νk(A) := max xT Ax

subject to ‖x‖2 = 1
Card(x) ≤ k.

(2)

To compute a semidefinite relaxation of this program (see [14] or [13], for example), we rewrite (2) as:

νk(A) := max Tr(AX)
subject to Tr(X) = 1

Card(X) ≤ k2

X � 0, Rank(X) = 1,

(3)

in the symmetric, matrix variableX ∈ Sn. Indeed, ifX is a solution to the above problem, thenX � 0 and
Rank(X) = 1 means that we haveX = xxT , andTr(X) = 1 implies that‖x‖2 = 1. Finally, if X = xxT then
Card(X) ≤ k2 is equivalent toCard(x) ≤ k.

Naturally, problem (3) is still non-convex and very difficult to solve, due to the rank and cardinality constraints.
Since for everyu ∈ Rp, Card(u) = q implies ‖u‖1 ≤ √

q‖u‖2, we can replace the non-convex constraint
Card(X) ≤ k2, by a weaker but convex one:1T |X |1 ≤ k, where we have exploited the property that‖X‖F =√

xT x = 1 whenX = xxT andTr(X) = 1. If we also drop the rank constraint, we can form a relaxationof (3) and
(2) as:

νk(A) := max Tr(AX)
subject to Tr(X) = 1

1T |X |1 ≤ k
X � 0,

(4)

which is a semidefinite program (SDP) in the variableX ∈ Sn, wherek is an integer parameter controlling the sparsity
of the solution. The optimal value of this program will be an upper bound on the optimal valuevk(a) of the variational
program in (2), hence it gives a lower bound on the optimal valueΦk(A) of the original problem (1). Finally, the
optimal solutionX will not always be of rank one but we can truncate it and keep only its dominant eigenvectorx as
an approximate solution to the original problem (1). In Section 6 we show that in practice the solutionX to (4) tends
to have a rank very close to one, and that its dominant eigenvector is indeed sparse.

2.2 Extension to the non-square case

A similar reasoning involves a non-squarem × n matrixA, and the problem

min ‖A − uvT ‖F

subject to Card(u) ≤ k1

Card(v) ≤ k2,

in the variables(u, v) ∈ Rm × Rn wherek1 ≤ m, k2 ≤ n are fixed. As before, we can reduce the problem to

max uT Av
subject to ‖u‖2 = ‖v‖2 = 1

Card(u) ≤ k1, Card(v)) ≤ k2,

which can in turn be relaxed to
max Tr(AT X12)
subject to X � 0, Tr(Xii) = 1

1T |Xii|1 ≤ ki, i = 1, 2
1T |X12|1 ≤

√
k1k2,

in the variableX ∈ Sm+n with blocksXij for i, j = 1, 2. We can consider several variations on this, such as
constrainingCard(u) + Card(v) = Card(u, v).
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3 A robustness interpretation

In this section, we show that problem (4) can be interpreted as a robust formulation of the maximum eigenvalue
problem, with additive, component-wise uncertainty in thematrixA. We again assumeA to be symmetric and positive
semidefinite.

In the previous section, we considered a cardinality-constrained variational formulation of the maximum eigen-
value problem:

νk(A) := max xT Ax
subject to ‖x‖2 = 1

Card(x) ≤ k.

Here we look at a small variation where we penalize the cardinality and solve:

max xT Ax − ρCard
2(x)

subject to ‖x‖2 = 1,

in the variablex ∈ Rn, where the parameterρ > 0 controls the size of the penalty. This problem is again non-convex
and very difficult to solve. As in the last section, we can formthe equivalent program:

max Tr(AX) − ρCard(X)
subject to Tr(X) = 1

X � 0, Rank(X) = 1,

in the variableX ∈ Sn. Again, we get a relaxation of this program by forming:

max Tr(AX) − ρ1T |X |1
subject to Tr(X) = 1

X � 0,
(5)

which is a semidefinite program in the variableX ∈ Sn, whereρ > 0 controls the penalty size. We can rewrite this
last problem as:

max
X�0,Tr(X)=1

min
|Uij |≤ρ

Tr(X(A + U)) (6)

and we get a dual to (5) as:
min λmax(A + U)
subject to |Uij | ≤ ρ, i, j = 1, . . . , n,

(7)

which is a maximum eigenvalue problem with variableU ∈ Rn×n. This gives a natural robustness interpretation to
the relaxation in (5): it corresponds to a worst-case maximum eigenvalue computation, with component-wise bounded
noise of intensityρ on the matrix coefficients.

Let us remark that we can easily move from the constrained formulation in (4) to the penalized form in (5). Suppose
that we have solved the constrained problem (4) for a certaintarget cardinalityk:

max Tr(AX)
subject to Tr(X) = 1

1T |X |1 ≤ k
X � 0,

then this problem is equivalent to the penalized problem:

max Tr(AX) − ρ⋆1T |X |1
subject to Tr(X) = 1

X � 0,

if we set the noise levelρ⋆ to be equal to the optimal Lagrange multiplier associated with the constraint1T |X |1 ≤ k
in the constrained cardinality program (4). This means thatwe can directly compute the noise levelρ from the value
of k and the dual solution to the constrained program in (4).
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4 Sparse decomposition

Here, we use the results obtained in the previous two sections to describe a sparse equivalent to the PCA decomposition
technique. Suppose that we start with a matrixA1 ∈ Sn, our objective is to decompose it in factors with target sparsity
k. We solve the relaxed problem in (4):

max Tr(A1X)
subject to Tr(X) = 1

1T |X |1 ≤ k
X � 0,

to get a solutionX1, and truncate it to keep only the dominant (sparse) eigenvectorx1. Finally, we deflateA1 to obtain

A2 = A1 − (xT
1 A1x1)x1x

T
1 ,

and iterate to obtain further components.
The question is now: When do we stop the decomposition? In thePCA case, the decomposition stops naturally

afterRank(A) factors have been found, sinceARank(A)+1 is then equal to zero. In the case of the sparse decompo-
sition, we have no guarantee that this will happen. However,the robustness interpretation gives us a natural stopping
criterion: if all the coefficients in|Ai| are smaller than the noise levelρ⋆ (computed in the last section) then we must
stop since the matrix is essentially indistinguishable from zero. So, even though we have no guarantee that the algo-
rithm will terminate with a zero matrix, the decomposition will in practice terminate as soon as the coefficients inA
become undistinguishable from the noise.

5 Algorithms

For problems of moderate size, our SDP can be solved efficiently using solvers such as SEDUMI [7] or SDPT3
[8]. For larger-scale problems, we need to resort to other types of algorithms for convex optimization. Of special
interest are the recently-developed algorithms due to [9, 10, 11]. These are first-order methods specialized to problems
having a specific saddle-point structure. It turns out that our problem, when expressed in the saddle-point form (6),
falls precisely into this class of algorithms. Judged from the results presented in [10], in the closely related contextof
computing the Lovascz capacity of a graph, the theoretical complexity, as well as practical performance, of the method
as applied to (6) should exhibit very significant improvements over the general-purpose interior-point algorithms for
SDP. Of course, nothing comes without a price: forfixed problem size, the first-order methods mentioned above
converge inO(1/ǫ), whereǫ is the required accuracy on the optimal value, while interior-point methods converge in
O(log(1/ǫ)). In what follows, we adapt the algorithm in [10] to our particular constrained eigenvalue problem.

Given an × n positive semi-definite symmetric matrixA, we consider the problem

φ(A) := max
U

Tr(AU) − 1T |U |1 : U � 0, TrU = 1. (8)

By duality we have the representation

φ(A) = min
‖X‖∞≤1

λmax(A + X)

= min
‖X‖∞≤1

max
U∈∆n

〈U, A + X〉

= min
X∈Q1

f(X)

where
Q1 = {X ∈ Sn : |Xij | ≤ 1, 1 ≤ i, j ≤ n} ,

f(X) = λmax(A + X) = max
U∈Q2

〈AX, U〉 − φ̂(U),

Q2 = {U ∈ Sn : TrU = 1} , A = In2 , φ̂(U) = −Tr(AU).
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Prox functions and related parameters. To Q1 andQ2 we associate norms and so-called prox-functions.
ToQ1, we associate the Frobenius norm in inRn×n, and a prox-function defined forx ∈ Q1 by

d1(X) =
1

2
XT X.

With this choice, the centerX0 of Q1, defined as

X0 = arg min
X∈Q1

d1(X),

is X0 = 0, and satisfiesd1(X0) = 0. Moreover, we have

D1 := max
X∈Q1

d1(X) = n2/2.

Furthermore, the functiond1 is strictly convex on its domain, with convexity parameter with respect to the Frobenius
normσ1 = 1.

Next, forQ2 we use the dual of the standard matrix norm (denoted‖ · ‖∗2), and a prox-function

d2(U) = Tr(U log U) + log(n),

wherelog refers to thematrix (and not componentwise) logarithm. The center of the setQ2 is X0 = n−1In, and
d2(X0) = 0. We have

max
U∈Q2

d2(U) ≤ log n := D2.

The convexity parameter ofd2 on its domain with respect to‖ · ‖∗2, is bounded below byσ2 = 1/2. (This non-trivial
result is proved in [10].)

Next we compute the(1, 2) norm of the operatorA introduced above, which is defined as

‖A‖1,2 := max
X,U

〈AX, U〉 : ‖X‖F = 1, ‖U‖∗2 = 1

= max
X

‖X‖2 : ‖X‖F ≤ 1

= 1.

To summarize, the parameters set above are

D1 = n2/2, σ1 = 1, D2 = log(n), σ2 = 1/2, ‖A‖1,2 = 1.

Idea of the method. The method first sets a regularization parameter

µ =
ǫ

2D2
.

The method will produce anǫ-suboptimal optimal value and corresponding sub-optimal solution in a number of steps
not exceeding

N = 4‖A‖1,2

√

D1D2

σ1σ2
· 1

ǫ
.

The non-smooth objective of the original problem is replaced with

min
X∈Q1

fµ(X),

wherefµ is the penalized function involving the prox-functiond2:

fµ(X) = max
U∈Q2

〈AX, U〉 − φ̂(U) − µd2(U).
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Note that in our case, the functionfµ and its gradient are readily computed; we will detail this step later. The
above function turns out to be a smooth uniform approximation to f everywhere, with maximal errorµD2 = ǫ/2.
Furthermore, the functionfµ is Lipschitz-continuous, with Lipschitz constant given by

L :=
D2

2σ2
·
‖A‖2

1,2

ǫ
.

In our specific case, the functionfµ is given by

fµ(X) = µ log (Tr exp((A + X)/µ)) − µ logn,

which can be seen as a smooth approximation to the functionf(X) = λmax(A + X) that, for a specific choice ofµ,
enjoys nice uniform approximation properties with respectto f .

A specific gradient algorithm for smooth convex minimization is then applied to the above smooth convex function
fµ. The method requires the computation of values of

TQ1
(X) := min

Y ∈Q1

〈∇fµ(X), Y − X〉 +
1

2
L‖X − Y ‖2

F ,

whereX ∈ Q1 is given. As seen later, in our case, the above problem essentially amounts to projecting on a box, and
is easy.

The algorithm. Once the regularization parameterµ is set, the algorithm proceeds as follows.
For k ≥ 0 do

1. Computefµ(Xk) and∇fµ(Xk).

2. FindYk = TQ1
(Xk).

3. FindZk = argminX

{

L
σ1

d1(X) +
∑k

i=0
i+1
2 〈∇fµ(Xi), X − Xi〉 : X ∈ Q1

}

.

4. SetXk = 2
k+3Zk + k+1

k+3Yk.

Note that the algorithm generates feasible points. Let us now detail the application of these steps to our specific
problem. In what follows, the iteration countk is fixed and we denoteXk by X .

Step 1. The most expensive step in the algorithm is the first, namely computing functionfµ’s values and gradient.
ForZ = A + X a fixedn × n symmetric matrix, the problem boils down to computing

u∗(z) := arg max
U∈Q2

〈Z, U〉 − µd2(U) (9)

associated optimal valuefµ(X). It turns out that this problem has a very simple solution, and only requires to form
an eigenvalue decomposition forZ = A + X . The gradient of the objective function with respect toZ is set to the
maximizeru∗(Z) itself, so the gradient with respect toX is∇fµ(X) = u∗(A + X).

To computeu∗(Z), form an eigenvalue decomposition forZ: z = V DV T , with D = diag(d). Then set, for
i = 1, . . . , n:

hi =
exp(di−dmax

µ
)

∑

j exp(
dj−dmax

µ
)
, dmax := max

j
dj .

(In the above,dmax is used to prevent dealing with big numbers.) Then setu∗(z) = V HV T , with H = diag(h). The
corresponding function value is given by

fµ(X) = µ log(Tr exp((A + X)/µ)) = µ log

(

n
∑

i=1

exp(
di

µ
)

)

− µ log n,

7



which can be reliably computed as before, as

fµ(X) = dmax + µ log

(

n
∑

i=1

exp(
di − dmax

µ
)

)

− µ log n.

Step 2. This step involves a problem of the form

TQ1
(X) = arg min

Y ∈Q1

〈∇fµ(X), Y 〉 +
1

2
L‖X − Y ‖2

F ,

whereX is given. The above problem can be reduced to a projection:

arg min
‖Y ‖∞≤1

‖Y − V ‖F , (10)

whereV = X − L−1∇fµ(X) is given. The above problem has solution given by

Yij = sgn(Vij) · min(|Vij |, 1), 1 ≤ i, j ≤ n.

Step 3. The third step involves solving a problem of the same form as (10), with

V = −σ1

L
·

k
∑

i=0

i + 1

2
∇fµ(Xi).

Convergence criterion. We can stop the algorithm when the gap

λmax(A + Xk) − TrAUk + 1T |Uk|1 ≤ ǫ,

whereUk = u∗((A + Xk)/µ) is our current estimate of the dual variable (the functionu∗ is defined by (9)). The
above gap is necessarily non-negative, since bothXk andUk are feasible for the primal and dual problem, respectively.
Nesterov advises to check this criterion only periodically, for example every100 iterations.

Complexity. Since each iteration of the algorithm requiresO(n3) flops, the predicted worst-case complexity to
achieve an objective with absolute accuracy less thanǫ is

4‖A‖1,2

√

D1D2

σ1σ2
· O(n3)

ǫ
. = O(n4

√

log n/ǫ).

6 Numerical results

In this section, we illustrate the effectiveness of the proposed approach both on an artificial and a real-life data set. We
compare with the other approaches mentioned in the introduction: PCA, PCA with simple thresholding, SCoTLASS
and SPCA. The results show that our approach can achieve moresparsity in the principal components than SPCA
does, while explaining as much variance. The other approaches can explain some more variance, but result in principal
components that are far from sparse. We begin by a simple example illustrating the link betweenk and the cardinality
of the solution.

6.1 Controlling sparsity with k

Here, we illustrate on a simple example how the sparsity of the solution to our relaxation evolves ask varies from1 to
n. We generate a10 × 10 matrixU with uniformly distributed coefficients in[0, 1]. We letv be a sparse vector with:

v = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0).
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We then form a test matrixA = UT U + σvvT , whereσ is a signal-to-noise ratio equal to15 in our case. We sample
50 different matricesA using this technique. For eachk between1 and10 and eachA, we solve the following SDP:

max Tr(AX)
subject to Tr(X) = 1

1T |X |1 ≤ k
X � 0,

we then extract the first eigenvector of the solutionX and record its cardinality. In Figure 1, we show the mean
cardinality (and standard deviation) as a function ofk. We observe thatk + 1 is actually a good predictor of the
cardinality, especially whenk + 1 is close to the actual cardinality (5 in this case).
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Figure 1: Cardinality versusk.

6.2 Artificial data

We consider the simulation example proposed by [5]. In this example, three hidden factors are created:

V1 ∼ N (0, 290), V2 ∼ N (0, 300), V3 = −0.3V1 + 0.925V2 + ǫ, ǫ ∼ N (0, 300) (11)

with V1, V2 andǫ independent. Afterwards, 10 observed variables are generated as follows:

Xi = Vj + ǫj
i , ǫj

i ∼ N (0, 1),

with j = 1 for i = 1, 2, 3, 4, j = 2 for i = 5, 6, 7, 8 andj = 3 for i = 9, 10 and{ǫj
i} independent forj = 1, 2, 3, i =

1, . . . , 10. Instead of sampling data from this model and computing an empirical covariance matrix of(X1, . . . , X10),
we use the exact covariance matrix to compute principal components using the different approaches.

Since the three underlying factors have about the same variance, and the first two are associated with 4 variables
while the last one is only associated with 2 variables,V1 andV2 are almost equally important, and they are both
significantly more important thanV3. This, together with the fact that the first 2 principal components explain more
than99% of the total variance, suggests that considering two sparselinear combinations of the original variables
should be sufficient to explain most of the variance in data sampled from this model. This is also discussed by [5].
The ideal solution would thus be to only use the variables(X1, X2, X3, X4) for the first sparse principal component,
to recover the factorV1, and only(X5, X6, X7, X8) for the second sparse principal component to recoverV2.
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Using the true covariance matrix and the oracle knowledge that the ideal sparsity is 4, [5] performed SPCA (with
λ = 0). We carry out our algorithm withk = 4. The results are reported in Table 1, together with results for
PCA, simple thresholding and SCoTLASS (t = 2). Notice that SPCA, DSPCA and SCoTLASS all find the correct
sparse principal components, while simple thresholding yields inferior performance. The latter wrongly includes the
variablesX9 andX10 to explain most variance (probably it gets misled by the highcorrelation betweenV2 andV3),
even more, it assigns higher loadings toX9 andX10 than to one of the variables(X5, X6, X7, X8) that are clearly
more important. Simple thresholding correctly identifies the second sparse principal component, probably becauseV1

has a lower correlation withV3. Simple thresholding also explains a bit less variance thanthe other methods.

6.3 Pit props data

The pit props data (consisting of 180 observations and 13 measured variables) was introduced by [15] and has become
a standard example of the potential difficulty in interpreting principal components. [4] applied SCoTLASS to this
problem and [5] used their SPCA approach, both with the goal of obtaining sparse principal components that can
better be interpreted than those of PCA. SPCA performs better than SCoTLASS: it identifies principal components
with respectively 7, 4, 4, 1, 1, and 1 non-zero loadings, as shown in Table 2. As shown in [5], this is much sparser
than the modified principal components by SCoTCLASS, while explaining nearly the same variance (75.8% versus
78.2% for the 6 first principal components). Also, simple thresholding of PCA, with a number of non-zero loadings
that matches the result of SPCA, does worse than SPCA in termsof explained variance.

Following this previous work, we also consider the first 6 principal components. We try to identify principal
components that are sparser than the best result of this previous work, i.e., SPCA, but explain the same variance.
Therefore, we choose values fork of 5, 2, 2, 1, 1, 1 (two less than those of the SPCA results reported above, but
no less than 1). Figure 2 shows the cumulative number of non-zero loadings and the cumulative explained variance
(measuring the variance in the subspace spanned by the firsti eigenvectors). The results for DSPCA are plotted with
a red line and those for SPCA with a blue line. The cumulative explained variance for normal PCA is depicted with
a black line. It can be seen that our approach is able to explain nearly the same variance as the SPCA method, while
clearly reducing the number of non-zero loadings for the first 6 principal components. Adjusting the firstk from 5
to 6 (relaxing the sparsity), we obtain the results plotted with a red dash-dot line: still better in sparsity, but with a
cumulative explained variance that is fully competitive with SPCA. Moreover, as in the SPCA approach, the important
variables associated with the 6 principal components do notoverlap, which leads to a clearer interpretation. Table
2 shows the first three corresponding principal components for the different approaches (DSPCAw5 fork1 = 5 and
DSPCAw6 fork1 = 6).

7 Conclusion

The semidefinite relaxation of the sparse principal component analysis problem proposed here appears to significantly
improve the solution’s sparsity, while explaining the samevariance as previously proposed methods in the examples
detailed above. The algorithms we used here handle moderatesize problems efficiently. We are currently working on
large-scale extensions using first-order techniques.
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 explained variance
PCA, PC1 .116 .116 .116 .116 -.395 -.395 -.395 -.395 -.401 -.401 60.0%
PCA, PC2 -.478 -.478 -.478 -.478 -.145 -.145 -.145 -.145 .010 .010 39.6%
ST, PC1 0 0 0 0 0 0 -.497 -.497 -.503 -.503 38.8%
ST, PC2 -.5 -.5 -.5 -.5 0 0 0 0 0 0 38.6%

other, PC1 0 0 0 0 .5 .5 .5 .5 0 0 40.9%
other, PC2 .5 .5 .5 .5 0 0 0 0 0 0 39.5%

Table 1: Loadings and explained variance for first two principal components, for the artificial example. ’ST’ is the
simple thresholding method, ’other’ is all the other methods: SPCA, DSPCA and SCoTLASS.
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Figure 2: Cumulative cardinality and cumulative explainedvariance for SPCA and DSPCA as a function of the number
of principal components: black line for normal PCA, blue forSPCA and red for DSPCA (full fork1 = 5 and dash-dot
for k1 = 6).

topdiam length moist testsg ovensg ringtop ringbud bowmax bowdist whorls clear knots diaknot
SPCA, PC1 -.477 -.476 0 0 .177 0 -.250 -.344 -.416 -.400 0 0 0
SPCA, PC2 0 0 .785 .620 0 0 0 -.021 0 0 0 .013 0
SPCA, PC3 0 0 0 0 .640 .589 .492 0 0 0 0 0 -.015

DSPCAw5, PC1 -.560 -.583 0 0 0 0 -.263 -.099 -.371 -.362 0 0 0
DSPCAw5, PC2 0 0 .707 .707 0 0 0 0 0 0 0 0 0
DSPCAw5, PC3 0 0 0 0 0 -.793 -.610 0 0 0 0 0 .012
DSPCAw6, PC1 -.491 -.507 0 0 0 -.067 -.357 -.234 -.387 -.409 0 0 0
DSPCAw6, PC2 0 0 .707 .707 0 0 0 0 0 0 0 0 0
DSPCAw6, PC3 0 0 0 0 0 -.873 -.484 0 0 0 0 0 .057

Table 2: Loadings for first three principal components, for the real-life example. DSPCAw5 (resp. DSPCAw6) shows
the result of our technique withk1 equal to 5 (resp. 6).
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