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Abstract

Conic optimization is the problem of optimizing a linear function
over an intersection of an affine linear manifold with the Cartesian
product of convex cones. However, many real world conic models in-
volves an intersection rather than the product of two or more cones.
It is easy to deal with an intersection of one or more cones but un-
fortunately it leads to an expansion in the optimization problem size
and hence to an increase in the computational complexity of solving
the optimization problem. In this note we discuss how to handle the
intersection of two or more cones. In particular we show that the
important special case of the intersection of a linear and a quadratic
cone can be handled in a computational efficient way.

1 Introduction

The conic optimization problem can formally be stated as

minimize
r∑

k=1
(ck)T xk

subject to
r∑

k=1
Akxk = b,

xk ∈ Kk, k = 1, . . . , r,

(1)
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where ck ∈ Rnk
, Ak ∈ Rm×nk

and b ∈ Rm. Kk is assumed to be a convex
cone.

It is well-known that any convex optimization problem can be stated
in conic form [6] but until now the linear, quadratic, and semi-definite case
have achieved the most attention because highly efficient primal-dual interior-
point algorithms have been developed for this class of problems [7, 8]. More-
over, this special case has many practical applications [1].

Observe the conic constraints

xk ∈ Kk, k = 1, . . . , r,

are the same as saying 
x1

...
xr

 ∈ K1 × · · · × Kr.

This seems to exclude the case

y ∈ K1 ∩K2 (2)

where a variable y has to lie in the intersection of two cones. However, (2)
is equivalent to

y − z = 0,
y ∈ K1,
z ∈ K2.

Therefore, by introducing some additional constraints and variables the in-
tersection of two cones can easily be modelled within the framework of conic
optimization. This unfortunately leads to an expansion in the problem di-
mension which makes the problem computationally more expensive to solve.

Observe the type of constraints introduced when modelling the intersec-
tion of two cones are very special and perhaps the special structure can be
exploited in the solution algorithm. In this note we show that this is indeed
the case when modelling the intersection of a linear and a quadratic cone.
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2 Notation

The problem of interest is the conic optimization problem

minimize
r∑

k=1
(ck)T xk

subject to
r∑

k=1
Akxk = b,

xk ∈ Kk, k = 1, . . . , r,

(3)

where Ak ∈ Rm×nk
and all other quantities have conforming dimensions. Kk

is assumed to be a convex cone. Without loss of generality we will assume
that the matrix

[ A1 A2 · · · Ar ]

has full row rank.
We will restrict our attention to the case where Kk is a symmetric cone,

i.e., Kk is either

• A linear cone:
{x ∈ R : x ≥ 0}.

• A quadratic cone:
{x ∈ Rn : x1 ≥ ‖x2:n‖}.

• A semi-definite cone (we assume nk = p2):

{vec(X) : X ∈ Rp×p is symmetric and positive semi-definite}.

Subsequently we will need the Sherman-Morrison-Woodbury formula

(H + V GV T )−1 = H−1 −H−1V (G−1 + V T H−1V )−1V T H−1 (4)

where it is assumed all the required inverses exists [4, p. 243].

3 A motivating example

We will use the motivating example

minimize ‖x‖+ cT x
subject to Ax = b,

x ≥ 0.
(5)
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where A ∈ Rm×n and all other quantities have conforming dimensions. This
problem can be reformulated as

minimize cT x + t
subject to Ax = b,

(t; x) ∈ {(t; x) : t ≥ ‖x‖} ∩ {(t; x) : x ≥ 0}.
(6)

However, this problem is not in conic form because it involves an intersection
of two cones but the reformulated problem

minimize cT x + t
subject to Ax = b,

x− z = 0,
(t; z) ∈ {(t; z) : t ≥ ‖z‖},

x ∈ (x : x ≥ 0}.

(7)

is in conic form. Observer the reformulation has the obvious drawback that n
new constraints and variables are introduced into the problem which makes
it much bigger and more expensive to solve.

4 Intersection of linear and quadratic cones

In this section we restrict our attention to the case of linear and quadratic
cones. For this restricted class of problems the primal-dual interior-point
algorithm suggested in Nesterov and Todd (NT) [7, 8] is the most efficient
solution algorithm both in theory and practice. A detailed discussion of the
implementation of NT algorithm can be seen in [2].

The main computational work performed in each iteration of the NT
algorithm is the solution of a system of linear equations of the form

r∑
k=1

Ak(W k)−1Akdy = f (8)

where W k is a positive definite matrix, dy is the unknowns, and f is an
arbitrary right-hand side. W k is called the NT scaling matrix. This implies
that the coefficient matrix

r∑
k=1

Ak(W k)−1Ak (9)
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is a symmetric positive definite matrix. Moreover, the matrix tends to be
sparse which implies that the system linear equations (8) can be solved effi-
ciently using a sparse Cholesky factorization. Therefore, this is the common
approach employed in most implementations [1, p. 45].

The NT scaling matrices W k all have the special form

W k = θ2
k(−Qk + 2wk(wk)T ).

where θk is a positive scalar, wk ∈ Rnk
and if cone k is linear cone then Qk

has the form
Qk = 1

whereas if cone k is quadratic then Qk has the form

Qk = diag(−1, 1, . . . , 1).

Hence, for linear cones W k is a positive scalar whereas for quadratic cones
W k is a diagonal matrix plus a rank-1 term. This is an important fact in
practice because it implies (9) can be computed efficiently. We refer to [2]
for further details about the NT scaling matrices. From [2] we recall the
important fact

(W k)−1 = θ−2
k (−Qk + 2(Qkwk)(Qkwk)T )

= θ−2
k (I + 2(Qkwk(Qkwk)T − e1e

T
1 )).

This demonstrates that (W k)−1 can be written as a sum of a positive definite
diagonal matrix plus a rank-2 term.

Next we show the special structure arising when modelling the intersec-
tion of a linear and a quadratic cone can be exploited to reduce the compu-
tational cost when solving the system (8).

The problem of interest is

minimize (c1)T x1

subject to A11x1 = b1,
A21x1 + A22x2 = b2,
x1

1 ≥ ‖x1
2:n1‖ ,

x2 ≥ 0

(10)

where c1 ∈ Rn1
, A11 ∈ Rm1×n1

, A21 ∈ Rm2×n1
, A22 ∈ Rm2×n2

, b1 ∈ Rm1
and

b2 ∈ Rm2
. Note this problem has one quadratic cone and the x1 variables

belong to this cone. We will make the following assumption
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Assumption 4.1 i) Each row of A21 has exactly one nonzero element.

ii) A22 is a nonsingular diagonal matrix.

Therefore, the set of constraints

A21x1 + A22x2 = b2,
x2 ≥ 0

can be used to model simple bounds on the x1 variables. For instance the
bound constraint

x1
j ≥ b2

k

can be modelled using the set of constraints

eT
j x1 − x2

k = b2
k,

x2
k ≥ 0.

It should be obvious that the problem (10) allows us to deal with the
intersection of the linear and quadratic cone in a flexible way.

In the case of problem (10) the system (9) has the form

[
A11 0
A21 A22

] [
W−1 0

0 D−1

] [
A11 0
A21 A22

]T [
d1

y

d2
y

]
=

[
f 1

f 2

]

or equivalently[
A11W−1(A11)T A11W−1(A21)T

A21W−1(A11)T A21W−1(A21)T + A22D−1(A22)T

] [
d1

y

d2
y

]
=

[
f 1

f 2

]
.

(11)
W is the NT scaling matrix associated with the quadratic cone and D is the
diagonal NT scaling matrix associated with the linear cones i.e. the x2 ≥ 0
constraint.

The solution to (11) can be obtained by solving

A11W̄−1(A11)T d1
y = f̄ 1 (12)

and

(A21W−1(A21)T + A22D−1(A22)T )d2
y = f 2 − A21W−1(A11)T d1

y (13)
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where

W̄ := (W−1 −W−1(A21)T (A21W−1(A21)T + A22D−1(A22)T )−1A21W−1)−1

f̄ 1 := f 1 − A11W−1(A21)T (A21W−1(A21)T + A22D−1(A22)T )−1f 2.

Instead of solving the big system (8) we suggest to solve the two smaller
systems (12) and (13). Subsequently we show that that the system (12) and
(13) can be solved in O((n1)3) and O(n1 + n2) operations respectively. Even
for moderate values of n1 and n2 this implies a dramatic reduction in the
computational complexity because O((n1 + n2)3) operations is required to
solve (8).

Observe the complexity of forming the right-hand side of (12) is the same
as solving (13). Therefore, we will ignore this operation and first consider
the solution of (12) for an arbitrary known right-hand side.

Lemma 4.1

W̄ = H−1 −H−1V (G−1 + V T H−1V )−1V T H−1

where
H := θ−2I + (A21)T (A22D−1(A22)T )−1A21,

V :=
√

2θ−1[ w e1 ],

G :=

[
1 0
0 −1

]
.

Proof:

W̄−1 = (W−1 −W−1(A21)T (A21W−1(A21)T + A22D−1(A22)T )−1A21W−1)
= (W + (A21)T (A22D−1(A22)T )−1A21)−1

= (θ−2(−Q + 2wwT ) + (A21)T (A22D−1(A22)T )−1A21)−1

= (θ−2I + (A21)T (A22D−1(A22)T )−1A21 + 2θ−2(wwT − e1e
T
1 ))−1

= (H + V T GV )−1

= H−1 −H−1V (G−1 + V T H−1V )−1V T H−1

The second and the sifth equality follow from (4). 2

Corollary 4.1 H is a positive definite diagonal matrix.

Lemma 4.2

G−1 + V T H−1V = LDLT
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where

D := 2θ−2

 θ2

2
+ wT H−1w 0

0 − θ2

2
+ eT

1 H−1e1 − (eT
1 H−1w)2

θ2

2
+wT H−1w

 ,

L :=

 1 0
eT
1 H−1w

θ2

2
+wT H−1w

1

 .

Proof:
G−1 + V T H−1V

=

[
1 0
0 −1

]
+ 2θ−2[ w e1 ]T H−1[ w e1 ]

= 2θ−2

[
θ2

2
+ wT H−1w wT

1 H−1e1

eT
1 H−1w − θ2

2
+ eT

1 H−1e1

]
= LDLT .

2

Corollary 4.2 W̄−1 = H−1 − (H−1V L−T )D−1(H−1V L−T )T .

Corollary 4.3 Given a vector v then H−1v can be computed in O(n1 + n2)
operations.

The previous results demonstrate that W̄−1 is a positive definite diago-
nal matrix plus a rank-2 term and hence A11W̄−1(A11)T can be computed
efficiently. Furthermore, assuming no (lucky) cancellations then the sparsity
pattern of

A11W̄−1(A11)T

is identical to the sparsity pattern of

A11W−1(A11)T .

Hence, even when sparsity is considered then (12) should be cheaper to solve
than (8).

After solving the system (12) the system (13) should be solved.

Lemma 4.3

(A21W−1(A21)T + A22D−1(A22)T )−1

= Ĥ−1 − Ĥ−1V̂ (G−1 + V̂ T Ĥ−1V̂ )−1V̂ T Ĥ−1

where
Ĥ := A22D−1(A22)T + θ−2A21(A21)T ,

V̂ :=
√

2θ−1A21[ Qw e1 ].
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Proof:

(A21W−1(A21)T + A22D−1(A22)T )−1

= (A22D−1(A22)T + θ−2A21(I + 2((Qw)(Qw)T − e1e
T
1 ))(A21)T )−1

= (A22D−1(A22)T + θ−2A21(A21)T ) + 2θ−2A21(Qw(Qw)T − e1(e1)
T )(A21)T )−1

= (Ĥ + V̂ T GV̂ )−1

= Ĥ−1 − Ĥ−1V̂ (G−1 + V̂ T Ĥ−1V̂ )−1V̂ T Ĥ−1.

2

Corollary 4.4 The matrix Ĥ is a positive definite diagonal matrix.

Corollary 4.5 Given a vector v then (A21W−1(A21)T + A22D−1(A22)T )−1v
can be computed in O(n1 + n2) operations.

We have now demonstrated that when a quadratic cone is intersected
with several linear cones then this give rise to a special problem structure
which can be exploited. Moreover, when the special structure is exploited
the computational costs can be reduced significantly.

Finally, it should be mentioned that the technique presented above is also
applicable if the problem contains multiple quadratic cones because the cones
are independent and can each be treated in the same way.

5 Discussion

In summary we have shown that in the case where a linear cone is intersected
with a quadratic cone then a special structure appears which can be exploited
to reduce the computational costs. An important topic for further research
is whether the idea presented in this paper can be generalized.

The paper [5] presents an application which requires solution of a problem
of the form

min
∑
j

tj + cT x

subject to Ax = b,

‖Bjx‖2 ≤ tj, j = 1, . . . ,m,
0 ≤ x ≤ u.

(14)
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where A has very few rows and Bj is close to full rank. The conic reformu-
lation of this problem is

min
∑
j

tj + cT x

subject to Ax = b,
Bjx− zj = 0, j = 1, . . . ,m,

vj = 0.5, j = 1, . . . ,m,

‖zj‖2 ≤ 2vjtj, j = 1, . . . ,m,
0 ≤ x ≤ u, 0 ≤ tj.

(15)

It is obvious that the conic reformulation has many more constraints and
variables than the nonconic formulation. In practice this leads to slow so-
lution time of the conic problem. However, the conic reformulation has the
intersection of cones structure.

Another interesting intersection cone is

{vec(X) : X ∈ Rp×p is symmetric and positive semi-definite}
∩{X ∈ Rp×p : xij ≥ 0}

which appears in [3].

6 Conclusions

We conclude by observing that there exist important applications where mod-
elling the intersection of one or more cones are required. Moreover, we have
showed that this give rise to a special structure which in one important case
can be exploited in the computations. Finally, we think the idea presented
in this note can be generalized to other cases as well.
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