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Abstract. Given a convex body S ⊂ IRn and a point x ∈ S, let sym(x, S) denote the
symmetry value of x in S:

sym(x, S) := max{α ≥ 0 : x + α(x− y) ∈ S for every y ∈ S} ,

which essentially measures how symmetric S is about the point x, and define

sym(S) := max
x∈S

sym(x, S) .

We call x∗ a symmetry point of S if x∗ achieves the above supremum. These symmetry
measures are all invariant under invertible affine transformation and/or change in norm, and
so are of interest in the study of the geometry of convex sets. Furthermore, these measures arise
naturally in the complexity theory of interior-point methods. In this study we demonstrate
various properties of sym(x, S) such as under operations over S, or as a function of x for a
fixed S. Several relations with convex geometry quantities like volume, distance and diameter,
cross-ratio distance are proved. Set approximation results are also shown. Furthermore, we
provide a characterization of symmetry points x∗. When S is polyhedral and is given as the
intersection of halfspaces S = {x ∈ IRn : Ax ≤ b}, then x∗ and sym(S) can be computed by
solving m + 1 linear programs of size m× n. We also present an interior-point algorithm that,
given an approximate analytic center xa of S, will compute an approximation of sym(S) to
any given relative tolerance ε in no more than�

10m1.5 ln

�
10m

ε

��
iterations of Newton’s method.

1. Introduction

There is a variety of measures of symmetry (or asymmetry) for convex sets that
have been studied over the years, see Grünbaum [4] for example. Herein we study
some mathematical properties of the symmetry measure of Minkowski [9], which
in all likelihood was the first and most useful such symmetry measure. Given a
closed convex set S and a point x ∈ S, define the symmetry of S about x as
follows:

sym(x, S) := max{α ≥ 0 : x + α(x− y) ∈ S for every y ∈ S} , (1)
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which intuitively states that sym(x, S) is the largest scalar α such that every
point y ∈ S can be reflected through x by the factor α and still lie in S. The
symmetry value of S then is:

sym(S) := max
x∈S

sym(x, S) , (2)

and x∗ is a symmetry point of S if x∗ achieves the above supremum (also called
a “critical point” in [4],[6] and [9]). S is symmetric if sym(S) = 1.

Symmetric convex sets play an important role in convexity theory. Consider
the Löwner-John theorem, which states that every convex body S ⊂ IRn can be
α-rounded for some α ≤ n, whereby sym(S) ≥ 1

n ; however, when S is symmetric,
then S can in fact be

√
n-rounded, see [5]. This leads to the question of what, if

anything, we can say about bounds on the value α for an α-rounding of S when
sym(S) < 1. There are many other geometric properties of convex bodies S
that are also connected to sym(S). Points in S with high symmetry must be far
from ∂S (in a relative measure). Furthermore, if sym(S) is large, then points in S
with high symmetry value must be close to another (in a relative measure). Also,
there are inter-relationships between “central” properties of symmetry points,
the centroid, and the analytic center of S. Notice that sym(x, S) and sym(S)
are invariant under invertible affine transformation and change in norm. Finally,
the relevance of sym(x, S) has been revived in the complexity theory of interior-
point methods for convex optimization, see Nesterov and Nemirovski [10] and
Renegar [12].

An outline of this paper is as follows. Section 2 contains general properties of
the symmetry values as a function of x and S. In section 3, the geometry of the
symmetry function is highlighted through many inequalities involving distances,
volumes, and set approximation concepts. Section 4 aims mainly to characterize
the symmetry points for general convex sets. Lastly, section 5 is dedicated to
develop the complexity of computing the symmetry of a polytope S polyhedra
given by the intersection of halfspaces.

Notation. Let S ⊂ IRn denote a convex set and 〈·, ·〉 will be the conventional
inner product in the appropriate Euclidean space. intS denotes the interior of S.
Using traditional convex analysis notation, we let aff(S) be the minimal affine
subspace that contains S and let S⊥ be its orthogonal subspace complement.
The polar of S is defined as S◦ = {y ∈ IRn : 〈x, y〉 ≤ 1 for all x ∈ S}. Given
a convex function f(·), for x ∈ domf(·) the subdifferential of f(·) is defined as
∂f(x) := {s ∈ IRn : f(y) ≥ f(x) + 〈s, y − x〉 for all y ∈ domf(·)}.

2. General Properties of sym(x, S) and sym(S)

We make the following assumption:
Assumption A: S is a convex body, i.e., S is a nonempty closed bounded
convex set with a nonempty interior.

When S is convex but is not bounded or closed, then certain properties of
sym(S) break down; we refer the interested reader to Section A for a discussion.
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We assume that S has an interior as a matter of convenience, as one can always
work with the affine hull of S or its subspace translation with no loss of generality,
but at considerable notational and expositional expense.

Notice that the definition of sym(x, S) given in (1) is equivalent to the fol-
lowing “set-containment” definition:

sym(x, S) = sup {α ≥ 0 : α(x− S) ⊆ (S − x)} . (3)

Intuition suggests that sym(x, S) inherits many nice properties from the con-
vexity of S, as shown in the following:

Theorem 1. Under Assumption A, sym(·, S) : S → [0, 1] is a continuous qua-
siconcave function.

The proof of this theorem uses the following lemma:

Lemma 1. Suppose that S is a convex body in a Euclidean space and x ∈ intS
and α ≥ 0. Then α < sym(x, S) if and only if α(x− S) ⊆ int(S − x).

Proof: (⇒) The case α = 0 is trivial. For positive values of α, since x ∈ intS,
α1 < α2 implies α1(x− S) ⊂ α2int(x− S).

(⇐) If the set inequality holds for a fixed α, since C = x − α(S − x) is a
compact set, dist(C, ∂S) > 0. Thus one could increase α and the set inequality
would still be valid which implies that α < sym(x, S).

Proof of Theorem 1: Consider a sequence xk → x and the corresponding sequence
of real numbers αk = sym(xk, S). By definition, for every k by Lemma 1,

xk − αk(S − xk) = (1 + αk)(xk − x) + x− αk(S − x) ⊂ S

xk − αk(S − xk) = (1 + αk)(xk − x) + x− αk(S − x) * intS

In particular, since these relations hold for any subsequence, consider two sub-
sequences {nk} and {mk}, such that αnk

→ lim sup αk and αmk
→ lim inf αk.

Since αk is bounded, ‖(1 + αk)(xk − x)‖ → 0. Then, x − (lim sup αk)(S − x) ∩
∂S 6= ∅, and x − (lim inf αk)(S − x) ∩ ∂S 6= ∅. Thus Lemma 1 implies that
lim inf αk = lim sup αk = sym(x, S), which proves continuity.

To prove the quasiconcavity property, let x1, x2 ∈ S, and α1 = sym(x1, S),
α2 = sym(x2, S). Without loss of generality, suppose α1 ≤ α2. By definition, we
have x1 − α1S ⊆ S − α1x

1, and by Lemma 1, x2 − α1S ⊆ S − α1x
2.

Then, for any γ ∈ (0, 1)

γw1 + (1− γ)w2 − α1S ⊆ S − α1(γw1 + (1− γ)w2),

which implies that sym(γw1 + (1− γ)w2, S) ≥ α1.
For symmetric convex sets, it is possible to prove a stronger statement, but

first we prove the following proposition.
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Proposition 1. Under Assumption A, let S be a symmetric set centered at the
origin, and let ‖ · ‖S denote the norm induced by S. Then, for every x ∈ S,

sym(x, S) =
1− ‖x‖S

1 + ‖x‖S
.

Proof: First observe that for any y ∈ S, ‖y‖S ≤ 1. Second, let x ∈ S and
‖x‖S = t. Consider any chord of S that intersects x, and let p, q be the end points
of this chord. Notice that ‖p‖S = ‖q‖S = 1 and using the triangle inequality,

‖p− x‖S ≤ ‖x‖S + ‖p‖S and ‖q‖S ≤ ‖q − x‖S + ‖x‖S

Thus,
‖q − x‖S

‖p− x‖S
≥ ‖q‖S − ‖x‖S

‖x‖S + ‖p‖S
=

1− ‖x‖S

1 + ‖x‖S

Theorem 2. Under Assumption A, let S be a symmetric set centered at the
origin. Then sym(·, S) is a logconcave function in S.

Proof: Let g be a twice continuously differentiable convex function with
bounded domain and image equal to the interval [0, 1]. Then

∇ ln
(

1− g(x)
1 + g(x)

)
=

−2∇g(x)
(1− g(x)2)

∇2 ln
(

1− g(x)
1 + g(x)

)
=
−2∇2g(x)(1− g(x)2)

((1− g(x)2)2
− 4(1− g(x))∇g(x)∇g(x)T

((1− g(x)2)2

(4)

which is semi definite negative proving logconcavity of 1−g
1+g .

Now, we can build a sequence {gk}k≥1 of convex functions twice differen-
tiable converging pointwise to ‖ · ‖S . Due to convexity, it is converging uni-
formly. Finally, since the space of logconcave functions is closed under uniform
convergence, logconcavity will hold in the limit.

It is curious that sym(·, S) is not a concave function. To see this, consider S =
[0, 1] ⊂ IR; then a trivial computation yields sym(x, S) = min

{
x

(1−x) ;
(1−x)

x

}
,

which is not concave on S and is not differentiable at x = 1
2 . It is an open

question whether in general 1
sym(·,S) is convex or ln (sym(·, S)) is concave.

Proposition 2. Let S, T ⊂ IRn be convex bodies, and let x ∈ S and y ∈ T .
Then:

1. (Superminimality under intersection) If x ∈ S ∩ T ,

sym(x, S ∩ T ) ≥ min{sym(x, S), sym(x, T )} (5)

2. (Superminimality under Minkowski sums)

sym(x + y, S + T ) ≥ min{sym(x, S), sym(y, T )} (6)
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3. (Invariance under polarity)

sym(0, S − x) = sym(0, (S − x)◦) (7)

4. (Minimality under Cartesian product)

sym((x, y), S × T ) = min{sym(x, S), sym(y, T )} (8)

5. (Lower bound under affine transformation) Let A(·) be an affine transforma-
tion. Then

sym(A(x), A(S)) ≥ sym(x, S) (9)

with equality if A(·) is invertible.

Proof: Without loss of generality, we can translate the sets and suppose that
x = 0. Let α = min{sym(0, S), sym(0, T )}. Then −αS ⊂ S, −αT ⊂ T which
implies

−α(S ∩ T ) = −αS ∩ −αT ⊂ S ∩ T,

and (5) is proved.
To prove (6), again, without loss of generality, we can translate both sets

and suppose that x = y = 0, and define α = sym(0, S) and β = sym(0, T ). By
definition, −αS ⊂ S and −βT ⊂ T . Then it follows trivially that

−αS − βT ⊂ (S + T )

Replacing α and β by the minimum between them, the result follows.

In order to prove (7), we can assume x = 0, then

sym(0, S) = α ⇒ −αS ⊆ S.

Assuming sym(0, S◦) < α, there exist ȳ ∈ S◦ such that − αȳ /∈ S◦.
Thus, there exists x ∈ S, −αȳT x > 1. However, −αx ∈ −αS ⊆ S, then

−αȳT x = ȳT (−αx) ≤ 1 , since ȳ ∈ S◦,

which is a contradiction. Thus

sym(0, S) ≤ sym(0, S◦) ≤ sym(0, S◦◦) = sym(0, S).

Equality (8) is left as a simple exercise.
To prove inequality (9), we can assume that A(·) is a linear operator and

that x = 0 (since sym(x, S) is invariant under translation), and suppose that
α < sym(x, S). Then, −αS ⊆ S which implies that A(−αS) ⊆ A(S). Since A(·)
is a linear operator, A(−αS) = −αA(S) ⊆ A(S). It is straightforward to show
that quality holds in (9) when A(·) is invertible.

Remark 1. Unlike the case of affine transformation, sym(x, S) is not invariant
under projective transformation.



6 Belloni and Freund

3. Geometric Properties

This section reveals the geometry behind this symmetry measure. Not surpris-
ingly, the set-containment definition motivated most of the results. Also, this
section quantifies the dependance of some classical results for symmetric sets
on the symmetric assumption itself. As expected, our extensions are sharp for
symmetric sets and “deteriorates” as we consider points with small symmetry
values.

We start with two theorems that connect sym(x, S) to bounds on the n-
dimensional volume of the intersection of S with a halfspace cut through x, and
with the (n− 1)-dimensional volume of the intersection of S with a hyperplane
passing through S. Let v ∈ IRn, v 6= 0 be given, and for all x ∈ S define
H(x) := {z ∈ S : vT z = vT x} and H+(x) := {z ∈ S : vT z ≤ vT x}. Also let
Voln(·) denotes the volume measure on IRn. We have:

Theorem 3. Under Assumption A, if x ∈ S, then

sym(x, S)n

1 + sym(x, S)n
≤ Voln(H+(x))

Voln(S)
≤ 1

1 + sym(x, S)n
. (10)

Proof: Without loss of generality, assume x to be the origin and α = sym(x, S).
Define K1 = H+(x) and K2 = S\K1. Clearly, Voln(K1) + Voln(K2) = Voln(S).
The key observation is that

−αK2 ⊂ K1 and − αK1 ⊂ K2

Thus

Voln(S) ≥ Voln(K1) + Voln(−αK1) = Voln(K1)(1 + αn)

which proves the second inequality.
Finally, the first inequality follows trivially from

Voln(S) = Voln(K1) + Voln(K2) ≤ Voln(K1)
αn

+ Voln(K1)

For the next theorem, define the function f(x) = Voln−1(H(x))1/(n−1) for all
x ∈ S. It follows from the Brunn-Minkowski inequality that f(·) is concave (see
[1]).

Theorem 4. Under Assumption A, for every point x ∈ S,

f(x)
maxy∈S f(y)

≥ 2sym(x, S)
1 + sym(x, S)
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Proof: Let α = sym(x, S) and y∗ be the closest point to x∗ such that y∗ ∈
arg maxy f(y). Note that x + α(x−H(y∗)) ⊂ H(x + α(x− y∗)). Thus, using the
Brunn-Minkowski inequality,

f(x) ≥ α

1 + α
f(y∗) +

1
1 + α

f(x + α(x− y∗))

≥ α

1 + α
f(y∗) +

α

1 + α
f(y∗)

f(x)
f(y∗)

≥ 2α

1 + α

(11)

If S is a symmetric convex body, then it is a straightforward exercise to show
that the symmetry point of S is unique. Roughly speaking, if two points in a
convex body have high symmetry values, they cannot be too far apart. The next
theorem quantifies the relation between the symmetry of a pair of points and
the distance between them. Given x, y ∈ S with x 6= y, let p(x, y), q(x, y) be the
pair of endpoints of the largest cord in S passing through x and y, namely:

p(x, y) = x + s(x− y) ∈ ∂S where s is a maximal scalar
q(x, y) = y + t(y − x) ∈ ∂S where t is a maximal scalar .

(12)

Theorem 5. Under Assumption A, let ‖·‖ be any norm on IRn. For any x, y ∈ S
satisfying x 6= y, let α = sym(x, S) and β = sym(y, S). Then:

‖x− y‖ ≤
(

1− αβ

1 + α + β + αβ

)
‖p(x, y)− q(x, y)‖ . (13)

Proof: Consider the line which pass through x and y. By definition of sym(x, S),
x− α(y − x) ∈ x− α(S − x) ⊂ S. Now, observe that

sym(x− α(y − x), x− α(S − x)) = sym(−αy,−αS) = sym(y, S) = β.

This implies that

x−α(y−x)−β(x−α(S−x)−(x−α(y−x))) = x−α(y−x)−βα(y−x)+βα(S−x) ⊂ S

which implies that x− (α + αβ)(y − x) ∈ S.
Repeating the argument, we obtain x− (

(α + αβ)
∑∞

i=1 αiβi
)
(y−x) ∈ S. A

similar argument will show that y +
(
(β + αβ

∑∞
i=0 αiβi

)
(y − x) ∈ S.

Thus
‖p(x, y)− q(x, y)‖

‖x− y‖ ≥ 1 + (α + β + 2αβ)
∞∑

i=0

αiβi

= 1 +
α + β + 2αβ

1− αβ

=
1 + α + β + αβ

1− αβ

(14)
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Another relative measure of distance is the “cross-ratio distance” with respect
to S. Let x, y ∈ S, x 6= y, be given and let s, t be as defined in (12). The cross-
ratio distance is defined as:

dS(x, y) :=
(1 + t + s)

ts
.

We have:

Theorem 6. Under Assumption A, for any x, y ∈ S, x 6= y, let s, t be as defined
in (12). Then

dS(x, y) ≤ 1
sym(x, S) · sym(y, S)

− 1 .

Proof: Let α = sym(x, S) and β = sym(y, S). By definition of symmetry,
t ≥ α(1 + s) and s ≥ β(1 + t). Then

dS(x, y) =
(1 + t + s)

ts
≤ (1 + t + s)

α(1 + s)β(1 + t)

=
1

αβ

(1 + t + s)
(1 + s + t + st)

=
(

1
αβ

)
1

1 + 1
dS(x,y)

(15)

Thus dS(x, y) ≤ 1
αβ − 1.

We now examine the approximation of a convex sets by another convex set.
We say that P is a β-approximation of S if there exists a point x ∈ S such that
βP ⊂ S − x ⊂ P . In the case when P is an ellipsoid centered at the origin, then
the statement “P is a β-approximation of S” is equivalent to “βP provides a
1
β -rounding of S.”

Theorem 7. Under Assumption A, let P be a convex body that is a β-approximation
of S, and suppose that sym(P ) = α. Then, sym(S) ≥ βα.

Proof: By definition we have βP ⊂ S−x ⊂ P for some x ∈ S. Since sym(·, ·)
is invariant under translations, we can assume that x = 0. And because sym(C)
is invariant under nonzero scalings of C, we have

−αβS ⊂ −αβP ⊂ βP ⊂ S .

Theorem 8. Under Assumption A, suppose that x ∈ int S. Then there exists
an ellipsoid E centered at x such that

E ⊆ S ⊆
√

n

sym(x, S)
E . (16)

Proof: Suppose without loss of generality that x = 0 (otherwise we translate
S), and let α = sym(0, S). Clearly, −αS ⊂ S, and αS ⊂ S. Consider a

√
n-

rounding E of S ∩ (−S). Then αS ⊂ S ∩ (−S) ⊂ √
nE ⊂ √

nS.
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Theorem 9. Let xL ∈ S be the center of a Löwner-John pair. Then, xL is
guarantee to provide an

√
n

sym(xL,S)
-rounding for S.

Proof: We can write S = conv ({v}v∈∂S), and construct an Löwner-John
pair as a solution to the following optimization problem

minQ,c − ln det Q
s.t. (v − c)T Q(v − c) ≤ 1, for v ∈ ∂S

Q < 0
(17)

The KKT conditions of this problem are necessary and sufficient (since it
can be cast as an SDP with a SOC constraint), and are

−Q−1 +
∑

v∈∂S λv(v − c)(v − c)T = 0∑
v∈∂S λv2Q(v − c) = 0

λ ≥ 0
(v − c)T Q(v − c) ≤ 1
λv(v − c)T Q(v − c) = λv

Q < 0

Let Eo = {x ∈ IRn : (x − c)T Q(x − c) ≤ 1}, and EI = {x ∈ IRn : (x −
c)T Q(x − c) ≤ α

n}, where α = sym(c, S). By construction, S ⊆ Eo. It is left to
prove that EI ⊆ S. It is equivalent to show that for every b ∈ IRn,

max bT x ≤ max bT y
x ∈ EI y ∈ S

We will need the following lemmas,

Lemma 2. Let w1, . . . , wk be numbers, and for any p ∈ IRk
+, eT p = 1, define

µ = pT w and σ2 =
∑k

i=1 pi(wi − µ)2. Then, (wmax − µ)(µ− wmin) ≥ σ2.

Clearly,
∑k

i=1 pi(wmax − wi)(wi − wmin) ≥ 0. Thus,

µwmax + µwmin −
∑k

i=1 w2
i − wminwmax ≥ 0

µwmax + µwmin − µ2 − wminwmax ≥
∑k

i=1 piw
2
i − µ2 = σ2

(wmax − µ)(µ− wmin) ≥ σ2

proving the lemma.

Lemma 3. Given {yi}k
i=1 ⊂ IRk, and p ∈ IRk

+, eT p = 1, such that
∑n

i=1 piy
i =

0, ‖yi‖2 ≤ 1 for every i = 1, . . . , k, and 1
n

∑k
i=1 piy

iyiT

= I. Then for any
b ∈ IRn with ‖b‖2 = 1,

max
i=1,...,k

bT yi ≥
√

sym(0, conv ({yi}k
i=1))

n
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Fix b ∈ IRn, and define

wi = bT yi, µ =
k∑

i=1

piwi =
k∑

i=1

pib
T yi = bT

k∑

i=1

piy
i = 0

σ2 =
k∑

i=1

pi(wi − µ)2 =
k∑

i=1

piw
2
i =

k∑

i=1

pib
T yiy

T
i b =

1
n

bT b =
1
n

Using the previous lemma, (wmax−µ)(µ−wmin) ≥ σ2 = 1
n . So, wmax(−wmin) ≥

1
n .

Note that if α = sym(0, conv ({yi}k
i=1)), we have

max
i

bT yi ≤ −min
i

bT yi ≤ 1
α

max
i

bT yi.

Thus,

1
n ≤ maxi wi(−mini wi)
≤ maxi wi

1
α maxi wi

=
[maxi wi]2

α

obtaining that maxi bT yi ≥ √
α
n , and proving the lemma.

To use the lemma we will approximate S by the convex hull of a finite number
of point of its boundary. Due to the continuity of the symmetry function and,
by the theorem of the maximum, the continuity of the objective function as we
vary our approximation of S in (17) we can do it without any concern to take
limits. So we assume that S = conv ({vi}k

i=1).
Defining yi = Q1/2(vi − c) and pi = λi

n , we have ‖yi‖2 ≤ 1 and p ≥ 0. Using
the KKT conditions,

Q−1 =
∑k

i=1 λi(vi − c)(vi − c)T

I =
∑k

i=1 λiQ
1/2(vi − c)(vi − c)T Q1/2

n = tr(I) =
∑k

i=1 λitr
(
Q1/2(vi − c)(vi − c)T Q1/2

)

=
∑k

i=1 λitr
(
(vi − c)T Q1/2Q1/2(vi − c)

)

=
∑k

i=1 λi(vi − c)T Q1/2Q1/2(vi − c)
=

∑k
i=1 λi = eT λ

So, eT p = eT λ
n = 1 and

k∑

i=1

piy
iyiT =

k∑

i=1

λi

n
Q1/2(vi − c)(vi − c)T Q1/2 =

1
n

I

Consider b̄ = Q−1/2b√
bT Q1/2b

for an arbitrary b ∈ IRn (note that ‖b̄‖ = 1). We have

that
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max bT x = max bT y = bT c +
√

α
n

√
bT Q−1b

x ∈ EI (x− c)Q(x− c) ≤ α
n

Applying the second lemma,

bT c +
√

α
n

√
bT Q−1b ≤ bT c +

√
bT Q−1b(maxi b̄T yi)

= bT c + maxi bT vi − bT c
= maxi bT vi

= maxx{bT x : x ∈ S}
Thus, EI ⊆ S.

Remark 2. Note that Theorem 8 is valid for every point in S and Theorem 9
focuses on the center of Löwner-John pais. If one restricts x to be a symmetry
points, we conjecture that the bound can be improved by a factor to get a(√

n
sym(S)

)
-rounding.

Theorem 10. Under Assumption A, let ‖·‖ be any norm on IRn, and let B(x, r)
denote the ball centered at x with radius r. Suppose that

B(x, r) ⊂ S ⊂ P ⊂ S + B(0, δ).

Then

sym(x, S) ≥ sym(x, P )
(

1− δ

r

)
.

Proof:
Let α = sym(x, P ). Consider any cord of P that passes through x, which

divides it into two segments. Assume that the length of one segment is ∆, then
the other segment must have length at most ∆/α. Then, the first segment of
this cord in S must have length at least ∆− δ, while the second have length at
most ∆/α. Since it holds for any segment,

sym(x, S) ≥ ∆−δ
∆/α = α

(
1− δ

∆

)

≥ α
(
1− δ

r

) (18)

where the last inequality follows because ∆ ≥ r.

Remark 3. Instead of using a norm ‖·‖ in Theorem 10, we could instead consider
a convex body B that is symmetric about the origin, and replace “B(x, r)” by
“x + rB” and “B(0, δ)” by “δB” in the supposition of the theorem.

As (10),(4), and (16) might be seen, the next two results also illustrate how
one can nicely relax the symmetry assumption and still obtain similar results,
that is, we do not expect that these results completely break down as we “conti-
nously” relax the symmetry assumption stated in their original version. We are
going to prove an extension of Theorem 2.4.1 of Dudley [2], which relies on the
Brunn-Minkowski inequality in the symmetric case.
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Theorem 11. Let S ⊂ IRn be a compact convex set which contains the origin
in its interior, and let α = sym(0, S). Let f(·) be a nonnegative quasiconcave
even function that is Lebesgue integrable. Then for 0 ≤ β ≤ 1 and any y ∈ IRn,

∫

S

f(x + βy)dx ≥ αn

∫

S

f
(
x +

y

α

)
dx . (19)

Proof: We refer to [2] for the case with α = 1. Then, assume that f(·) is an
indicator function of a set K. This implies that K is convex and sym(0,K) = 1.
In fact,

∫
S

f(x + βy)dx ≥ ∫
S∩−S

f(x + βy)dx ≥ ∫
S∩−S

f(x + y)dx

= Voln((S ∩ −S) ∩ (K − y)) = Voln((S ∩ −S) ∩ α(K−y
α ))

≥ Voln(αS ∩ α(K − y
α )) = αnVoln(S ∩ (K − y

α ))
(20)

where the second inequality holds simply because αS ⊂ S ∩ −S and K ⊂ K
α .

Thus it holds for simple quasiconcave even functions, and using standard argu-
ments of dominated and monotone convergence, it will hold for all nonnegative
quasiconcave even Lebesgue-integrable functions.

The following corollary shows the usefulness of Theorem 11 in probability
theory. We note that the density function of an uniform or an n-dimensional
Gaussian random variable with mean µ = 0 satisfies the functional conditions
of Theorem 11.

Corollary 1. Let X be a random variable in IRn whose density function f(·)
is an even quasiconcave function. In addition, let Y be an arbitrary random
variable independent of X. If S ⊂ IRn is a compact convex set which contains
the origin in its interior, then

P (X + βY ∈ S) ≥ αnP

(
X +

Y

α
∈ S

)
. (21)

Proof: The key observation is that α does not depend on y, thus

P (X + βY ∈ S) =
∫ ∫

S−βy
f(x)dxdP (y) =

∫ ∫
S

f(x− βy)dxdP (y)
≥ αn

∫ ∫
S

f(x− y
α )dxdP (y) = αnP (X + Y

α ∈ S)
(22)

We end this section with a comment on a question posed by Hammer in [6]:
what is the upper bound on the difference between sym(S) and sym(xc, S), where
xc is the centroid (center of mass) of S? It is well known that sym(xc, S) ≥ 1/n,
see [6], and it follows trivially from the Löwner-John theorem that sym(S) ≥ 1/n
as well. Now let S be the Euclidean half-ball: S := {x ∈ IRn : 〈x, x〉 ≤ 1, x1 ≥ 0}.
It is an easy exercise to show that the unique symmetry point of S is x∗ =
(
√

2 − 1)e1 and that sym(S) =
√

2
2 , and so in this case sym(S) is a constant

independent of the dimension n. On the other hand, sym(xc, S) = Ω( 1√
n
) (see

[1]), and so for this class of instances the symmetry of the centroid is substantially
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less than the symmetry of the set for large n. For an arbitrary convex body S,
note that in the extreme cases where sym(S) = 1 or sym(S) = 1/n the difference
between sym(S) and sym(xc, S) is zero; we conjecture that tight bounds on this
difference are only small when sym(S) is either very close to 1 or very close to
1/n.

4. Characterization of Symmetry Points via the Normal Cone

Let Sopt(S) denote the set of symmetry points of the convex body S. In this
section we provide a characterization of Sopt(S) through the set-containment
definition of the sym(x, S) based on (3) and (2):

sym(S) = max
x,α

α

s.t. α(x− S) ⊆ (S − x)
α ≥ 0 .

(23)

For any given x ∈ S let α = sym(x, S). Motivated by the set-containment
definition of sym(x, S) in (3), let V (x) denote those points v ∈ ∂S that are also
elements of the set x + α(x− S). We call these points the “touching points” of
x in S. More formally, we have:

V (x) := ∂S ∩ (x + α(x− S)) where α = sym(x, S) . (24)

Let NS(y) denote the normal cone map for points y ∈ S. We assemble the union
of all normal cone vectors of all of the touching points of x and call the resulting
set the “support vectors” of x:

SV (x) = {s ∈ IRn : s ∈ NS(v) for some v ∈ V (x), ‖s‖ = 1} . (25)

The following theorem essentially states that x∗ ∈ S is a symmetry point of
S if and only if the origin is in the convex hull of the support vectors of x:

Theorem 12. Under Assumption A, let x∗ ∈ S. The following statements are
equivalent:

(i) x∗ ∈ Sopt(S)
(ii) 0 ∈ conv SV (x∗) .

The proof of this theorem is based on the following construction.

Lemma 4. The function f(·) defined as

f(x) = sup
y∈∂S

sup
s∈NS(y),‖s‖=1

〈s, x− y〉. (26)

satisfies f(x) = 0 for x ∈ ∂S, f(x) > 0 for x /∈ S, and f(x) < 0 for x ∈ intS.
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Proof: As the supremum of affine functionals, f is convex. For x ∈ ∂S, f(x) ≥
0. For any (y, s) ∈ ∂S × NS(y), 〈s, x − y〉 ≤ 0, for all x ∈ S by definition of
the normal cone. For x ∈ intS, there exists δ > 0such that B(x, δ) ⊂ S. Since
all s used in f(·) have norm one, f(x) < δ/2. Finally, for x /∈ S, there exists a
supporting hyperplane s of S at y ∈ ∂S that strictly separate x and S, that is,
s ∈ NS(y). This implies that f(x) > 0.

Proof of Theorem 12. Assume (i). The symmetry points are the solution for
the following mathematical programming problem

sym(S) = max
x,α

α

s.t. f(x− α(v − x)) ≤ 0 for all v ∈ S
(27)

Note that the necessary conditions for this problem implies that

0 ∈
∑

v∈V (x∗)

λv∂f(v)

for some nonzero, nonnegative λ. Since ∂f(v) = conv {s ∈ NS(v) : ‖s‖ = 1}, it
implies (ii).

Assume (ii). First note that for any v ∈ V (x∗), 0 /∈ ∂f(v) (otherwise f would
be nonnegative). Thus, 0 ∈ conv SV (x∗) implies that int(cone SV (x∗))o = ∅.
Thus, for any d ∈ IRn, 〈d, s〉 ≥ 0 for some s ∈ SV (x∗). That is, v = x∗−α∗(w−
x∗) ∈ V (x∗) for some w ∈ ∂S, s ∈ ∂f(v). Thus,

f(x∗ + d− α∗(w − x∗ − d)) ≥ f(x∗ − α(w − x∗)) + (1 + α∗)〈s, d〉
≥ f(x∗ − α(w − x∗)) = 0 (28)

This implies that K = x∗+d−α∗(S−x∗−d) * intS. If K * S, then sym(x∗+
d, S) < α∗, otherwise, if K ⊂ S, sym(x∗ + d, S) = α∗ by Lemma 1.

We close this section with some properties of the set of symmetry points
Sopt(S). Note that Sopt(S) is not necessarily a singleton. To see how multiple
symmetry points can arise, consider S := {x ∈ IR3 : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤
1, 0 ≤ x3 ≤ 1}, which is the cross product of a 2-dimensional simplex and a unit
interval. Therefore sym(S) = min{ 1

2 , 1} = 1
2 and Sopt(S) = {x ∈ IR3 : x1 =

x2 = 1
2 , x3 ∈ [ 13 , 2

3 ]}.

Proposition 3. Under Assumption A, Sopt(S) is compact convex set with no
interior. If S is a strictly convex set, then Sopt(S) is a singleton.

Proof: Convexity follows directly from the quasiconcavity of sym(·, S).
Suppose that ∃x̂ ∈ intSopt(S), this implies that exists δ > 0 such that for all
x ∈ B(x̂, δ) ⊂ Sopt(S), sym(x, S) = α.

α(x̂ + δd− S) ⊆ S − (x̂ + δd) , ∀d, ‖d‖ ≤ 1

α(x̂− S) + B(0, δ(1 + α)) ⊆ S − x̂

using Lemma 1, α < sym(x̂, S), a contradiction.
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For last statement, suppose ∃{x1, x2} ⊂ Sopt(S), let α be the optimal sym-
metry value. Since any strict convex combination of elements of S must lie in
the interior of S, for any γ ∈ (0, 1),

(γx1 + (1− γ)x2)− α(S − (γx1 + (1− γ)x2)) ⊆ int S

using Lemma 1, sym(γx1 + (1− γ)x2, S) > α.

Remark 4. In [8], Klee proved the following notable relation between sym(S)
and the dimension of Sopt(S):

1
sym(S)

+ dim(Sopt(S)) ≤ n ,

which immediately implies that multiple symmetry points can only exist in di-
mensions n ≥ 3.

5. Computing a Symmetry Point of S when S is Polyhedral

Our interest lies in computing an ε-approximate symmetry point of S, which is
a point x ∈ S that satisfies:

sym(x, S) ≥ (1− ε)sym(S) .

5.1. Polyhedra Represented by Linear Inequalities

In this section, we assume that S is given as the intersection of m inequalities,
i.e., S := {x ∈ IRn : Ax ≤ b}. We present two methods for computing an ε-
approximate symmetry point of S. The first method is based on approximately
solving a single linear program with m2 + m inequalities. For such a method,
an interior-point algorithm would require O(m6) operations per Newton step,
which is clearly unattractive. Our second method involves solving m + 1 linear
programs each of which involves m linear inequalities in n unrestricted variables.
This method is more complicated to evaluate, but is clearly more attractive
should one want to compute an ε-approximate symmetry point in practice.

5.1.1. First Approach Let x̄ ∈ S be given, and let α ≤ sym(x̄, S). Then from
the definition of sym(·, S) in (1) we have:

A(x̄ + v) ≤ b ⇒ A(x̄− αv) ≤ b ,

which we restate as:

Av ≤ b−Ax̄ ⇒ −αAi·v ≤ bi −Ai·x̄ , i = 1, . . . , m . (29)

Now apply a theorem of the alternative to each of the i = 1, . . . , m implications
(29). Then (29) is true if and only if there exists an m×m matrix Λ of multipliers
that satisfies:
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ΛA = −αA
Λ(b−Ax̄) ≤ b−Ax̄

Λ ≥ 0 .
(30)

Here “Λ ≥ 0” is componentwise for all m2 components of Λ. This means that
sym(x̄, S) ≥ α if and only if (30) has a feasible solution. This also implies that
sym(S) is the optimal objective value of the following optimization problem:

max
x,Λ,α

α

s.t. ΛA = −αA
Λ(b−Ax) ≤ b−Ax
Λ ≥ 0 ,

(31)

and any solution (x∗, Λ∗, α∗) of (31) satisfies sym(S) = α∗ and x∗ ∈ Sopt(S).
Notice that (31) is not a linear program. To convert it to a linear program, we
make the following change of variables:

γ =
1
α

, Π =
1
α

Λ , y =
1 + α

α
x ,

which can be used to transform (31) to the following linear program:

min
y,Π,γ

γ

s.t. ΠA = −A
Πb + Ay − bγ ≤ 0
Π ≥ 0 .

(32)

If (y∗,Π∗, γ∗) is a solution of (32), then α∗ := 1/γ∗ = sym(S) and x∗ :=
1

1+γ∗ y
∗ ∈ Sopt(S). Notice that (32) has m2 + m inequalities and mn equations.

Suppose we know an approximate analytic center xa of S. Then it is possible
to develop an interior-point method approach to solving (32) using information
from xa, and one can prove that a suitable interior-point method will compute
an ε-approximate symmetry point of S in O

(
m ln

(
m
ε

))
iterations of Newton’s

method. However, due to the m2 + m inequalities, each Newton step requires
O(m6) operations, which is clearly unattractive.

5.1.2. Second Approach The motivation for this approach comes from the dual
problem associated with (32):

max
Ψ,σ,Φ

−tr(AΨ)

s.t. bσT −AΨ − Φ = 0
AT σ = 0
bT σ = 1
σ ≥ 0, Φ ≥ 0 ,

(33)

where tr(M) denotes the trace of a square matrix M . Notice that if σ > 0, then
the first set of constraints implies that Ψ·i

σi
∈ S, and the objective function can

be rewritten as −1 +
∑m

i=1 σi

(
bi −Ai· Ψ·iσi

)
.
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Define the following scalar quantities δ∗i , i = 1, . . . , m:

δ∗i := max
x

−Ai·x

s.t. Ax ≤ b ,
(34)

and notice that bi + δ∗i is the range of Aix over x ∈ S if the ith constraint is
not strictly redundant on S. We compute δ∗i , i = 1, . . . ,m by solving m linear
programs whose feasible region is exactly S. The following proposition shows
that if we know δ∗i , i = 1, . . . , m, then computing sym(x, S) for any x ∈ S is a
simple min-ratio test.

Proposition 4. Let S = {x ∈ IRn : Ax ≤ b} be given. For each x ∈ S,

sym(x, S) = min
i=1,...,m

{
bi −Ai·x
δ∗i + Ai·x

}
.

Proof: Let α = sym(x, S). Then for all y ∈ S, x + α(x− y) ∈ S, so

Ai·x + αAi·x + α(−Ai·y) ≤ bi , i = 1, . . . , m .

This implies that

Ai·x + αAi·x + αδ∗i ≤ bi , i = 1, . . . , m ,

whereby

α ≤ min
i=1,...,m

{
bi −Ai·x
δ∗i + Ai·x

}
.

On the other hand, let γ := min
i=1,...,m

{
bi −Ai·x
δ∗i + Ai·x

}
. Then for all y ∈ S and

i = 1, . . . , m we have:

bi −Ai·x ≥ γ(δ∗i + Ai·x) ≥ γ(−Ai·y + Ai·x), i = 1, . . . , m .

Thus
Ai·x + γAi·x + γ(−Ai·y) ≤ bi ;

therefore
Ai·(x + γ(x− y)) ≤ bi

which implies that α ≥ γ. Thus α = γ.
Proposition 4 can be used to create another single linear program to com-

pute sym(S) as follows. Let δ∗ := (δ∗1 , . . . , δ∗m) and consider the following linear
program that uses δ∗ in the data:

max
x,θ̌

θ̌

s.t. Ax + θ̌(δ∗ + b) ≤ b .
(35)

Proposition 5. Let (x∗, θ̌∗) be an optimal solution of the linear program (35).
Then x∗ is a symmetry point of S and sym(S) = θ̌∗

1−θ̌∗
.
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Proof: Suppose that (x, θ̌) is a feasible solution of (35). Then
1
θ̌
≥ δ∗i + bi

bi −Ai·x
,

whereby
1− θ̌

θ̌
=

1
θ̌
− 1 ≥ δ∗i + Ai·x

bi −Ai·x
,

and so
bi −Ai·x
δ∗i + Ai·x

≥ θ̌

1− θ̌
, i = 1, . . . , m .

It then follows from Proposition 4 that sym(x, S) ≥ θ̌

1− θ̌
, which implies that

sym(S) ≥ θ̌∗

1−θ̌∗
. The proof of the reverse inequality follows similarly.

This yields the following “exact” method for computing sym(S) and a sym-
metry point x∗:

Exact Method:

Step 1 For i = 1, . . . ,m solve the linear program (34) for δ∗i .
Step 2 Let δ∗ := (δ∗1 , . . . , δ∗m). Solve the linear program (35) for an optimal

solution (x∗, θ̌∗). Then x∗ ∈ Sopt(S) and sym(S) = θ̌∗

1−θ̌∗
.

This method involves the exact solution of m + 1 linear programs. The first
m linear programs can actually be solved in parallel, and their optimal objective
values are used in the data for the (m + 1)st linear program. The first m linear
programs each have m inequalities in n unrestricted unknowns. The last linear
program has m inequalities and n + 1 unrestricted unknowns, and could be
reduced to n unknowns using variable elimination if so desired.

From a complexity perspective, it is desirable to consider solving the m + 1
linear programs for a feasible and near-optimal solution. Ordinarily, this would
be easy to analyze. But in this case, the approximately optimal solution to the m
linear programs (34) will then yield imprecise input data for the linear program
(35). Nevertheless, one can construct an inexact method with an appropriately
good complexity bound. Below is a description of such a method.

Inexact Method:

Step 1 For i = 1, . . . , m, approximately solve the linear program (34), stopping
each linear program when a feasible solution x̄ is computed for which the
duality gap ḡ satisfies ḡ ≤ ε(bi−Ai·x̄)

4.1 . Set δ̄i ← −Ai·x̄.
Step 2 Let δ̄ := (δ̄1, . . . , δ̄m). Approximately solve the linear program

max
x,θ

θ

s.t. Ax + θ(δ̄ + b) ≤ b,
(36)

stopping when a feasible solution (x̄, θ̄) is computed for which the duality gap
ḡ satisfies θ̄ ≥ (θ̄ + ḡ)(1 − ε

4.1 ). Then x̄ will be an ε-approximate symmetry
point of S and and θ̄(1−ε)

1−θ̄
≤ sym(S) ≤ θ̄

1−θ̄
.
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Notice that this method requires that the LP solver computes primal and
dual feasible points (or simply primal feasible points and the duality gap) at
each of its iterations; such a requirement is satisfied, for example, by a standard
feasible interior-point method, see Appendix B.

In order to prove a complexity bound for the Inexact Method, we will assume
that S is bounded and has an interior, and that an approximate analytic center
xa of the system Ax ≤ b has already been computed; for details also see Appendix
B.

Theorem 13. Let ε ∈ (0, 1/10) be given. Suppose that n ≥ 2 and xa is a β = 1
8 -

approximate analytic center of S. Then starting with xa and using a standard
feasible interior-point method to solve each of the linear programs in Steps 1 and
2, the Inexact Method will compute an ε-approximate symmetry point of S in no
more than ⌈

10m1.5 ln
(

10m

ε

)⌉

total iterations of Newton’s method.

We now proceed to assemble the steps of the proof of Theorem 13. The
following two propositions will be used to show that the method indeed computes
an ε-approximate symmetry point of S.

Proposition 6. Let ε ∈ (0, 1/10) be given, set ε̃ := ε/4.1, and suppose that
Step 1 of the Inexact Method is executed. Then δ̄ = (δ̄1, . . . , δ̄m) satisfies δ∗i −
ε̃(bi + δ∗i ) ≤ δ̄i ≤ δ∗i , i = 1, . . . ,m. Furthermore, for any given x ∈ S, let
θ := mini

{
bi−Ai·x
δ̄i+bi

}
. Then

sym(x, S) ∈
[

θ

1− θ

(
1− 2ε̃

1− ε̃

)
,

θ

1− θ

]
.

Proof: For a given i = 1, . . . , m let ḡ denote the duality gap computed in the
stopping criterion of Step 1 of the Inexact Method. Then

δ∗i ≥ δ̄i ≥ δ∗i − ḡ ≥ δ∗i − ε̃(bi + δ∗i ) , (37)

which also implies

(1− ε̃)(bi + δ∗i ) ≤ (bi + δ̄i) ≤ (bi + δ∗i ) . (38)

For a given x ∈ S let α := sym(x, S) and θ̌ := mini

{
bi−Ai·x
δ∗i +bi

}
. Then from

Proposition 4 we have

α = min
i

{
bi −Ai·x
δ∗i + Ai·x

}
=

θ̌

1− θ̌
. (39)
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Notice that δ̄i ≤ δ∗i for all i, whereby θ ≥ θ̌, which implies that α = θ̌
1−θ̌

≤ θ
1−θ .

We also see from (39) that θ̌ ≤ 1/2. Next notice that (38) implies that θ̌ ≥
θ(1− ε̃). Therefore

α =
θ̌

1− θ̌
≥ θ(1− ε̃)

1− θ̌
=

θ(1− ε̃)
1− θ

1− θ

1− θ̌

=
θ(1− ε̃)
1− θ

(
1 +

θ̌ − θ

1− θ̌

)
≥ θ(1− ε̃)

1− θ

(
1 +

θ̌ − 1
1−ε̃ θ̌

1− θ̌

)

=
θ(1− ε̃)
1− θ

(
1 +

θ̌( −ε̃
1−ε̃ )

1− θ̌

)
≥ θ(1− ε̃)

1− θ

(
1− ε̃

1− ε̃

)

≥ θ

1− θ

(
1− 2ε̃

1− ε̃

)
,

(40)

where the next-to-last inequality follows from θ̌ ∈ [0, 1/2].

Proposition 7. Let ε ∈ (0, 1/10] be given, set ε̃ := ε/4.1, and suppose that
Steps 1 and 2 of the Inexact Method are executed, with output (x̄, θ̄). Then

sym(x̄, S) ≥ sym(S)
(

1− 4ε̃

1− ε̃

)
≥ (1− ε)sym(S) .

Proof: Let θ∗ denote the optimal objective value of (36), and notice that
δ̄ ≤ δ∗ implies that θ∗ ≥ θ̌∗. Let ḡ be computed in Step 2 of the method. It
follows from the stopping criterion in Step 2 that

θ̄ ≥ (θ̄ + ḡ)(1− ε̃) ≥ (θ∗)(1− ε̃) ≥ (θ̌∗)(1− ε̃) . (41)

From Proposition 6 we have

sym(x̄, S) ≥ θ̄

1− θ̄

(
1− 2ε̃

1− ε̃

)
≥ θ̌∗(1− ε̃)

1− θ̌∗(1− ε̃)

(
1− 2ε̃

1− ε̃

)

=
θ̌∗(1− ε̃)
1− θ̌∗

(
1− 2ε̃

1− ε̃

)
1− θ̌∗

1− θ̌∗(1− ε̃)

≥ sym(S)(1− ε̃)
(

1− 2ε̃

1− ε̃

)(
1/2

1− 1/2 + (1/2)ε̃

)

= sym(S)(1− ε̃)
(

1− 2ε̃

1− ε̃

)(
1− ε̃

1 + ε̃

)

≥ sym(S)
(
1− 4ε̃

1−ε̃

)
≥ sym(S)(1− ε) ,

(42)
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where the middle inequality uses the fact that θ̌∗ ∈ [0, 1/2], and the final in-
equality uses the fact that ε ∈ (0, 1/10].

The correctness of the Inexact Method now follows directly from Propositions
6 and 7. It remains to prove the complexity bound of Theorem 13, which will be
accomplished with the help of the following two propositions.

Proposition 8. Let ε ∈ (0, 1/10) be given, and set ε̃ := ε/4.1. Suppose that xa

is a β = 1
8 -approximate analytic center of S. Then starting with xa, the stopping

criterion of each linear program in Step 1 will be reached in no more than
⌈
(2 + 4

√
m) ln

(
42m

ε

)⌉

iterations of Newton’s method.

Proof: Step 1 is used to approximately solve each of the linear programs
(34) for i = 1, . . . , m. Let us fix a given i. Appendix B describes the generic
complexity of a standard feasible path-following interior-point method, which
we will apply to (34). A triplet (x, s, z) together with a path parameter µ is a
β-approximate solution for µ for the linear program (34) if the following system
is satisfied

Ax + s = b, s > 0
AT z = −Ai·
‖ 1

uSz − e‖ ≤ β .
(43)

Now let xa denote the given β = 1
8 -approximate analytic center of the system

Ax ≤ b. Then there exists (or it is easy to compute) multipliers za together with
slacks sa that satisfy the following system:

Axa + sa = b, sa > 0
AT za = 0
‖Saza − e‖ ≤ 1

8 .
(44)

Define:
(x0, s0, z0, µ0) = (xa, sa, 8sa

i z − ei, 8sa
i ) , (45)

where ei is the ith unit vector in IRm. It is then straightforward to show that
(45) is a (1/4)-approximate solution of (43) for the parameter µ0, so we can start
the interior-point method with (45). We next bound the value of the parameter
µ when the stopping criterion is achieved. Let (x̄, s̄, z̄, µ̄) denote the values of
(x, s, z, µ) when the algorithm stops. To keep the analysis simple, we assume
that the stopping criterion is met exactly. We therefore have from (51) that:

(5/4)mµ̄ ≥ ḡ = ε̃(bi −Ai·x̄) = ε̃s̄i ,

which leads to the ratio bound:

µ0

µ̄
≤ 8msa

i

(4/5)ε̃s̄i
.
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However, noting that

s̄i = bi −Aix̄ ≥ bi + δ∗i − ḡ = bi + δ∗i − ε̃s̄i ≥ bi −Aix
a − ε̃s̄i = sa

i − ε̃s̄i ,

we obtain sa
i ≤ (1 + ε̃)s̄i, and substituting this into the ratio bound yields:

µ0

µ̄
≤ 10m(1 + ε̃)

ε̃
≤ 42m

ε
,

using ε ≤ 1/10 and ε̃ = ε/4.1. This then yields via Theorem 14 the bound of

⌈
(2 + 4

√
m) ln

(
42m

ε

)⌉

iterations of Newton’s method.

Proposition 9. Let ε ∈ (0, 1/10) be given,m ≥ 3 and set ε̃ := ε/4.1. Suppose
that xa is a β = 1

8 -approximate analytic center of S. Then starting with xa, the
stopping criterion of the linear program in Step 2 will be reached in no more
than ⌈

(2 + 4
√

m) ln
(

6m

ε

)⌉

iterations of Newton’s method.

Proof: We proceed in a similar fashion as the proof of Proposition 8, making
use of the generic interior-point results described in Appendix B. A quadruplet
(x, θ, s, z) together with a path parameter µ is a β-approximate solution for µ
for the linear program (36) if the following system is satisfied

Ax + (δ̄ + b)θ + s = b, s > 0
AT z = 0
(δ̄ + b)T z = 1
‖ 1

uSz − e‖ ≤ β .

(46)

Now let xa denote the given β = 1
8 -approximate analytic center of the system

Ax ≤ b, which together with multipliers za and slacks sa, satisfy (44). Define:

(x0, θ0, s0, z0, µ0) =
(

xa, 0, sa,
za

(δ̄ + b)T za
,

1
(δ̄ + b)T za

)
. (47)

It is then straightforward to show that (47) is a (1/4)-approximate solution of
(46) for the parameter µ0, so we can start the interior-point method with (47).
We now bound the value µ0. It follows from (44) and m ≥ 3 that

(sa)T za = eT (Saza − e + e) ≥ −1
8
√

m + m ≥ 9m

10
.
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Therefore
1
µ0

= (b + δ̄)T za

≥ (b + δ∗)T za(1− ε̃) (from (38))

≥ (sa)T za(1− ε̃)

≥ 9m(1− ε̃)
10

,

whereby µ0 ≤ 10
9m(1−ε̃) .

We next bound the value of the parameter µ when the stopping criterion is
achieved. Let (x̄, θ̄, s̄, z̄, µ̄) denote the values of (x, θ, s, z, µ) when the algorithm
stops. To keep the analysis simple, we assume that the stopping criterion is met
exactly. We therefore have from (51) that:

θ̄ = (θ̄ + ḡ)(1− ε̃) ≤ (θ̄ + (5/4)mµ̄)(1− ε̃) .

This implies that

µ̄ ≥ (4/5)θ̄ε̃
m(1− ε̃)

≥ (4/5)θ̌∗ε̃
m

(from (41))

=
(4/5)ε̃

m

(
sym(S)

1 + sym(S)

)
(from Proposition 5)

≥ (4/5)ε̃
m× (n + 1)

(since sym(S) ≥ 1
n )

≥ (4/5)ε̃
m2

(since m ≥ n + 1) .

We now have:

µ0

µ̄
≤ m2

(4/5)ε̃
10

9m(1− ε̃)
=

50m

36ε̃(1− ε̃)
≤ 6m

ε
,

using ε ≤ 1/10 and ε̃ = ε/4.1. This then yields via Theorem 14 the bound of
⌈
(2 + 4

√
m) ln

(
6m

ε

)⌉

iterations of Newton’s method.
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Proof of complexity bound of Theorem 13: From Propositions 8 and 9 it
follows that the total number of Newton steps computed by the Inexact Method
is bounded from above by:

m

⌈
(2 + 4

√
m) ln

(
42m

ε

)⌉
+

⌈
(2 + 4

√
m) ln

(
6m

ε

)⌉
≤

⌈
10m1.5 ln

(
10m

ε

)⌉

since m ≥ n + 1 ≥ 3 and ε < 1/10.

Acknowledgements. We thank Arkadi Nemirovski for his insightful comments on the subject
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3.

Appendix

A. sym(x, S) and sym(S) under Relaxed Assumptions

In all sections of the paper we assumed that the set S is a convex body, that
is, a convex compact set with non empty interior. This section is dedicated to
justify this assumption discussing the extreme cases for completeness.

Remark 5. If one does not restrict the set S and the point x, some extreme cases
may occur. It is clear that sym(x, S) = −∞, for all x /∈ S (this case includes
S = ∅). On the other hand, if S is any affine subspace, sym(x, S) = ∞ for all
x ∈ S. Finally, if the recession cone of S is not a subspace, then sym(x, S) = 0
for all x ∈ S.

There is one “extreme” case not treated in the previous remark. Although it
is not hard, it is stated as a Lemma.

Lemma 5. Suppose that S = P +H, where H is a subspace and P is a bounded
convex set in H⊥, and x ∈ S, then the symmetry of S with respect to x is
completely defined by P .

Proof: Without loss of generality, we can assume that x = 0 since symmetry
is invariant under translation. Trivially, −αS ⊆ S iff −α(P + H) ⊆ (P + H).
Since P and H lie in orthogonal spaces, for each x ∈ S, there exist a unique
(u, v) ∈ P ×H such that x = u + v. Since −αH = H, −αx ∈ S iff −αu ∈ P .

Regarding the symmetry points, it is interesting to observe that at least one
such point always exists. This is always the case independently of S being closed,
open or neither. On the other hand, even if sym(0, S) = 1, one cannot claim that
−sym(0, S)S ⊆ S in general1.

In fact, for any G ⊆ ∂S such that G ∪ intS is convex, and for any x ∈ intS,
one has sym(x, intS) = sym(x,G ∪ intS) = sym(x, S̄).

1 For example, consider the interval S = [−1, 1), its symmetry value is one, attained at 0,
but (−1, 1] * [−1, 1).
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B. A Standard Interior Point Method for Linear Programming.

Consider the following linear programming problem in “dual” form, where M is
an m× k matrix:

P : VAL := maxx cT x
s.t. Mx + s = f

s ≥ 0
x ∈ IRn, s ∈ IRm

(48)

For β ∈ (0, 1), a β-approximate analytic center of the primal feasibility system
Mx ≤ g is a feasible solution xa of P (together with its slack vector sa =
g −Mxa) for which there exists dual multipliers za that satisfy:

Mxa + sa = f, sa > 0
MT za = 0
‖Saza − e‖ ≤ β ,

(49)

where S is the diagonal matrix whose diagonal entries correspond to the com-
ponents of s, and e is the vector of ones: e = (1, . . . , 1).

We say that (x̄, s̄, z̄), together with barrier parameter µ̄ > 0, is a β-approximate
solution for the parameter µ̄ if the following system is satisfied:

Mx̄ + s̄ = f, s̄ > 0
MT z̄ = c
‖ 1

ū Z̄s̄− e‖ ≤ β .
(50)

The duality gap associated with the variables (x̄, s̄, z̄) is ḡ := fT z̄ − cT x̄ = s̄T z̄.
It follows from (50) that this gap must satisfy:

mµ̄(1− β) ≤ ḡ ≤ mµ̄(1 + β) , (51)

hence
VAL ≤ cT x̄ + mµ̄(1 + β) . (52)

A standard interior-point method for solving P uses Newton’s method to
compute successive β-approximate solutions for a decreasing sequence of values
of µ. Following [13] or [14], one can prove the following result about the efficiency
of the method.

Theorem 14. Suppose that β = 1/4 and that (x0, s0, z0) is a given β-approximate
solution for the barrier parameter µ0 > 0, and we wish to compute a β-approximate
solution (x̄, s̄, z̄) for the barrier parameter µ̄ ∈ (0, µ0). Then such a solution can
be computed in at most

⌈
(2 + 4

√
m) ln

(
µ0

µ̄

)⌉

iterations of Newton method, and will satisfy ḡ := fT z̄ − cT x̄ ≤ (5/4)mµ̄ and
VAL ≤ cT x̄ + (5/4)mµ̄. ut
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C. Polyhedra Represented by the Convex Hull of Points

In this case, m points are given, {wi}m
i=1 ⊂ IRn, and our set is defined by

S =

{
m∑

i=1

λiw
i ∈ IRn : eT λ = 1, λ ≥ 0

}

In order to verify if sym(x, S) ≥ α, we need to check if

(1 + α)x− αwi ∈ conv {wj : j = 1, . . . , m} for every i = 1, . . . , m, (53)

which can be achieved by solving a system of linear inequalities since x and α is
fixed.

To solve the global problem, solve the following LP

max
α,y,λ,µ

α

s.t. −αwi + y = zi for i = 1, . . . ,m

zi =
m∑

k=1

λi
kwk for i = 1, . . . ,m

y =
m∑

k=1

µkwk

eT λi = 1, λi ≥ 0, for i = 1, . . . ,m
eT µ = 1 + α, µ ≥ 0

(54)

A suitable initial point for this problem is α = 0, zi = y = 1
m

∑m
k=1 wk, λi =

µ = 1
me.
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