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Abstract

In this paper we study the approximation algorithms for a class of discrete quadratic opti-
mization problems in the Hermitian complex form. A special case of the problem that we study
corresponds to the max-3-cut model used in a recent paper of Goemans and Williamson. We first
develop a closed-form formula to compute the probability of a complex-valued normally distributed
bivariate random vector to be in a given angular region. This formula allows us to compute the ex-
pected value of a randomized (with a specific rounding rule) solution based on the optimal solution
of the complex SDP relaxation problem. In particular, we study the limit of that model, in which
the problem remains NP-hard. We show that if the objective is to maximize a positive semidefinite
Hermitian form, then the randomization-rounding procedure guarantees a worst-case performance
ratio of π/4 ≈ 0.7854, which is better than the ratio of 2/π ≈ 0.6366 for its counter-part in the
real case due to Nesterov. Furthermore, if the objective matrix is real-valued positive semidefinite
with non-positive off-diagonal elements, then the performance ratio improves to 0.9349.
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1 Introduction

The pioneering work of Goemans and Williamson [5] has caused a great deal of excitement in the
field of optimization, as it used a new tool (SDP) in continuous optimization, through randomization
and probabilistic analysis, to yield an excellent approximation ratio for a classical combinatorial opti-
mization problem, known as the max-cut problem. This ground-breaking work has been extended in
various ways since its first appearance. Among others, Frieze and Jerrum [4] extended the method to
solve the general max-k-cut problem. Bertsimas and Ye [3] introduced another randomization scheme
using normal distributions, to achieve the same approximation result as in Goemans and Williamson’s
original paper [5]. The Bertsimas-Ye analysis makes use of an important result in statistics, which
states that the probability of a bivariate (2-dimensional) normally distributed random vector to be
in the first orthant can be expressed analytically using elementary functions. This is impossible how-
ever, for any dimension higher than three; see [1]. Recently, Goemans and Williamson [6] proposed
another novel approach to solve the max-3-cut problem, using the unit circle in the complex plane as
a key modelling ingredient. In this paper we show that it is possible to compute the probability of the
bivariate complex-valued normally distributed random vector to be in a specific angular region in C2.
Using this result, we are able to compute the expected quality of a particular randomized solution
for solving a general quadratic optimization model, where the variables take values from the roots of
zm = 1 (m ≥ 2 is an integer parameter of the model). The model of Goemans and Williamson for
max-3-cut (m = 3) is a special case of this general model. It is interesting to study the limit of this
model; that is, the case where m →∞. It turns out that the problem remains NP-hard. However, the
corresponding complex SDP relaxation yields an approximation ratio of π/4 ≈ 0.7854, whereas for its
counter-part in the real case, the ratio is 2/π ≈ 0.6366 as shown by Nesterov [8]. If the off-diagonal
elements of the objective matrix are real-valued and non-positive, then the approximation ratio is
actually 0.9349.

This paper is organized as follows. In Section 2 we discuss the computation of the probability for
the complex-valued normal distributions. In Section 3 we apply the results developed in Section 2
to solve complex-valued quadratic optimization problems. In particular, Subsection 3.1 discusses
the Hermitian quadratic function minimization problem, where the complex decision variables take
discrete values. Subsection 3.2 considers the continuous version of the problem. Subsection 3.3
considers a special case where a sign restriction on the objective matrix is observed.

Notation. Throughout, we denote by ā the conjugate of a complex number a, by Cn the space of
n-dimensional complex vectors. For a given vector z ∈ Cn, zH denotes the conjugate transpose of
z. The space of n × n real symmetric and complex Hermitian matrices are denoted by Sn and Hn,
respectively. For a matrix Z ∈ Hn, we write Re Z and Im Z for the real and imaginary part of Z,
respectively. Matrix Z being Hermitian implies that Re Z is symmetric and Im Z is skew-symmetric.
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We denote by Sn
+ (Sn

++) and Hn
+ (Hn

++) the cones of real symmetric positive semidefinite (positive
definite) and complex Hermitian positive semidefinite (positive definite) matrices, respectively. The
notation Z º (Â 0) means that Z is positive semidefinite (positive definite). For two complex matrices
Y and Z, their inner product Y •Z = Re (tr Y HZ) = tr

[
(Re Y )T(Re Z) + (Im Y )T(Im Z)

]
, where

tr denotes the trace of a matrix and T denotes the transpose of a matrix.

2 Complex Bivariate Normal Distribution

It is well known that the density function of an n-dimensional real-valued multivariate normal dis-
tribution is given as follows

f(x) =
1

(2π)n/2
√

detΩ
exp

(
−1

2
(x− µ)TΩ−1(x− µ)

)
,

where µ ∈ <n is the mean and Ω ∈ Sn
++ is the covariance matrix.

Let us consider a complex-valued normally distributed random variable in C, with the mean value
z0 ∈ C and variance σ2 ∈ <+. (For more information on the complex-valued normal distributions,
we refer the reader to [2]). Similar as in the real-valued case, its density function can be written as

f(z) =
1

2πσ2
exp

(
−1

2
|z − z0|2/σ2

)
, z ∈ C.

Denote by Nc(z0, σ
2) the complex-valued normal distribution with mean z0 and variance σ2.

Using Euler’s formula, i.e., letting z − z0 = ρeiθ, we have

f(ρ, θ) =
ρ

2πσ2
exp

(
− ρ2

2σ2

)
, with (ρ, θ) ∈ [0,+∞)× [0, 2π),

where the variable transformation is
{

Re (z − z0) = ρ cos θ

Im (z − z0) = ρ sin θ.

As a matter of terminology, ρ is usually called the modulus of z − z0, also denoted as |z − z0|; θ is
called the argument of z − z0, denoted as Arg (z − z0).

The density of the joint (complex-valued) normal distribution z = (z1, z2, ..., zn), with zk ∈ C,
k = 1, ..., n, has the following form

f(z) =
1

(2π)n detΩ
exp

(
−1

2
(z − µ)HΩ−1(z − µ)

)
,

where z, µ ∈ Cn, and Ω ∈ Hn
++; µ is the mean vector, and Ω is the covariance matrix.
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Let us denote the above complex-valued normal distribution as Nc(µ,Ω).

The bivariate case is of particular interest to us. Consider a complex-valued, bivariate normal random
vector. Suppose that it has zero-mean. Furthermore, suppose that its covariance matrix is

Ω =

[
1 λ

λ̄ 1

]
Â 0

where λ̄ ∈ C denotes the conjugate of λ ∈ C. In particular, let λ = γeiα, and so λ̄ = γe−iα. Since
Ω Â 0, it follows that 1− γ2 > 0. Moreover,

Ω−1 =
1

1− γ2

[
1 −γe−iα

−γeiα 1

]
.

Then, by letting z1 = ρ1e
iθ1 and z2 = ρ2e

iθ2 , we may rewrite the density function as

f(ρ1, ρ2, θ1, θ2) =
1

4π2(1− γ2)
exp


− 1

2(1− γ2)

[
ρ1e

iθ1

ρ2e
iθ2

]H [
1 −γe−iα

−γeiα 1

][
ρ1e

iθ1

ρ2e
iθ2

]


=
ρ1ρ2

4π2(1− γ2)
exp

(
−ρ2

1 + ρ2
2 − 2ρ1ρ2γ cos(−α + θ2 − θ1)

2(1− γ2)

)
,

where the domain of the variables is given as

(ρ1, ρ2, θ1, θ2) ∈ [0, +∞)2 × [0, 2π)2.

Now let us further introduce a variable transformation
{

ρ1 = ρ cos ξ

ρ2 = ρ sin ξ

with the domain (ρ, ξ) ∈ [0,+∞)× [0, π/2]. The density function can be further written as

f(ρ, ξ, θ1, θ2) =
ρ3 cos ξ sin ξ

4π2(1− γ2)
exp

(
−ρ2 − 2γρ2 cos ξ sin ξ cos(−α + θ2 − θ1)

2(1− γ2)

)

=
ρ3 sin 2ξ

8π2(1− γ2)
exp

(
−ρ2 − ρ2γ sin 2ξ cos(−α + θ2 − θ1)

2(1− γ2)

)
,

and the domain is (ρ, ξ, θ1, θ2) ∈ [0, +∞)× [0, π/2]× [0, 2π)2.

Let us note the following two simple facts.

Lemma 2.1 Suppose that a > 0 is a given real number. Then, it holds that
∫ ∞

0
ρ3 exp(−aρ2)dρ =

1
2a2

.
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Lemma 2.2 Suppose that −1 < b < 1 is a given real number. Then, with respect to the variable θ,
it holds that∫

sin θ

(1− b sin θ)2
dθ = − cos θ

(1− b2)(1− b sin θ)
+

2b

(1− b2)3/2
arctan

tan(θ/2)− b√
1− b2

+ C.

Consider 0 ≤ θb
1 < θe

1 ≤ 2π and 0 ≤ θb
2 < θe

2 ≤ 2π. Below we shall compute the probability that
(θ1, θ2) ∈ [θb

1, θ
e
1]× [θb

2, θ
e
2].

Let us denote

P : = Prob {θb
1 ≤ θ1 ≤ θe

1; θb
2 ≤ θ2 ≤ θe

2}

=
∫ θe

1

θb
1

∫ θe
2

θb
2

∫ π/2

0

[∫ ∞

0

ρ3 sin 2ξ

8π2(1− γ2)
exp

(
−ρ2 − ρ2γ sin 2ξ cos(−α + θ2 − θ1)

2(1− γ2)

)
dρ

]
dξdθ2dθ1

=
1

16π2(1− γ2)

∫ θe
1

θb
1

∫ θe
2

θb
2

[∫ π/2

0
sin 2ξ

(
2(1− γ2)

1− γ sin 2ξ cos(−α + θ2 − θ1)

)2

dξ

]
dθ2dθ1

=
1− γ2

4π2

∫ θe
1

θb
1

∫ θe
2

θb
2

[∫ π/2

0

sin 2ξ

(1− γ cos(−α + θ2 − θ1) sin 2ξ)2
dξ

]
dθ2dθ1

=
1− γ2

4π2

∫ θe
1

θb
1

∫ θe
2

θb
2

[
1

1− γ2 cos2(−α + θ2 − θ1)
+

+
γ cos(−α + θ2 − θ1) arccos (−γ cos(−α + θ2 − θ1))

(1− γ2 cos2(−α + θ2 − θ1))3/2

]
dθ2dθ1,

where in the third equality we used Lemma 2.1 and in the last equality we used Lemma 2.2.

To further compute the above integration, we note the following two more facts:

Lemma 2.3 With respect to the variable θ, it holds that
∫ [

1
1− γ2 cos2(θ)

+
γ cos θ arccos(−γ cos θ)

(1− γ2 cos2(θ))3/2

]
dθ =

1
1− γ2

(
θ +

γ sin θ arccos(−γ cos θ)√
1− γ2 cos2(θ)

)
+ C.

Lemma 2.4 With respect to the variable θ, it holds that
∫ [

γ sin(β − θ) arccos(−γ cos(θ − β))√
1− γ2 cos2(θ − β)

]
dθ =

1
2

(arccos(−γ cos(θ − β)))2 + C.

Using Lemma 2.3 we obtain

P =
1

4π2

[
(θe

1 − θb
1)(θ

e
2 − θb

2) +
∫ θe

1

θb
1

γ sin(θe
2 − α− θ1) arccos(−γ cos(θe

2 − α− θ1))√
1− γ2 cos2(θe

2 − α− θ1)
dθ1

−
∫ θe

1

θb
1

γ sin(θb
2 − α− θ1) arccos(−γ cos(θb

2 − α− θ1))√
1− γ2 cos2(θb

2 − α− θ1)
dθ1


 ,
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and further using Lemma 2.4, we have

P =
(θe

1 − θb
1)(θ

e
2 − θb

2)
4π2

+
1

8π2

[
(arccos(−γ cos(θe

1 − θe
2 + α)))2 −

(
arccos(−γ cos(θb

1 − θe
2 + α))

)2

+
(
arccos(−γ cos(θb

1 − θb
2 + α))

)2
−

(
arccos(−γ cos(θe

1 − θb
2 + α))

)2
]

.

Summarizing, we have proven the following result by a limiting argument.

Theorem 2.5 For the complex-value bivariate normal random vector

[
z1

z2

]
∈ Nc (µ,Ω) with

µ =

[
0
0

]
and Ω =

[
1 γeiα

γe−iα 1

]
∈ H2

+,

it holds that

Prob {θb
1 ≤ Arg z1 ≤ θe

1; θb
2 ≤ Arg z2 ≤ θe

2}

=
(θe

1 − θb
1)(θ

e
2 − θb

2)
4π2

+
1

8π2

[
(arccos(−γ cos(θe

1 − θe
2 + α)))2 −

(
arccos(−γ cos(θb

1 − θe
2 + α))

)2

+
(
arccos(−γ cos(θb

1 − θb
2 + α))

)2
−

(
arccos(−γ cos(θe

1 − θb
2 + α))

)2
]

.

3 Quadratic Programs and Complex SDP Formulations

3.1 Discrete Complex Quadratic Optimization

Suppose that Q is a Hermitian matrix. Consider the following quadratic programming problem with
discrete decision variables,

(P) max zHQz

s.t. zk ∈ {1, ω, . . . , ωm−1}, k = 1, . . . , n,

where m ≥ 2 and ω = ei
2π
m = cos 2π

m + i sin 2π
m . Denote the optimal value of (P) to be v(P ). Consider

the following complex-valued mapping Fm

Fm(z) :=
m(2− ω−1 − ω)

8π2

m−1∑

j=0

ωj(arccos(−Re (ω−jz)))2.

For a Hermitian matrix Z with |Zkl| ≤ 1 for all k, l, define the componentwise matrix function

Fm(Z) := (Fm(Zkl))n×n ∈ Hn.

It is easy to verify that Fm(z̄) = Fm(z). Therefore, if Z is Hermitian, then so is Fm(Z).
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Lemma 3.1 We have

1 =
m(2− ω−1 − ω)

8π2

m−1∑

j=0

ωj(arccos(−Re (ω−j)))2.

Moreover, for any z ∈ {1, ω, . . . , ωm−1} it follows that Fm(z) = z.

Proof. We observe that

m(2− ω−1 − ω)
8π2

m−1∑

j=0

ωj(arccos(− cos(
j

m
2π)))2

=
m(2− ω−1 − ω)

8π2

m−1∑

j=0

ωjπ2(1− 2j

m
)2

=
2− ω−1 − ω

8m


4

m−1∑

j=0

j2ωj − 4m

m−1∑

j=0

jωj


 . (1)

Moreover, we have
m−1∑

j=0

j2ωj =
m2(ω − 1)− 2mω

(ω − 1)2
and

m−1∑

j=0

jωj =
m

ω − 1
.

Substituting the above equations into (1) yields the intended result.

Suppose z = ωj0 for some j0 ∈ {1, . . . , n}. Then,

m(2− ω−1 − ω)
8π2

m−1∑

j=0

ωj(arccos(−Re (ω−jz)))2

=
m(2− ω−1 − ω)

8π2

m−1∑

j=0

ωj(arccos(− cos(
j0 − j

m
2π)))2

=
m(2− ω−1 − ω)

8π2

m−1∑

j=0

ωj(arccos(− cos(
j − j0

m
2π)))2

= ωj0 m(2− ω−1 − ω)
8π2

m−1−j0∑

j=−j0

ωj(arccos(− cos(
j

m
2π)))2

= ωj0 = z.

This completes the proof for Lemma 3.1. ¤

Hence we can rewrite (P) as

max Q • Fm(zzH)
s.t. zk ∈ {1, ω, . . . , ωm−1}, k = 1, . . . , n.
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Consider the following nonlinear complex semidefinite programming problem

(SP) max Q • Fm(Z)
s.t. Zkk = 1, k = 1, . . . , n,

Z º 0.

Let v(SP ) denote the optimal value of (SP).

Theorem 3.2 It holds that v(P ) = v(SP ).

Proof. Let ẑ is optimal to (P), then, by Lemma 3.1, Ẑ = ẑẑH is a feasible solution to (SP) and
Fm(Ẑ) = Ẑ. Therefore, v(SP ) ≥ Q • Fm(Ẑ) = Q • Ẑ = v(P ).

On the other hand, for every feasible solution Z of (SP), we randomly generate a complex vector ξ

such that ξ ∈ Nc(0, Z), and assign

yk = σ(ξk) =





1, if Arg ξk ∈ [0, 2π
m )

ω, if Arg ξk ∈ [2π
m , 2

m2π)
...
ωj , if Arg ξk ∈ [ j

m2π, j+1
m 2π)

...
ωm−1, if Arg ξk ∈ [m−1

m 2π, 2π)

(2)

and finally let zk = ȳk, k = 1, . . . , n. Suppose that Zkl = γeiα. Then by Theorem 2.5, we have

Prob {yk = ylω
j , yl = ωr}

= Prob {yk = ωj+r, yl = ωr}
= Prob {Arg ξk ∈ [

j + r

m
2π,

j + r + 1
m

2π), Arg ξl ∈ [
r

m
2π,

r + 1
m

2π)}

=
1

m2
+

1
8π2

(2(arccos(−γ cos(
j

m
2π + α)))2 − (arccos(−γ cos(

j − 1
m

2π + α)))2

−(arccos(−γ cos(
j + 1
m

2π + α)))2)

for any j, r ∈ {0, 1, . . . , m− 1}. Therefore, for any given k and l we have

Prob {ykȳl = ωj}

=
m−1∑

r=0

Prob {yk = ylω
j , yl = ωr}

=
1
m

+
m

8π2
(2(arccos(−γ cos(

j

m
2π + α)))2 − (arccos(−γ cos(

j − 1
m

2π + α)))2

−(arccos(−γ cos(
j + 1
m

2π + α)))2). (3)
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It follows that

E[ykȳl]

=
m−1∑

j=0

ωjProb {ykȳl = ωj}

=
m

8π2

m−1∑

j=0

ωj

(
2(arccos(−γ cos(

j

m
2π + α)))2 − (arccos(−γ cos(

j − 1
m

2π + α)))2

− (arccos(−γ cos(
j + 1
m

2π + α)))2
)

=
m

8π2

m−1∑

j=0

(2ωj − ωj−1 − ωj+1)(arccos(−γ cos(
j

m
2π + α)))2

=
m(2− ω−1 − ω)

8π2

m−1∑

j=0

ωj(arccos(−γ cos(
j

m
2π + α)))2

=
m(2− ω−1 − ω)

8π2

m−1∑

j=0

ωj(arccos(−Re (ωjZkl)))2. (4)

Consequently,

E[zkz̄l] = E[ykȳl]

=
m(2− ω−1 − ω)

8π2

m−1∑

j=0

ωj(arccos(−γ cos(
j

m
2π + α)))2

=
m(2− ω−1 − ω)

8π2

m−1∑

j=0

ωm−j(arccos(−γ cos(
j

m
2π + α)))2

=
m(2− ω−1 − ω)

8π2

m−1∑

j=0

ωj(arccos(−γ cos(
m− j

m
2π + α)))2

=
m(2− ω−1 − ω)

8π2

m−1∑

j=0

ωj(arccos(−Re (ω−jZkl)))2.

By the linearity of mathematical expectation, we get

E[zHQz] = Q • Fm(Z).

Since the solution z so generated is feasible to (P), we have

v(P ) ≥ E[zHQz]

= Q • Z,

for every feasible solution Z of (SP). This combining with v(SP ) ≥ v(P ) yields the desired result. ¤
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In particular, if m = 2 then one can verify that problem (P) reduces to

max xTQx

s.t. xk ∈ {±1}, k = 1, . . . , n,

and problem (SP) reduces to
max 2

πQ • arcsin(X)
s.t. Xkk = 1, k = 1, . . . , n,

X º 0,

where arcsin(X) := [arcsin(Xkl)]n×n. In that case, Theorem 3.2 specializes to Theorem 2.9 in [5] or
Theorem 1 in [11]. If m = 3, then (P) is

max zHQz

s.t. zk ∈ {1, ω, ω2}, k = 1, . . . , n,

with ω = ei
2π
3 . In fact, Goemans and Williamson [6] model the max-3-cut problem as

(M3C) max
∑

1≤k<l≤n wkl(zk − zl)H(zk − zl)
s.t. zk = {1, ω, ω2}, k = 1, . . . , n,

and they consider the following complex SDP relaxation

max
∑

1≤k<l≤n wkl(2− 2Re Zkl)
s.t. Zkk = 1, k = 1, . . . , n

Re Zkl ≥ −1/2, Re ωZkl ≥ −1/2, Re ω2Zkl ≥ −1/2, 1 ≤ k < l ≤ n

Z º 0.

Let the optimal solution of the SDP relaxation be Z∗. Then, Theorem 3.2 asserts that the expected
value of the randomized solution based on Z∗ is

∑

1≤k<l≤n

wkl(2− 2Re F3(Z∗kl))

where F3(z) = 9
8π2

[
(arccos(−Re z))2 + ω(arccos(−Re (ω2z)))2 + ω2(arccos(−Re (ωz)))2

]
.

Since (arccos(x))2 is a convex function, it follows that

Re F3(Z∗kl) =
9

8π2

[
(arccos(−Re Z∗kl))

2 − 1
2

(
(arccos(−Re (ω2Z∗kl)))

2 + (arccos(−Re (ωZ∗kl)))
2
)]

≤ 9
8π2

[
(arccos(−Re Z∗kl))

2 −
(

arccos
(
−1

2
Re

(
ωZ∗kl + ω2Z∗kl

)))2
]

=
9

8π2

[
(arccos(−Re Z∗kl))

2 − (arccos(
1
2
Re Z∗kl))

2

]
.
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Further noticing that

min
− 1

2
≤x<1

2 + 9
4π2

[(
arccos(x

2 )
)2 − (arccos(−x))2

]

2− 2x
= 0.8360...

the approximation ratio of Goemans and Williamson [6] thus follows from the fact that

∑

1≤k<l≤n

wkl(2− 2Re F3(Z∗kl))

≥
∑

1≤k<l≤n

wkl

{
2− 2× 9

8π2

[
(arccos(−Re Z∗kl))

2 − (arccos(
1
2
Re Z∗kl))

2

]}

≥ 0.836×
∑

1≤k<l≤n

wkl (2− 2Re Z∗kl)

≥ 0.836× v∗(M3C).

3.2 Continuous Complex Quadratic Optimization

By taking the limit, i.e. m →∞, the quadratic optimization model (P) becomes

(CP) max zHQz

s.t. |zk| = 1, k = 1, . . . , n,

where Q ∈ Hn
+. In that case, the problem is equivalent to

(SCP) max Q • F (Z)
s.t. Zkk = 1, k = 1, . . . , n,

Z º 0

with

F (z) := lim
m→∞Fm(z)

=
1
4π

∫ 2π

0
eiθ (arccos(−γ cos(θ − α)))2 dθ

where γ = |z| ≤ 1 and α = Arg z.

The applications of Hermitian quadratic optimization models such as (CP) can be found, e.g. in [7],
although in [7] the minimization version of the problem was considered.

Proposition 3.3 Problem (CP) is strongly NP-hard in general.
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Proof. The optimization problem in the form of

max |zTAz|
s.t. zk ∈ C, |zk| ≤ 1, k = 1, . . . , n

is called complex programming, and was shown in [9] to be NP-hard in general. (We thank André
Tits for drawing our attention to complex programming.) Problem (CP) is related to complex
programming, but they are not the same: the objective in (CP) takes the Hermitian form, and is
assumed to be positive semidefinite. The proof for Proposition 3.3 to be presented below is due to
Tom Luo of Minnesota University, who sketched this proof to us in a private communication.

As a first step we shall prove that the following problem

min zHQz

s.t. |zk| = 1, k = 1, . . . , n,

is NP-hard in general, where Q ∈ Hn
+.

To this end, we consider a reduction from the following strongly NP-complete matrix partition prob-
lem; i.e., given a matrix G = [G1, ..., GN ] ∈ <M×N , decide whether or not a subset of {1, ..., N}
exists, say I, such that

∑

k∈I

Gk =
1
2

N∑

k=1

Gk.

Let the decision vector be

z = (z0, z1, · · · , zN , zN+1, · · · , z2N )T ∈ C2N+1.

Let n = 2N + 1, and

A :=

(
−eN IN IN

−1
2GeN G 0T

N

)
∈ <(M+N)×n,

where eN ∈ <N is the vector of all ones. Let Q := ATA.

Next we show that a matrix partition exists is equivalent to the fact that there is z ∈ Cn with |zk| = 1
for all k, such that zHQz = 0. Clearly, zHQz = 0 is equivalent to Az = 0; that is,

0 = −z0 + zk + zN+k, k = 1, ..., N (5)

0 = −1
2

(
N∑

k=1

Gk

)
z0 +

N∑

k=1

Gkzk. (6)

Let zk/z0 = eiθk for k = 1, ..., 2N . Using (5) we have

cos θk + cos θN+k = 1 (7)

sin θk + sin θN+k = 0 (8)

12



where k = 1, ..., N . Equations (7) and (8) imply that θk ∈ {−π/3, π/3}. This in particular means
that cos θk = cos θN+k = 1/2 for k = 1, ..., N . Since

Re

(
−1

2

(
N∑

k=1

Gk

)
+

N∑

k=1

Gkzk/z0

)
= −1

2

N∑

k=1

Gk +
N∑

k=1

Gk cos θk = 0

is always satisfied, (6) is true if and only if

Im

(
−1

2

(
N∑

k=1

Gk

)
+

N∑

k=1

Gkzk/z0

)
=

N∑

k=1

Gk sin θk = 0,

which amounts to the existence of a matrix partition.

Let λmax be the maximum eigenvalue of Q. By observing that

min zHQz

s.t. |zk| = 1, k = 1, . . . , n,

is equivalent to
max zH(λmaxI −Q)z
s.t. |zk| = 1, k = 1, . . . , n,

where λmaxI −Q ∈ Hn
+, the desired result follows. ¤

For a given z ∈ C with z = γeiα and |z| = γ ≤ 1, we have

F (z) =
1
4π

∫ 2π

0
eiθ (arccos(−γ cos(θ − α)))2 dθ

=
1
4π

eiα

∫ 2π

0
eiθ (arccos(−γ cos θ))2 dθ

=
1
4π

eiα

[∫ π

0
eiθ (arccos(−γ cos θ))2 dθ −

∫ π

0
eiθ (arccos(γ cos θ))2 dθ

]

=
1
2
eiα

∫ π

0
eiθ

(π

2
− arccos(γ cos θ)

)
dθ

=
1
2
eiα

∫ π

0
eiθ arcsin(γ cos θ)dθ

=
1
2
eiα

∫ π

0
eiθ

(
γ cos θ +

∞∑

k=1

(2k)!
4k(k!)2(2k + 1)

(γ cos θ)2k+1

)
dθ

=
π

4
γeiα +

π

2

∞∑

k=1

((2k)!)2

24k+1(k!)4(k + 1)
γ2k+1eiα

=
π

4
z +

π

2

∞∑

k=1

((2k)!)2

24k+1(k!)4(k + 1)
|z|2kz, (9)

13



where the second last step follows from the fact that
∫ π

0
sin θ(cos θ)2k+1dθ = 0 and

∫ π

0
(cos θ)2k+2dθ =

(2k + 1)(2k − 1) · · · 1
(2k + 2)(2k) · · · 2 π, k = 0, 1, ...

Clearly, if Z ∈ Hn
+ then ZT ∈ Hn

+. Furthermore, observe that the Hadamard product of any two
positive semidefinite Hermitian matrices remains Hermitian positive semidefinite. Denote A ◦ B to

be the Hadamard product of A and B, and denote A(k) to be

k︷ ︸︸ ︷
A ◦A · · · ◦A. It thus follows from (9)

that

F (Z) =
π

4
Z +

π

2

∞∑

k=1

((2k)!)2

24k+1(k!)4(k + 1)
(ZT ◦ Z)(k) ◦ Z º π

4
Z.

Therefore, if Q º 0, then we have
Q • F (Z) ≥ π

4
Q • Z.

Consider the following complex SDP relaxation for (CP)

(CSDP) max Q • Z

s.t. Zkk = 1, k = 1, . . . , n,

Z º 0.

Let the optimal value of (CP) be v∗(CP ), and the optimal value of (CSDP) be v∗(CSDP ). Let the
expected value of the randomized solutions based on the optimal solution of (CSDP) be v(H(C)).
Then

v(H(C)) ≥ π

4
v∗(CSDP ) ≥ π

4
v∗(CP ) ≈ 0.7854 · v∗(CP ).

It is interesting to compare this ratio with that of its real counterpart:

(RP) max xTQx

s.t. x2
k = 1, k = 1, . . . , n.

Nesterov [8] showed that the randomization solution based on the SDP relaxation

(RSDP) max Q •X

s.t. Xkk = 1, k = 1, . . . , n,

X º 0,

has the following approximation ratio

v(H(R)) ≥ 2
π

v∗(RSDP ) ≥ 2
π

v∗(RP ) ≈ 0.6366 · v∗(RP ).
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Therefore, the complex SDP relaxation for the complex quadratic optimization problem is more
effective than the real SDP relaxation for its real counter-part, in the sense that the former has a
slightly better approximation ratio.

Remark that similar as the analysis in Nesterov [8], Ye [10], and Zhang [11] for the real case, we can
extend all the approximation results to the following more general setting

max zHQz

s.t. (|z1|2, |z2|2, · · · , |zn|2)T ∈ F ,

where F is a closed convex set in <n. The corresponding complex and convex SDP relaxation is

max Q • Z

s.t. diag Z ∈ F
Z º 0.

It is also interesting to remark that if we regard (CP) as an equivalent real quadratic problem

max (uT, vT)

(
Re Q Im Q

−Im Q Re Q

)(
u

v

)

s.t. u2
k + v2

k = 1, k = 1, ..., n,

then the approximation ratio obtained that way would be 2/π, instead of π/4. This shows that the
complex SDP relaxation does have an advantage in this particular case.

3.3 Structured Continuous Complex Quadratic Optimization

In this subsection, we study a special case of (CP) with a sign structure on the object matrix, which
is parallel to the original (real) max-cut model studied in [5]:

(CPS) max zHQz

s.t. |zk| = 1, k = 1, . . . , n,

where we assume that Q = [qjl]n×n ∈ Sn
+ and qjl ≤ 0 for all 1 ≤ j < l ≤ n. Using (9) we know that

the expected value of the randomized solution based on the complex SDP relaxation is

v(H(C)) = 2
∑

j<l

qjlRe F (Z∗jl) +
n∑

j=1

qjj

= 2
∑

j<l

qjl

(
π

4
+

π

2

∞∑

k=1

((2k)!)2

24k+1(k!)4(k + 1)
|Z∗jl|2k

)
Re Z∗jl +

n∑

j=1

qjj (10)
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where Z∗ is the optimal solution of the complex SDP relaxation. Define the following real function

g(y) :=
π

4
+

π

2

∞∑

k=1

((2k)!)2

24k+1(k!)4(k + 1)
y2k

on y ∈ [0, 1]. We have 0 ≤ g(y) ≤ 1 for all y ∈ [0, 1]. Suppose that x is real, and |x| ≤ y ≤ 1. Then,

min
|x|≤y

1− g(y)x
1− x

= min
|x|≤y

(
g(y) +

1− g(y)
1− x

)
=

1 + g(y)y
1 + y

.

One computes that

min
0≤y≤1

1 + g(y)y
1 + y

≈ 0.9349 =: β.

Therefore,
1− g(y)x ≥ β − βx,

for all y ∈ [0, 1] and |x| ≤ y, or equivalently,

g(y)x ≤ 1− β + βx (11)

for all y ∈ [0, 1] and |x| ≤ y. Using (11), we have
(

π

4
+

π

2

∞∑

k=1

((2k)!)2

24k+1(k!)4(k + 1)
|Z∗jl|2k

)
Re Z∗jl ≤ 1− β + βRe Z∗jl. (12)

Now we apply (12) in a componentwise fashion to (10), and obtain, thanks to the sign restriction,
the following inequalities

v(H(C)) = 2
∑

j<l

qjl

(
π

4
+

π

2

∞∑

k=1

((2k)!)2

24k+1(k!)4(k + 1)
|Z∗jl|2k

)
Re Z∗jl +

n∑

j=1

qjj

≥ 2
∑

j<l

qjl(1− β + βRe Z∗jl) +
n∑

j=1

qjj

= (1− β)eTQe + βQ • Z∗

≥ βv∗(CSDP )

≥ βv∗(CPS). (13)

This yields an approximation ratio of 0.9349 for (CPS).

Acknowledgement: We would like to thank Tom Luo, Anthony So, Yinyu Ye, and Jiawei Zhang
for stimulating discussions on the subject.
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