Reduction Tests for the Prize-Collecting Steiner Problem

Eduardo Uchoa

Departamento de Engenharia de Produção, Universidade Federal Fluminense Address: Rua Passso da Pátria 156 Bl.E sala 440, Niterói, Brazil, 24210-240. Email: uchoa@producao.uff.br

January, 2005

Abstract

This article introduces a proper redefinition of the concept of bottleneck Steiner distance for the Prize-Collecting Steiner Problem. This allows the application of reduction tests known to be effective on Steiner Problem in Graphs in their full power. Computational experiments attest the effectiveness of the proposed tests.

keywords Steiner Problem, Network Design, Preprocessing, Combinatorial Optimization

1 Introduction

The Prize-Collecting Steiner Problem (PCSP) consists of given a connected graph G=(V,E), positive edge costs c(e) (also denoted by c(u,v) when e=(u,v)), and non-negative vertex profits p(i); find a subtree (V',E') of G maximizing $\sum_{e\in V'} p(i) - \sum_{e\in E'} c(e)$. Vertices with positive profits, those in the set $T=\{i\in V\mid p(i)>0\}$, are called terminals. This problem is gaining much attention in the last years due to its practical applications on network design. The Steiner Problem in Graphs (SPG) can be viewed as the particular case of the PCSP where terminal profits are high enough to assure that all of them must be any optimal solution.

The practical efficiency of algorithms for the SPG increased dramatically in recent years. The sequence of results reported in [13, 15, 16, 19, 17, 14, 12] on the main benchmark instances from the literature [8] improve by two or three orders of magnitude upon the results from previous articles, like [7]. The strength of those new algorithms lies on a complex combination of reduction tests, primal heuristics, dual heuristics and branch-and-cut. Reduction tests are a key part of those combos.

The first reduction tests for the SPG were introduced by Beasley [2], Balakrishnan and Patel [1] and Voss [18]. They were generalized by Duin and Volgenant [5] in a work that established a set of reduction tests widely used in the 1990's decade. The most important such tests are based on the concept of bottleneck Steiner distances. More recently, Uchoa et al. [17] enhanced Duin and Volgenant's tests with the idea of expansion. This idea was further developed by Polzin and Vahdati [14]. The reduction tests with expansion still rely on Bottleneck Steiner distances.

Current algorithms for the PCSP are not as advanced as their SPG counterparts. This is statement is certainly true when one considers reduction tests. Recent algorithms like [3], [10], [9], and [11] apply weakened versions of Duin and Volgenant's tests obtained by replacing the bottleneck Steiner distances by standard distances. This weakening makes those tests much less effective.

This article proposes a new definition of bottleneck Steiner distances on the PCSP context. This redefinition allows the application of Duin and Volgenant's tests (and their enhancements with the

idea of expansion) in their full power on the PCSP, just like they are now applied on the SPG. There is only one important difference. Computing exact bottleneck distances on the SPG can be done in polynomial time. On the other hand, it is shown that computing bottleneck distances on the PCSP is NP-hard. This point does not hinder the practical use of the new tests. Most current SPG codes only use fast and efficient heuristics to compute bottleneck distances. Similar heuristics also work on the PCSP, as shown by the computational experiments in the last section.

2 Reduction tests for the SPG

Reduction tests are procedures devised to transform an original instance into a smaller equivalent instance. An edge $e \in E$ is said to be *choosable* if there is at least one optimal solution containing e and redundant if there is at least one optimal solution not containing e. Some reduction tests try to identify choosable and redundant edges. Once a choosable edge e = (u, v) is identified, it can be forced into the solution and its endpoints u and v may be contracted. A redundant edge is simply deleted from the graph. In either case, the size of the instance is reduced. Other reduction tests lead to more complex graph transformations. Reduction tests may be successively applied to already reduced graphs, until no further reduction is possible. Some very simple tests are:

Test 1 Non-terminal with degree 1 (NTD1) - A non-terminal vertex with degree 1 and its adjacent edge may be deleted.

Test 2 Non-terminal with degree 2 (NTD2) - A non-terminal vertex u with degree 2 and its adjacent edges (u, v) and (u, w) may be replaced by a single edge (v, w) with cost c(u, v) + c(u, w).

Test 3 Terminal with degree 1 (TD1) - If $|T| \ge 2$, the edge adjacent to a terminal vertex with degree 1 is choosable.

In order to introduce more complex tests, we review the definition of bottleneck Steiner distance on the SPG context. Let u and v be two distinct vertices in V. Let $\mathcal{P}(u,v)$ denote the set of all simple paths joining u to v. The standard distance between vertices u and v is defined as

$$d(u,v) = \min\{c(P) \mid P \in \mathcal{P}(u,v)\},\tag{1}$$

where c(P) denotes the sum of the costs of the edges in path P. For $P \in \mathcal{P}(u,v)$, let T(P) be $\{u,v\} \cup (T \cap P)$, i.e. the vertex-set formed by u, v and the terminals in P. Two vertices x and y in T(P) are said to be *consecutive* if the subpath from x to y in P contains no other vertices in T(P). The *Steiner distance* SD(P) is the length of the longest subpath in P joining two consecutive vertices in T(P). The *bottleneck Steiner distance* between vertices u and v is defined as

$$B(u,v) = \min\{SD(P) \mid P \in \mathcal{P}(u,v)\}. \tag{2}$$

A nice interpretation for bottleneck distances (that appears, for instance in [4, 7]) is to consider G as a road system, T as petrol stations and a driver who wants to go from u to v. Then B(u, v) is the minimum distance he must be able to drive without refilling in order to reach his destination.

The bottleneck Steiner distance without passing through a given edge e is defined as

$$B(u,v)^{-e} = \min\{SD(P) \mid P \in \mathcal{P}(u,v); e \notin P\}.$$
 (3)

If e disconnects u and v, $B(u, v)^{-e} = \infty$.

The key concept of bottleneck distance allowed Duin and Volgenant [5] to propose strong reduction tests, generalizing some ideas which appeared earlier in the literature [2, 1, 18]. The most important such tests, in terms of graph reductions obtained, are the SD and the NTD-3 tests.

Test 4 Special distance (SD) - Let (u, v) be an edge in E. If $B(u, v)^{-(u, v)} \le c(u, v)$, then edge (u, v) is redundant.

Test 5 Non-terminal degree 3 (NTD-3) - Let u be a non-terminal vertex with degree 3, adjacent to vertices v, w, and z. If

$$\min\{B(v,w) + B(v,z), B(w,v) + B(w,z), B(z,v) + B(z,w)\} \le c(u,v) + c(u,w) + c(u,z),$$

then there is an optimal solution where the degree of u is at most 2. Therefore, u and its three adjacent edges can be replaced by the following three edges: (v, w) with cost c(u, v) + c(u, w), (v, z) with cost c(u, v) + c(u, z), and (w, z) with cost c(u, w) + c(u, z).

The graph transformation given by the NTD-3 test is not much advantageous by itself, since the number of edges remains the same. But some of the newly created edges are quite likely to be immediately eliminated by the SD test. Duin and Volgenant actually introduced a general test NTD-k for non-terminals with any degree k, based on bottleneck distances. They also proposed another test that does not use bottleneck distances.

Test 6 Terminal distance (TDist) - Let $[W, \overline{W}]$ be a partition of the vertices in V such that the subgraphs induced by W and \overline{W} are both connected, with $W \cap T \neq \emptyset$ and $\overline{W} \cap T \neq \emptyset$. Let $\delta(W)$ be the cut induced by this partition. If $\delta(W) = \{e\}$, then e is choosable. If $|\delta(W)| \geq 2$, let $e = \operatorname{argmin}_{e' \in \delta(W)} c(e')$ and $f = \operatorname{argmin}_{f' \in \delta(W) \setminus \{e\}} c(f')$ be respectively a shortest and a second shortest edge in the cut. Suppose e = (u, v) with $u \in W$ and $v \in \overline{W}$. If

$$\min\{d(u,t_1) \mid t_1 \in T \cap W\} + c(e) + \min\{d(v,t_2) \mid t_2 \in T \cap \bar{W}\} \le c(f),$$

then e is choosable.

The new tests introduced in Uchoa et al. [17] are enhancements of the SD and the NTD-k tests with the idea of expansion. Loosely speaking, this idea means probing the instance to dynamically build a chain of logical implications of the kind "if edge e appear in some optimal solution R then edge f must also be in R" in order to prove that some graph reduction can be indeed performed. Such probing is heavily based on the concept of bottleneck distances.

3 Reduction tests for the PCSP

Consider a PCSP instance. Again, let u and v be two distinct vertices in V and let $\mathcal{P}(u,v)$ denote the set of all simple paths joining u to v. Consider a path $P \in \mathcal{P}(u,v)$. Define P(x,y) as the subpath of P between two given vertices x and y in P. Define the *Steiner distance* associated to this subpath as

$$SD(P(x,y)) = \sum_{e \in P(x,y)} c(e) - \sum_{i \in P(x,y) \setminus \{x,y\}} p(i),$$

i.e. the sum of the edge costs in this subpath, minus the sum of the profits of vertices in the interior of this subpath. The $Steiner\ distance$ associated to the whole path P is:

$$SD(P) = max_{x,y \in P}SD(P(x,y))$$

Finally, the bottleneck Steiner distance between vertices u and v is defined as

$$B(u,v) = \min\{SD(P) \mid P \in \mathcal{P}(u,v)\}. \tag{4}$$

The new definition of bottleneck distances for the PCSP can be interpreted as follows. Consider G as a road system, c(i,j) as the number of units of fuel needed to drive from i to j and the vertices as petrol stations that have only p(i) units of fuel available. Suppose that a driver wants to go from u to v, starting with a full tank. Then B(u,v) is the minimum tank capacity (in units of fuel) necessary to reach v. In the SPG case, terminals can be viewed as petrol stations an unlimited quantity of fuel in stock, so the vehicle tank can be always completely refilled.

Figure 1 depicts part of a PCSP instance, where edge costs are indicated and vertex profits are the following, p(a) = 0, p(b) = 5, p(c) = 4, p(d) = 0, p(e) = 15, p(f) = 3. The Steiner distance associated to path $\{u, a, b, c, d, e, f, v\}$ is 10, the same of the subpath $\{b, c, d, e\}$. Going back to the vehicle analogy, we can say that a tank capacity of 10 units is enough to travel from u to v by that path. The vehicle starts at u with a full tank, reaches b with 5 units left, completes the tank with more 5 units, reaches c with 2 units left, puts more 4 units, reaches e with the tank empty, fill it with 10 units (from the 15 available), reaches e with 5 units left, puts more 3 units and finally arrives at e with 2 units left.

Theorem 1 Test SD with the new definition of bottleneck Steiner distance is valid for the PCSP.

Proof: Suppose that $B(u,v)^{-(u,v)} \leq c(u,v)$. Let $P \in \mathcal{P}(u,v)$ be a path not using edge (u,v) such that SD(P) = B(u,v). Let R be a solution tree using edge (u,v). Removing (u,v) from R creates two subtrees. Let R_u be the one containing vertex u and R_v be the other, containing v. Pick two vertices x and y from P such that $x \in R_u$, $y \in R_v$ but no other vertices in P(x,y) are in R. Since $SD(P(x,y)) \leq B(u,v)^{-(u,v)} \leq c(u,v)$, then $R' = R_u \cup R_v \cup P(x,y)$ is a solution tree at least as good as R. Therefore, there is an optimal solution that does not use (u,v).

Tests NTD-1 and NTD-2 are clearly valid for the PCSP.

Theorem 2 Test NTD-3 with the new definition of bottleneck Steiner distance is valid for the PCSP.

Proof: Without loss of generality, suppose that $B(v,w) + B(v,z) \le c(u,v) + c(u,w) + c(u,z)$, since the other two cases are similar. Let $P_1 \in \mathcal{P}(v,w)$ be a path such that $SD(P_1) = B(v,w)$ and $P_2 \in \mathcal{P}(v,z)$ be a path such that $SD(P_2) = B(v,z)$. Let R be a solution tree using vertex u with degree 3. Removing u and its adjacent edges from R, we obtain the subtrees R_v , R_w , and R_z . Pick two vertices x_1 and y_1 from P_1 such that $x_1 \in R_w$, $y_1 \in R_v$ but no other vertices in the subpath $P_1(x_1,y_1)$ are in R. Similarly, pick two vertices x_2 and y_2 from P_2 such that $x_2 \in R_z$, $y_2 \in R_v$ but no other vertices in the subpath $P_2(x_2,y_2)$ are in R. Since $SD(P_1(x_1,y_1)) \le B(v,w)$ and $SD(P_2(x_2,y_2)) \le B(v,z)$, $SD(P_1(x_1,y_1)) + SD(P_2(x_2,y_2)) \le c(u,v) + c(u,w) + c(u,z)$. Therefore $R' = R_v \cup R_w \cup R_z \cup P_1(x_1,y_1) \cup P_2(x_2,y_2)$ is a solution tree at least as good as R. Vertex u has degree at most 2 in R' (otherwise B(v,w) + B(v,z) > c(u,v) + c(u,w) + c(u,z)).

The applicability of tests NTD-k can be increased by considering as non-terminals not only vertices with zero profit. One can consider a vertex u with positive profit as a "non-terminal" if it can be shown that u would never appear as a leaf in some optimal solution. For instance, if p(u) is less or equal to the cost of the cheapest edge adjacent to u. The graph transformations produced by the tests must be slightly changed when p(u) > 0. On test NTD-2, (u, v) and (u, w) must be replaced by an edge (v, w) with cost c(u, v) + c(u, w) - p(u). A similar change must be done on NTD-3. The TD-1 test is applied as follows: a terminal u of degree 1 and its adjacent edge (u, v) can be removed; if p(u) - c(u, v) > 0, this difference should be added to p(v).

All the tests with expansion can also be applied on the PCSP with the new definitions of bottleneck distances and "non-terminals". We do not prove this here, but it is quite easy to adapt the proofs found in [17] to this new context.

The only SPG test that is not easily adapted to the PCSP is TDist. Its direct application depends on showing that both vertices t_1 and t_2 (as in the test definition) belong to some optimal solution. This can be hard, except on instances where some terminals have very large profits with respect to edge costs. However, the following weakening of the TDist test is valid:

Test 7 Minimum Adjacency (MA) - Let u and v be two adjacent terminal vertices. If $\min\{p(u), p(v)\}$ – $c(u, v) \leq 0$ and $c(u, v) = \min_{(u, t) \in E} c(u, t)$, then u and v can be merged into one vertex of profit p(u) + p(v) - c(u, v).

The MA test was already used in [9]. This test does not need to assume that u and v belong to some optimal solution. The reasoning here is: if u or v belong to some optimal solution then (u,v) also belong to some optimal solution. This may lead to other PCSP tests. For instance, if $\min\{p(u),p(v)\}-c(u,v)\leq 0$ and (u,v) is a cut-edge of the graph, then u and v can be merged into a single vertex.

4 Computing Bottleneck Steiner Distances

A table with the exact bottleneck Steiner distances for all pairs of vertices in a SPG instance can be computed in $O(|V|^3)$ time [4]. Computing exact bottleneck Steiner distances on a PCSP instance can be much harder. Define this problem in a more formal way.

Prize-Collecting Bottleneck Distance

Instance: Graph G = (V, E), positive integers c associated to the edges, non-

negative integers p associated to vertices, vertices u, v in V and integer b.

Question: Is $B(u, v) \leq b$?

Theorem 3 Prize-Collecting Bottleneck Distance is NP-hard.

Proof: The Hamiltonian path problem, find a simple path visiting all vertices in a graph, is widely known to be NP-hard. The following version of the problem, find a simple path between two given vertices visiting all the other vertices in a graph, is easily shown to be NP-hard too. This version is formally defined as follows.

Hamiltonian Path

Instance: Graph G' = (V', E'), vertices u', v' in V.

Question: Is there a simple path from u' to v' visiting all the other vertices in G'?

Given an instance of Hamiltonian Path, produce an instance of Prize-Collecting Bottleneck Distance as follows. Graph $G = (V' \cup \{u,v\}, E' \cup \{(u,u'),(v,v')\})$. Costs are 1 for the edges in E', c(u,u') = c(v,v') = |V'|. The profit of all vertices are 2, except for u', p(u') = 1. Define b as equal to |V'|. It can be seen that B(u,v) = b on that instance if and only if there is a hamiltonian path from u' to v' on the original instance.

The above theorem rules out the computation of exact bottleneck distances on reduction tests for the PCSP. One must use heuristics instead. Such kind of heuristics are widely used when applying reduction tests on SPG, since the $O(n^3)$ time for an exact computation is considered excessive. Those heuristics are fast and very effective, they yield upper bounds on the true bottleneck distances so tight that the amount of graph reduction obtained by the tests barely changes. This is possible because the tests (even those with expansion) almost always ask for distances between vertices that are very close in the graph. Only a few terminals in that neighborhood are likely to be relevant in that computation.

5 Computational Experiments

In order to evaluate the practical performance of the new tests, a preprocessing package containing tests NTD-1, NTD-2, TD-1, MA, SD (with expansion) and NTD-3 (with expansion) was implemented. The bottleneck distances B(u,v) were heuristically computed by only considered paths in $\mathcal{P}(u,v)$ containing at most two terminal vertices. Two types of instances were used: the P instances proposed by Johnson et al. [6], and the C and D instances proposed by Canuto et al. [3]. Those instances appear on most recent literature on PCSP, including [9, 10, 11]. On all those works, the reductions obtained by applying the weakened versions of Duin and Volgenant's tests were similar, Tables 1–3 compare the proposed preprocessing with the one from Ljubić et al.[9]. Rows **Avg. Ratio** give the average ratio between the sizes of the reduced and original instances (in terms of vertices and edges).

The improvements obtained with the new tests are very significant. Some instances can even be solved by preprocessing alone. In those cases, the final reduced graph contains a single vertex with profit equal to the optimal solution value. Large instances with many terminals, like C20-A, C20-B, D20-A and D20-B, could be quickly solved in this way.

Summarizing, the results obtained on benchmark instances from the literature are quite satisfactory. As expected, on instances with more terminals, bottleneck Steiner distances are likely to be significantly smaller than standard distances, leading to larger reductions. It is worthy to mention that the practical applications mentioned in Canuto et al. [3], Lucena and Resende [10] (telecommunications network design) and in Ljubić et al. [9] (gas distribution) provide instances where almost all vertices have positive profits.

References

- [1] A. Balakrishnan and N. Patel, "Problem reduction methods and a tree generation algorithm for the Steiner network problem", *Networks* 17, 65–85, 1987.
- [2] J. Beasley, "An algorithm for the Steiner problem in graphs", Networks 14, 147–159, 1984.
- [3] S. Canuto, M. Resende and C. C. Ribeiro, "Local search with perturbations for the prize-collecting Steiner tree problem in graphs", *Networks* 38, 50–58, 2001.
- [4] C. Duin, "Steiner's problem in graphs", PhD Thesis, University of Amsterdam, 1993.
- [5] C. Duin and A. Volgenant, "Reduction tests for the Steiner problem in graphs", *Networks* 19, 549–567, 1989.
- [6] D. Johnson, M. Minkoff and S. Phillips. "The prize-collecting Steiner tree problem: Theory and practice", Proceedings of 11th ACM-SIAM Symposium on Discrete Algorithms, 760-769, San Francisco, 2000.
- [7] T. Koch and A. Martin, "Solving Steiner tree problems in graphs to optimality", *Networks* 32, 207–232, 1998.
- [8] T. Koch, A. Martin and S. Voss, "SteinLib: An updated library on Steiner tree problems in graphs", Konrad-Zuse-Zentrum für Informationstechnik Berlin, ZIB-Report 00-37, 2000 (online document at http://elib.zib.de/steinlib).

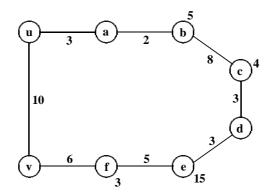


Figure 1: Part of a PCSP instance. Edge (u, v) can be eliminated by the SD test.

	Original			Prep [9]		New Prep	
Instance	Nodes	Edges	Terminals	Nodes	Edges	Nodes	Edges
P100	100	317	33	66	163	13	16
P100.1	100	284	32	84	196	1	0
P100.2	100	297	26	75	187	7	9
P100.3	100	316	24	91	237	8	10
P100.4	100	284	32	69	186	7	9
P200	200	587	48	166	438	34	50
P400	400	1200	94	345	1002	142	262
P400.1	400	1212	120	323	983	137	252
P400.2	400	1196	107	341	997	72	114
P400.3	400	1175	113	334	969	121	216
P400.4	400	1144	94	344	949	165	298
Avg. Ratio				80.9%	73.8%	19.3%	10.9%

Table 1: Reductions on series P instances.

	Original		Prep [9]		New Prep		
Instance	Nodes	Edges	Terminals	Nodes	Edges	Nodes	$\bar{\mathrm{Edges}}$
C1-A	500	625	5	116	214	105	190
C1-B	500	625	5	125	226	49	77
C2-A	500	625	10	109	207	82	148
С2-В	500	625	10	111	209	71	125
С3-А	500	625	83	160	277	113	190
С3-В	500	625	83	185	304	79	121
C4-A	500	625	125	178	300	72	119
C4-B	500	625	125	218	341	71	113
C5-A	500	625	250	163	274	7	9
С5-В	500	625	250	199	314	1	0
C6-A	500	1000	5	355	822	346	792
С6-В	500	1000	5	356	823	344	778
C7-A	500	1000	10	365	842	353	806
С7-В	500	1000	10	365	842	342	769
C8-A	500	1000	83	367	849	251	531
С8-В	500	1000	83	369	850	217	410
C9-A	500	1000	125	387	877	279	577
С9-В	500	1000	125	389	879	232	440
C10-A	500	1000	250	359	841	103	166
C10-B	500	1000	250	323	798	100	156
C11-A	500	2500	5	489	2143	485	1801
C11-B	500	2500	5	489	2143	480	1667
C12-A	500	2500	10	484	2186	453	1495
C12-B	500	2500	10	484	2186	441	1358
C13-A	500	2500	83	472	2113	343	799
C13-B	500	2500	83	471	2112	317	704
C14-A	500	2500	125	466	2081	190	365
C14-B	500	2500	125	459	2048	179	330
C15-A	500	2500	250	406	1871	1	0
C15-B	500	2500	250	370	1753	1	0
C16-A	500	12500	5	500	4740	499	2714
C16-B	500	12500	5	500	4740	499	2714
C17-A	500	12500	10	498	4694	494	2295
C17-B	500	12500	10	498	4694	494	2295
C18-A	500	12500	83	469	4569	374	1002
C18-B	500	12500	83	465	4538	374	997
C19-A	500	12500	125	430	3982	246	589
C19-B	500	12500	125	416	3867	249	592
C20-A	500	12500	250	241	1222	1	0
C20-B	500	12500	250	133	563	1	0
Avg. Ratio				69.7%	59.9%	46.7%	29.1%

Table 2: Reductions on series C instances.

	Original		Prep [9]		New Prep		
Instance	Nodes	Edges	Terminals	Nodes	Edges	Nodes	Edges
D1-A	1000	1250	5	231	440	223	422
D1-B	1000	1250	5	233	443	223	416
D2-A	1000	1250	10	257	481	238	450
D2-B	1000	1250	10	264	488	232	423
D3-A	1000	1250	167	301	529	114	194
D3-B	1000	1250	167	372	606	129	202
D4-A	1000	1250	250	311	541	171	297
D4-B	1000	1250	250	387	621	50	70
D5-A	1000	1250	500	348	588	84	125
D5-B	1000	1250	500	411	649	12	17
D6-A	1000	2000	5	740	1707	740	1697
D6-B	1000	2000	5	741	1708	736	1682
D7-A	1000	2000	10	734	1705	721	1664
D7-B	1000	2000	10	736	1707	702	1602
D8-A	1000	2000	167	764	1738	673	1489
D8-B	1000	2000	167	778	1757	561	1142
D9-A	1000	2000	250	752	1716	580	1260
D9-B	1000	2000	250	761	1724	439	841
D10-A	1000	2000	500	694	1661	235	425
D10-B	1000	2000	500	629	1586	36	56
D11-A	1000	5000	5	986	4658	977	3971
D11-B	1000	5000	5	986	4658	972	3740
D12-A	1000	5000	10	991	4639	960	3300
D12-B	1000	5000	10	991	4639	942	3040
D13-A	1000	5000	167	966	4572	708	1713
D13-B	1000	5000	167	961	4566	694	1631
D14-A	1000	5000	250	946	4500	571	1238
D14-B	1000	5000	250	931	4469	512	1062
D15-A	1000	5000	500	832	4175	139	217
D15-B	1000	5000	500	747	3896	4	5
D16-A	1000	25000	5	1000	10595	1000	6735
D16-B	1000	25000	5	1000	10595	1000	6725
D17-A	1000	25000	10	999	10534	999	6330
D17-B	1000	25000	10	999	10534	999	6330
D18-A	1000	25000	167	944	9949	812	2314
D18-B	1000	25000	167	929	9816	806	2276
D19-A	1000	25000	250	897	9532	686	1895
D19-B	1000	25000	250	862	9131	680	1870
D20-A	1000	25000	500	488	2511	1	0
D20-B	1000	25000	500	307	1383	1	0
Avg. Ratio				70.5%	62.8%	50.9%	33.4%

Table 3: Reductions on series D instances.

- [9] I. Ljubić, R. Weiskircher, U. Pferschy, G. Klau, P. Mutzel and M. Fischetti, "Solving the prize-collecting Steiner tree problem to optimality", TR-186-1-04-01, Technische Universität Wien, October 2004. (Submitted to *Mathematical Programing*).
- [10] A. Lucena and M. Resende, "Strong lower bounds for the prize collecting Steiner problem in graphs", *Discrete Applied Mathematics* 141, 277–294, 2004.
- [11] G. Klau, I. Ljubić, A. Moser, P. Mutzel, P. Neuner, U. Pferschy and R. Weiskircher, "Combining a memetic algorithm with integer programming to solve the prize-collecting Steiner tree problem", Proceedings of the GECCO-2004, *Lecture notes in Computer Science* 3102, 1304–1315, 2004.
- [12] T. Polzin, "Algorithms for the Steiner Problem in Networks", PhD Thesis, Universität des Saarlandes, 2003.
- [13] T. Polzin and S. Vahdati, "Improved algorithms for the Steiner problem in networks", *Discrete Applied Mathematics* 112, 263–300, 2001.
- [14] T. Polzin and S. Vahdati, "Extending Reduction Techniques for the Steiner Tree Problem", Proceedings of the ESA 2002, 795–807, 2002.
- [15] M. Poggi de Aragão, E. Uchoa and R.F. Werneck, "Dual heuristics on the exact solution of large Steiner problems", *Electronic Notes in Discrete Mathematics* 7, 2001.
- [16] E. Uchoa, "Algoritmos para problemas de Steiner com aplicação em projeto de circuitos VLSI", PhD Thesis, Pontifícia Universidade Católica do Rio de Janeiro, 2001.
- [17] E. Uchoa, M. Poggi de Aragão and C.C. Ribeiro, "Preprocessing Steiner problems from VLSI layout", *Networks* 40, 38–50, 2002.
- [18] S. Voss, "A reduction based algorithm for the Steiner problem in graphs", Methods of Operations Research 58, 239–252, 1989.
- [19] R.F. Werneck, "Problema de Steiner em Grafos: Algoritmos Primais, Duais e Exatos", Master's Thesis, Pontifícia Universidade Católica do Rio de Janeiro, 2001.