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Abstract

Managing shelf space is critical for retailers to attract customers and to optimize profit.
This paper develops a shelf space allocation optimization model that explicitly incorporates
essential in-store costs and considers space- and cross-elasticities. We propose a piecewise
linearization technique for approximating the complicated nonlinear model that relaxes the
nonconvex optimization problem into a linear Mixed Integer Program (MIP). This MIP not
only generates near-optimal solutions, but also provides an a posterior: error bound to evaluate
the quality of the solution. Consequently, our approach can solve single category shelf space
management problems with as many products as are typically encountered in practice and
with more complicated cost and profit structures than currently possible by existing methods.
Numerical experiments on small test cases show the accuracy of the proposed method com-
paring the optimal solutions of our approximating linear MIP to the known global solutions of
the exact nonlinear model. Several extensions of the main model are investigated to illustrate
the flexibility of the proposed methodology.

1 Introduction

The decisions of which products to stock among the large number of competing products and how
much shelf space to allocate to those products is a question central to retailing. Because shelf
space is a scarce and fixed resource and the number of potentially available products continually
increases, retailers have a high incentive to make these decisions correctly. If customers were
completely brand-loyal, they would look for a specific item and buy it if it were available or delay
their decisions if it were not. Thus, space allocated to a product would have no effect on its sales
(Anderson [3]). However, marketing research shows that most customer decisions are made at
the point of purchase (see, e.g., POPAI [20]). In addition, Ehrenberg [15] discovers that, “except
in relatively short time periods ... buyers of any particular brand therefore buy other brands
more often than the brand itself.” This indicates that the product choice of customers may be
influenced by in-store factors including shelf space allocated to a product. With a well-designed
shelf space management system, retailers can attract customers, prevent stockouts and, more
importantly, increase the financial performance of the store while reducing operating costs (Yang
and Chen [26]). Further, close-to-optimal shelf space allocations provide the basis for distributing
promotional resources among the different product categories (Chen et al. [10]). However, the
optimization problem is very complex, because products usually have different profit margins and
widely varying space- and cross-elasticities.

The objectives of this paper are to formulate realistic shelf space management optimization
models and to provide a solution procedure that can handle realistic problem sizes and that is
flexible enough to be applied to a wide range of shelf space management models. To achieve this,
we extend the well-known model of Corstjens and Doyle [11] in three directions. First, our model



requires the shelf space allocated to a product to be equal to an integer number of its facing.
Second, it allows simultaneous shelf space and assortment decisions. Third, cost elements are
modeled individually. More importantly, we approximate the resulting nonconvex optimization
model, using piecewise linear functions, in such a way as to relax the model into an approximating
linear Mixed Integer Program (MIP) that generates both a feasible solution and a bound on the
global optimal objective value of the exact nonlinear model. This allows for the calculation of an
a posteriori error bound! on the optimal MIP solution. We then extend the model formulation
to incorporate the following additional effects that are mentioned in the literature: marketing
variables other than space (Yang and Chen [26]), fixed procurement costs and the possibility of
storing items in a warehouse (Urban [25]), and substitution effects due to temporary or permanent
unavailability of products (Borin et al. [4]).

The remainder of this paper is organized as follows. We review the relevant literature in Section
2 and develop the main shelf space management model in Section 3. The piecewise linearization
technique, which transforms the nonconvex optimization model into an approximating linear MIP,
is illustrated for the main model in Section 4. Computational experiments and test results are
presented in Section 5. These experiments include comparisons of the solutions of the approxi-
mating MIP to the known global optima for small test cases and indicate that excellent results
and tight a posteriori bounds can be expected when using the MIP. Various extensions of the
main model and their linearizations are discussed in Section 6, demonstrating that the proposed
linearization technique can be applied to a wide range of shelf space management models in which
the demand function is of signomial form. To clarify the presentation, we have standardized our
notation as follows: decision variables and variables that depend on decision variables are written
in lower-case Roman characters; constants and given quantities are defined as upper-case Roman
characters; parameters and quantities that need to be estimated or user-provided are expressed in
lower-case Greek characters; and functions, without arguments, are specified by upper-case Greek
characters.

2 Literature Review

Relevant and previous work can be generally divided into two types: commercial models and opti-
mization models . The discussion below focuses on literature that addresses models and procedures
that relate to the application studied in this paper.

2.1 Commercial Models

Commercial software and hardware systems that apply modeling principles have gained many cus-
tomers within the retailing industry due to their general simplicity and their easily implementable
decisions (Zufryden [28]). Today there are various PC-based systems available to retailers includ-
ing Apollo (IRI) and Spaceman (Nielsen). These software products can provide the retailer with a
realistic view of the shelves and are capable of allocating shelf space according to simple heuristics
such as turnover, gross profit or margin, using handling and inventory costs as constraints (Desmet
and Renaudin [13]). The drawback of all these systems results from their failure to incorporate
demand effects; all ignore the existing effects of shelf space on product sales. Thus, none of the
available systems can be considered seriously as an optimization tool (Desmet and Renaudin [13]).
Consequently, it is not surprising that most retailers “use them mainly for planogram accounting
purposes so as to reduce the amount of time spent on manually manipulating the shelves” (Dréze
et al. [14]).

LSome heuristics (none proposed in the literature for shelf space management models) guarantee a priori worst
case bounds on solutions to any instance of a problem. A posteriori bounds are problem-specific and can only be
evaluated after a problem is solved.



2.2 Optimization Models

One of the first optimization models was developed by Hansen and Heinsbroek [17]. They use a
posynomial demand function, which incorporates individual space-elasticities but disregards cross-
elasticities from similar products. Constraints of total available shelf space, minimum allocations,
and integer solutions are taken into account. Binary variables for handling assortment decisions
are also included. The proposed algorithm is based on a generalized Lagrange multiplier technique,
which, in general, is only guaranteed to find local solutions of nonconvex programs.

The model of Corstjens and Doyle [11] incorporates both space- and cross-elasticities and takes
into account constraints similar to those considered by Hansen and Heinsbroek [17]. However, it
incorporates a more detailed cost structure including procurement costs, carrying costs and out-of-
stock costs, which are jointly modeled as a signomial form with respect to allocated shelf space. A
signomial geometric programming approach is used to optimize the shelf space allocation; however,
Borin et al. [4] point out that the reported solutions of seven of ten problems violated the model’s
constraints.

The SHARP model developed by Bultez and Naert [6] and Bultez et al. [7] is similar to the one
developed by Corstjens and Doyle [11]. However, [6] and [7] do not develop an explicit function
that relates shelf space to product sales. Instead, space-elasticities are estimated using a symmetric
attraction model for SHARP 1 and an asymmetric model for SHARP 2. A heuristic procedure is
proposed to solve these models.

Borin et al. [4] extend the demand function of Corstjens and Doyle [11] to allow simultane-
ous decisions about assortment selections and shelf space allocations. In addition, they explicitly
consider substitution effects due to temporary or permanent unavailability of products. The re-
sulting model optimizes return on inventory and is solved using the simulated annealing heuristic
procedure.

Yang and Chen [26] simplify the model of Corstjens and Doyle [11]. The authors disregard cross-
elasticities and assume that a product’s profit is linear within a small number of facings, which
are constrained by the product’s lower and upper bound. They allow the profit of each product
to vary when allocated to different shelves by formulating the shelf space allocation problem in
a way similar to a knapsack problem. Allowing profit to depend on shelf placement is consistent
with the experimental study of Dreze et al. [14], who conclude that the location of products on the
shelves is more important for determining sales of a product than the amount of space allocated
to the product. Yang [27] proposes a heuristic to solve the model in [26]. His solution technique
extends an approach often applied to solve simple knapsack problems. Lim et al. [18] combine a
local search technique with metaheuristics to solve the model of Yang and Chen [26]. They also
extend the model to account for nonlinear profit functions and product groupings.

Although the two research directions of Born et al. [4] and Yang and Chen [26] are funda-
mentally different, both have the following drawbacks. They focus on the revenue side and do
not incorporate the cost side of the operation explicitly. Clearly, some of the relevant costs are
actually not independent of the shelf space allocation. For example, the smaller the shelf space
allocated to a product the greater the frequency of restocking and the higher the resulting restock-
ing costs of this product. In addition, they use heuristics to solve the problem. Although these
techniques provide good feasible solutions for the test cases considered, they cannot guarantee an
optimal or close-to optimal solution. Furthermore, the solution techniques in the current literature
do not provide a method to determine how close the computed solution actually is to true global
optimality.

Because of the large number of products found in most retail stores, it is clearly not practical
to solve one of the foregoing optimization models for all potentially available products within a
store (which can exceed 60,000 in some case) since the size of the optimization problem would
be prohibitively large. Consequently, current shelf space allocation models only solve subproblems
of the overall store optimization problem. One such typical subproblem that has received much
attention is the allocation of shelf space to products within a product category. Although not



explicitly stated, it is easy to show that a number of the models and procedures in the literature
can be modified to the storewide problem of allocating shelf space to product categories. This gives
rise to a two-stage procedure whereby store shelf space is allocated to product categories in the first
stage and then individual products within a category are allocated to the assigned category space
in the second stage. Obviously, the solution obtained from such a procedure is suboptimal (Yang
and Chen [26]) as the different allocation models are not integrated. Although the model and
solution technique presented herein also can be used within such a two-stage solution procedure,
we deal with retail shelf space for a single product category in this paper, and address the optimal
allocation of store shelf space to product categories in a forthcoming companion paper.

3 Model Formulation

This section develops a model for allocating shelf space to individual products within a product
category. The model maximizes product category profit and takes into account space- and cross-
elasticities of the sales, essential cost elements, and various important constraints. We first define
terminology and notation used in the model, followed by the main assumptions on the retail
environment for which the model applies.

3.1 Terminology and Notation

N number of products in category.
n; number of facings® allocated to product 4.
z; indicator variable is 1 if product ¢ is selected for shelving, and 0 otherwise.
F; shelf space of one facing for product i (inches).
total amount of available shelf space within the product category (inches).

S
U; upper bound on the number of facings allocated to product i.

5

lower bound on the number of facings allocated to product .

f

number of units of product ¢ that can be stored in one facing.

i

selling price of product i ($).

Q2

unit cost of product i ($).
CR; cost each time product i is restocked ($).
CF; fixed cost to include product 4 in the assortment ($).

CP; unit replenishment cost for product ¢ ($). This cost covers product insurance, deterioration,
and the processing costs of sending units back to the supplier (e.g., if they are broken or no
longer needed).

Bi space-elasticity of product 7.

«a; scale factor for product 7.

2A facing is a segment of shelf space with linear dimension width. The sizes (or widths) of facings can vary with
products, so that each facing dedicated to product i would have width F;. Moreover, for the purposes of our model,
different products cannot share the same facing. If there is enough height and depth space available, products can
be stacked up more than one row high and lined up many rows deep. The total number of products that fit on a
facing is G;, which allows for stacking multi-rows high and deep.



0;; cross-elasticity between products ¢ and j.
I current investment /interest rate (%).

Q product category profit ($).

Note that, with the exception of the decision variables (lower-case Roman letters) n; and z;, and the
objective function (upper-case Greek letter) 2, all other quantities are known, since they are either
given constants (upper-case Roman letters) or parameters that need to be estimated (lower-case
Greek letters).

3.2 Assumptions

(i) The retailer’s objective is to maximize product category profit.

(ii) Consistent with prior research, the direct space-elasticity for product i satisfies 0 < 3; < 1,
the cross-elasticity between product ¢ and product j satisfies —1 < d;; < 0, and the scale
factor oy for product i is generally taken to be positive.?

(iii) Effects other than space (e.g., price discounts, special marketing efforts, etc.) are not present.
(iv) All shelved products are owned by the retailer.

(v) Products are restocked individually. As soon as the number of units on the shelves is zero,
the product is fully restocked.

(vi) There is no backroom space to store additional inventory.

(vii) The unit cost of each product already contains all procurement costs.

Assumption (v) allows inventory holding costs to be calculated easily and also makes possible a
disregard of substitution effects due to temporary stockouts. This assumption will be relaxed in
our third extension (presented in Section 6). Assumption (vi) allows that only inventory holding
costs of product-units stored on the shelves are considered. Assumption (vii) ignores the effects
of fixed order costs. Assumptions (vi) and (vii) will be relaxed in our second extension (presented
in Section 6), which incorporates inventory-related decisions into the shelf space allocation model
and acknowledges that costs are actually not independent of the order size, inventory level, and
frequency of ordering.

3.3 Model Development

Following the vast majority of prior research, our analysis will focus on the situation in which the
demand function has monomial* form. The unit demand for an individual product 4 is modeled as

N
di = ai(Fin;)" H(Fj”j)éij (1)
i

3Please note that our model assigns shelf space to products within a product category. Since such products are
usually very similar in nature, we would expect them to have substitution properties amongst each other (d;; < 0).
Nevertheless, it is straightforward to extend our model and the linearization technique to the more general case with
substitute and complementary products (—1 < §;; < 1).

4A monomial is a single term polynomial with real valued exponents; i.e., the power of each variable can be
positive or negative real numbers, as opposed to positive integers for pure polynomials. When weighted monomials
are added up, the resulting function is called a posynomial if all monomial coefficients are positive, and it is called a
signomial if at least one monomial coefficient is negative. In our model, the demand (1) is a monomial posynomial.



where N is the total number of products to choose from, «; is a scale factor for product i demand,
F; is the shelf-width of one facing, n; is the decision variable for the number of facings to allocate
to product 4, parameter 3; is the product ¢ space-elasticity, and d;; is the cross-elasticity between
products ¢ and j.

In practice, the parameters «;, 3; and d;; can be determined via regression analysis using cross-
sectional data. Please note that for given cross-sectional data, the magnitude of the scale factor a;
depends on the size of the time interval considered, while the elasticities 8; and d;; can be assumed
to be independent of the time interval. The demand d; defined by (1) is for an arbitrary interval,
and all products must have the same sized interval.

Because our decision variable n; is the number of facings allocated to a product (instead of space
assigned) and we allow facings to be product-specific, our demand function is slightly different from
those of Corstjens and Doyle [11], and Borin et al. [4]. With P; as the product ¢ selling price and
C; as the product’s unit cost, the unit profit is P; — C; and the total gross margin for product @ is

a; = (Pz - C’Z)dz (2)

where the unit cost C; includes all costs of bringing the product from the supply source to the
store.

Turning to in-store costs for shelf space allocation, in addition to the fized cost C'F;, we propose
the following structure for the variable costs

’Ui—CPidi—F( 9 )nl—F(GZ)n—Z (3)

With a unit replenishment cost of C'P;, the first term gives the total replenishment cost for product
1. With G; as the number of units of product ¢ that can be stored in a single facing, the second
term gives the inventory holding cost for product 7. As demand is deterministic and product i is
restocked (instantaneously) to its maximum level of G;n; only when the shelves are depleted (by
Assumption(v)), the average shelf-inventory level is (%) n;, and this is multiplied by the unit cost
C; and the investment rate I to get the opportunity cost of capital tied up in inventory for product
i. The last term is the restocking cost component, since the shelves for product ¢ are restocked

(G%) % times, each at a cost of C'R;.

There are a number of constraints in a retailing environment that have to be included in the
model formulation. Similar to Corstjens and Doyle [11], our model includes capacity and control
constraints. The capacity constraint ensures that any shelf space allocation must not exceed total
available shelf space (Constraint (5)). Control constraints impose lower and upper bounds for the
number of facings allocated to each product (Constraints (7)). However, in contrast to the model of
Corstjens and Doyle [11], we impose integer restrictions, which guarantee that the amount of space
assigned to a product is limited to blocks of its physical (footprint) size (Constraints (8)). Following
the model of Yang and Chen [26], we do not need the availability constraint of Corstjens and Doyle
[11] if we assume that it is automatically satisfied by an effective logistics system employed by the
retailer.

Now the unit profit for product i is a; — v; — C'F;. However, in our universe of N products, it
may be more profitable not to include all of them on the store shelves. To that end, we define the
logical variable

I 1 if product ¢ is included in the assortment
¢ 0 otherwise.

Hence, our store profit function is

Q:

M=

zi(ai — UV; — OFZ)
1

[fneen () o (42)n-er]
1 Gl n; 2
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Using (1) to write the objective function only in terms of (n,, 2;), incorporating the capacity and
control constraints and the integer restriction, we obtain the retail shelf space optimization model
for products within any given category:

Find (n;, z), for i = 1,2,..., N, that maximize

Y al CR; N
Q = Z aiFL{BiHFjU (H_Ci_cpi)zin?i Hnjn_ <TZ> Zinfi—lnnj”

=1 j=1 j=1 j=1
i i i
N
Ci1G;
i=1
subject to
N
i=1

(Fin; — Fy)(Fizi — F;) >0 i=1,...,N
Li<n; <U; i=1,....,N

n; € X i=1,...,N

5e{0,1}  i=1,...,N

—~ o~ o~
oo
NN

9

where RT is the set of positive integers and the ojective is a signomial function, which makes our
model N P-Hard. Since F; > 0, it is clear that constraint (6) can be replaced by (n; —1)(z;—1) > 0.

To understand why n; is restricted to be a positive integer (instead of a nonnegative integer),
observe that the demand function (1) yields zero sales for a given product if the number of facings
allocated to any of the category’s other products is set to zero. To overcome this modeling limi-
tation, binary variables z; and fixed costs C'F; are introduced into the assortment decision model.
Furthermore, the following rule must be enforced: if z; = 0 (product ¢ is not in the assortment),
then n; = 1. This is achieved by nonlinear constraints (6). Borin et al. [4] satisfy this requirement
in their simulated annealing heuristic approach by simply setting n; = 1 whenever product ¢ is not
included in an assortment.

The above model falls into the class of Mixed Integer Nonlinear Programming (MINLP) prob-
lems, which has recently experienced a flourish of research activity (Bussieck and Pruessner [8]).
MINLP problems are very hard to solve since they encompass both the combinatorial nature of
Mixed Integer Programs (MIP) and the difficulties of solving Nonlinear Programs (NLP). Indeed,
our model is further complicated by being a nonconvexr NLP, which could have several local optima.
Fortunately, there are various solvers currently available, including the Global Solver of LINGO,
which provide global optimal solutions for MINLP problems in relatively low dimensions. These
solvers use branch-and-bound techniques that solve linear MIP subproblems over subregions de-
fined by a partition of the original feasible region. Our experience is with LINGO 8.0; however,
due to the use of similar techniques, we expect that other global solvers such as BARON (see
Tawarmalani and Sahinidis [24]) will have comparable behavior. For a more in-depth discussion of
the LINGO solver, the interested reader is referred to Gau and Schrage [16].

Several attempts of applying the LINGO 8.0 Global Solver (see Lindo Systems, Inc. [19]
for a manual) to our model showed that LINGO 8.0 had difficulties handling our problems with
six or more products. During this analysis it was discovered that the less similar the products
are, the easier and faster the solver can find the solution. However, products in the same product
category usually have similar characteristics in their selling prices, unit costs, and space- and cross-
elasticities. This challenges LINGO 8.0 greatly and increases computational time significantly.
Thus, a solution procedure using existing global solvers is expected to become impractical for a



realistic number N of potential products. To overcome this limitation, the next section develops a
new optimization procedure for effectively solving the shelf space management problem for a large
number of products.

4 Reformulation and Piecewise Linearization Technique

Focusing first on the constraints of the product category model, observe that only the bilinear
term z;n; in constraints (5) and (6) is nonlinear. In order to linearize these constraints we use the
technique of Al-Khayyal and Falk ([2]) and Al-Khayyal ([1]), who propose a reformulation technique
for finding global solutions of bilinear programming problems (see also Sherali and Adams [21] who
extended this technique). The technique involves the use of the convex and concave envelope of a
bilinear function over a rectangular region. Each bilinear term (in our case z;n;) is replaced by a
new variable (in our case w; ) and four additional linear constraints are imposed on each of these
variables. In case the reader is not familiar with this technique, Appendix B provides a summary
of the main ideas (without proofs). It is crucial to note that the nonlinear constraints (5) and (6)
are replaced, using the technique in Appendix B, by an equivalent system of linear inequalities.

Turning our attention to the objective function (4), we define the following two intermediate
variables that facilitate the description of our linearization scheme

N
np H n?” (10)

Ty =
=1
J#i
N
u; = nfi_IHngij. (11)
j=1
i

Here, r; represents the nonlinear terms quantifying the difference between gross margin and re-
plenishment costs, and similarly, u; is related to restocking costs. Our objective function can now
be written more concisely as

N
0 = E oziFiﬂ‘ | I Fj” ((PL —C; — CPi)ZiTi — <%—R> ziui> — (C 2G ) zing — CF;z; (12)

=1 j=1
J#i
which exhibits a linear component z; and bilinear components z;n;, 2z;7; and z;u;. The bilinear
components can be reformulated into equivalent linear forms subject to additional side constraints
using the reformulation technique cited above; however, that would still leave nonlinear monomial
constraints (10) and (11). To circumvent this difficulty, we replace 7; with e™ and u; with ™ in
(12) to obtain the equivalent objective function

N

2
=1 ji=1 v
J#i



with side constraints, for all i = 1,..., N, given by

N
=
N
m; = (B — Dn(n;) + Y _ 6;;In(ny). (15)
j7i

These constraints are still nonlinear, but each individual function In(n;) can be approximated
by a piecewise linear function over its interval [L;, U;]. Since the functions In(n;) are concave, their
piecewise linear representations are greatly simplified by using separable programming theory (see
Stefanov [23]). The essence of this approach is to subdivide the interval by introducing a fixed
number of grid points. For each subinterval a line segment is constructed that agrees with the
function at the end points of the subinterval; i.e., at each grid point. The convex combination of
the grid points is then taken to represent any point in the interval [L;, U;]. In order to guarantee
a unique representation, an adjacent weights restriction (AWR) is imposed which ensures to be
nonzero only the weights associated with the adjacent grid points that define the subinterval where
a point lies. Satisfying this adjacent weights restriction is achieved by a restricted basis entry rule
in simplex-based solvers. However, for our model, since n; € X", by taking integer grid points and
requiring the weights to be binary, the piecewise linear underestimating function of In(n;) is ezact
for all feasible points and the adjacent weights restriction is redundant. Please note that we need
to use V; = U; — L; + 1 integer grid points in order to contain all integer n; within their bounds.

To ascertain which of the two formulations is better, we conducted numerical experiments on
our model that compare the solution times of the binary weights formulation to the continuous
weights with AWR formulation. These tests indicate that the binary weights formulation dominates
the continuous weights formulation with AWR. This is not surprising since the binary (respectively,
continuous) weights formulation gives an exact (respectively, approximate) representation of con-
straints (14) and (15) for discrete values of n;. Apparently, the expense of solving a problem with
more binary variables is mitigated by the extra work needed to apply the AWR. Moreover, the
solution obtained by the latter method satisfies (14) and (15) only approximately.

For reasons that will soon become clear, we need to derive lower and upper bounds, denoted as
A; and B;, on m; given by (14). Similarly, we compute lower bounds A} and upper bounds B; on
m}, given by (15). These bounds are relatively easy to find. For this discussion, please recall that
0 < B; <1, whereas d;; < 0. Therefore, m; is at its upper bound B; if n; is at its maximum value
U; and n; is at its minimum value L;. A similar but opposite argument can be made for finding
the lower bound A; of m;. Thus, we have

N
Ai = Biln(Li) + Y 6551n(U;) (16)

=

N
Bi = ﬂiln(Ui) —|— Z 51']'111(14]‘) (17)

i

and

A1 < m; S Bz (18)



Since (; < 1, the bounds A} and B} for m/ are

N
AL = (B~ () + 3 diyin(Uy) (19

i

N
B! = (8; — DIn(L;) + Z5ijln(Lj) (20)

i

and

A, < m) < BL. @)

Although the two new sets of constraints (14) and (15) can be linearized using the foregoing
separable programming arguments, the objective function (13) is still nonlinear. We deal with
the exponential terms by judiciously approximating them over the bounds on their arguments. In
particular, we want our approximating objective to overestimate (13) so that the optimal objec-
tive value of the estimating problem provides an upper bound on the true optimal object value.
Specifically, we approximate e by a convex piecewise linear overestimating function, and emi is
approximated by a conver piecewise linear underestimating function. Notice that we want both
lower and upper approximations of a convex function to be convex. Our choice of which approxi-
mation (lower or upper) to choose is based on the objective coefficient of the exponential term in
(13). Since we must have P, — C; — CP; > 0 (otherwise, z; = 0 would always be optimal), the
coefficient of €™ is nonnegative, so we overestimate it. On the other hand, the coefficient of emi is
nonpositive, so we need an underestimate of e™: in order to have an overestimate of its negation.

Figure 1 shows a convex piecewise linear overestimating function of €™ created by choosing
one grid point E; € (A4;, B;). The two linear functions are given by

A
Flms) emi
®;
/
A
> Tr;
A, E; B;

Figure 1: Piecewise-Linear Convex Overestimate of Exponential Function.

Ai(m;) = eti4 M (m; — A)

(2 3 - El—A,L T 7
Bi_ E7

®i(m;) = eEZ+(eBi2i>(ml )



In general, F; can be taken anywhere in the open interval (A;, B;), but we use

eBi — A
o Y (.
n( Bi — A, )

which maximizes the absolute difference between e™¢ and the line segment connecting e?* and

Bi. namely, (e?:i:i) (m; — A;) + e4i. The piecewise linear function max{A;(m;), ®;(m;)}

e
overestimates e™ over the interval [A;, B;] with A;(m;) defined on the subinterval [A;, F;] and
®,(m;) defined on the subinterval [F;, B;]. Hence, we have, for alli=1,..., N,
e™ < max{A;(my;),®;(m;)}
= yildi(mi) + (1 —yi)®i(my)

Si
for all y; satisfying
(1—y)(Ei —m;) < 0 (23)
m; €[4, Bi (24)
Yi € {05 1} (25)
Therefore, replacing €™ by s; in our objective (13) and incorporating the constraints (22)—(25)

yields a linear mixed integer reformulation of the piecewise linear overestimating function of the
exponential term.

In general, K > 2 grid points can be taken in the open interval (A;, B;), so that the whole
interval is divided into K + 1 subintervals, each having overestimating line segment A;;(m;). It

follows that, for every i« = 1,..., N, the piecewise linear overestimating function of e™: can be
expressed as Zj:gl vi;Aij(m;) for m; € [A;, B;] and y;; € {0, 1} satisfying ZJK:ll yi; = 1. If done

for all products, this would introduce N (K + 1) auxiliary binary variables. For the K = 1 case
above, we used the constraints (22) and (23) to save one binary variable for each i, resulting in only
N auxiliary binary variables. The remainder of the paper is restricted to the case K = 1, since
the nominal improvement in the approximate solutions of several test problems did not justify the
significant increase in the additional computation times for K > 2.

With bounds on s; easily computed from (16) and (17), and after replacing all €™ by s; in
the objective function (13), we linearize all occurrences of the bilinear terms z;s; in (13) and y;m;
in the constraints (22) and (23) using convex and concave envelopes (as detailed in Appendix B).
This scheme produces equivalent linearly constrained linear reformulations of all bilinear terms.

Turning to the other exponential term in (13), recall that we need to construct an underesti-
mating function of €™ over [A!, B]] since its coefficient in (13) is nonpositive. We will take these
underestimating linear segments to be defined by tangent lines of e™:. In the spirit of the forego-
ing, we initially restrict our attention to the case of two segments defined by tangent lines at the
interval end points; namely, lines tangent to the graph at (A4}, ei) and (B!, eBi). These are given
by (see Figure 2)

Oulml) = eH M — A)
i(m)) = ePi4ePitm) - B)).

2

Hence, we have

_em; < _max{@i (mi), \I’i (m;)}

= min{-0;(m}), —¥;(m})}
= gi~
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Figure 2: Piecewise-Linear Convex Underestimate of Exponential Function.

If we replace —e™: in (13) by g;, we must add the constraint g; = min{—0;(m/), —¥;(m})}. Since

our objective is to maximize {2 and the coefficient of g; is nonnegative (i.e., CGRi) z; > 0), then,

by separability, the constraint g; = min{—0;(m}), —¥;(m})} is satisfied by maximizing (CGTI') 2iGi

subject to the constraints

—0;(m;)
—W;(m;).

gi

<
gi <

To complete the overestimating linearization of (13), the bilinear terms z;g; are linearized via an
equivalent linearly constrained reformulation using the convex and concave envelope technique of
Appendix B, as the bounds for g; are easily computed from (19) and (20). If more than two
underestimating linear segments of emi are desired, we only need to include one constraint for
each new support. In general, if there are K tangent lines ©;;(m;) that support the graph of
e™i within the interval [A}, B]], then —e™ < minj—; g{-©;;(m})}. By the same argument

as for the K = 2 case, we may overestimate —emi by replacing it with g; and introducing the

K linear constraints g; < ©;;(m}) for j = 1,..., K. A natural choice for a third support would
B!/ Al A ’
be at H; = < 1(Bi_;2_eAf (Ai_l), which maximizes the difference between e”: and the piecewise

e i—e i
linear underestimating function max{©;(m}), ¥;(m})}. However, to be consistent with our use of
two linear segments to overestimate €™ we conducted all of our numerical experiments with two
supports of Figure 2 to underestimate emi.

Thus, we have derived a linear MIP whose feasible region, when projected onto the decision
space of the shelf space model, is identical to that of the nonconvex shelf space allocation model, and
whose optimal objective value is an upper bound on the optimal objective value of the nonconvex
model. The complete linearized model is presented in Appendix C.

4.1 Discussion

Careful consideration has been given to alternative methods of linearization. In particular, the
foregoing approximations of e™¢ and emi appear to be the best ways of linearizing these functions
for our purposes. At first glance, separable programming approximations of e™i and e™i seem to
be good alternatives and would be expected to generate better results because they estimate the
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exponential functions more closely. However, such approximations lead to a contradiction because
of the following argument. If e™¢ and e™i were estimated with a separable programming technique,
the model would have two equality constraints for each m; and two others for each m}. Please
note that for m;, one of these constraints is the piecewise linear representation of (14) and the
additional constraint would be the output of the overestimating piecewise linear approximation
of e™i. This additional constraint imposes another equation that m; must satisfy. Please recall
that the separable programming approximations of (14) and (15) with binary weights define the
exact same feasible region as (14) and (15), while the separable programming approximations of
e™ and e™ would be inexact. Thus, we would have two contradictory constraints for each m;
and two for each m/, one of which gives exact values whereas the other gives approximate values.
The linearized model becomes infeasible when this is done.

As noted earlier, our approximations of ¢” and e can certainly be improved by utilizing more
than two linear segments for each function. However, this requires the introduction of supplemen-
tary constraints and/or binary variables, which, in turn, increases computational time. We used
only two linear segments in all of our computational experiments and observed excellent results
for all test problems solved.

Please recall that the difference between gross margin and replenishment costs are overestimated
as shown in Figure 1. Further, restocking costs are underestimated as illustrated in Figure 2. We
did this because we made the reasonable assumption that the difference between gross margin and
replenishment costs is always nonnegative (which holds if and only if P, — C; — CP; > 0); else,
z; = 0. Under this assumption, the value of the objective function at the optimal solution of the
linearized model provides an a posteriori upper error bound, denoted by P,, on the overall problem.
Since the optimal solution of the linearized model is feasible for the true model, we may use it to
evaluate the true objective function (4) to obtain the actual profit, denoted by P, . Although the
true optimal solution, P, , is unknown, the ratio P < 1 can be used to evaluate the quality of the
returned solution. Please note that this ratio represents a “worst case” analysis as P, > P, always
holds.

5 Numerical Examples and Test Problems

To assess the tightness of our linear approximations, we applied our procedure to nine different
product categories with up to six distinct products in each category. Rather than developing a
hypothetical example, actual data was collected from a large retail store in order to make the
results more practical. Space- and cross-elasticities were estimated, as cross-sectional data, needed
to estimate them via regression, was not available. However, based on past research, (e.g., Curhan
[12], Corstjens and Doyle [11]), space-elasticity typically ranges between 0.06 and 0.25, whereas
cross-elasticities were assumed to take on values between —0.01 and —0.05. Similar to the classi-
fication of Brown and Tucker [5], the product categories were placed into three different classes.
Space-elasticity was assumed to fall in the following closed intervals: [0.06,0.1], [0.16,0.20], and
[0.21,0.25] for the first, second and third class, respectively. Space- and cross-elasticities were
assigned randomly to the investigated products within these ranges. See Table 2 in Appendix A
for actual values used, where §;; denotes space-elasticity and d;; is our standard notation for cross-
elasticity between products 7 and j. With the product sales data as our demand and estimated
elasticities in Table 2, the scaling factors «; were easily calculated using equation (1).

According to information obtained from the store management, the following parameters were
estimated and assumed to be equal for all product categories:

e Restocking cost CR; = $5 each time a product is restocked
e Unit replenishment cost CP; = 0.01C;

e Fixed cost C'F; = $25 to include product ¢ in the assortment
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e Investment/interest rate I = 1% per month.

Individual product facings F; were assumed to be equal to the width of each product. All other
input parameters of the model were easily calculated using the data shown in Table 2 in Appendix
A.

For each product category, the approximating linearized model was solved for three different
levels of total available shelf space S; namely, the observed amount S, as well as 1.55, and 25,. No
restrictive lower and upper bounds on n; were introduced. The optimal objective value P, for the
approximating model was found using CPLEX 8.1 and compared to the global optimal objective
value P, of the exact (retail shelf space optimization) model (4)—(9) obtained by the global solver
LINGO 8.0. The results of our numerical experiments are displayed in Table 1. All tests were run
on a personal computer with a single 0.93 GHz Pentium 3 processor and 384 KB RAM.

Product Available Approximate Ilz—z x 100 1;—‘; x 100 ST, ST,
Category  Space S (in) Profit P, ($) (%) (%) (sec) (sec)
Bulbs 166 1501.98 92.35 99.62 0.64 1914.13
249 1593.23 91.13 99.41 0.64 2607.24
332 1653.48 90.19 99.15 0.80 7115.56
Enamel 182 2364.97 98.90 100.00 0.31 7.75
273 2403.95 98.72 100.00 0.34 10.19
364 2426.31 98.57 100.00 0.28 12.45
Rust 87 381.89 88.59 96.47 0.81 428.95
Stopper 131 410.07 88.83 96.90 1.09 960.39
174 427.31 88.24 96.49 1.55 1858.21
Plastic 422 2487.86 91.50 100.00 0.55 469.54
Sheets 633 2656.36 90.50 100.00 1.02 849.52
844 2783.20 89.83 100.00 0.97 932 92
Flood 249 3333.79 99.39 100.00 0.30 12.02
Lights 374 3374.20 99.31 100.00 0.33 14.63
498 3398.45 99.25 100.00 0.33 20.53
Tube 116 240.66 95.76 99.88 0.72 20.46
Lights 174 265.63 95.54 99.89 0.97 18.92
232 282.23 95.31 99.85 0.81 30.54
Glass 119 328.06 92.37 99.63 0.53 309.73
Cleaner 179 338.35 92.08 98.96 1.13 585.64
238 343.73 91.81 98.70 0.92 253.28
Degreaser 161 379.76 96.28 99.87 0.41 8.28
242 411.00 96.51 99.97 0.59 9.06
322 431.22 96.54 99.98 0.36 12.16
Trash 190 2104.03 97.21 99.57 0.44 104.37
Bags 285 2166.12 96.44 99.57 0.58 262.25
380 2210.57 95.84 99.67 0.64 565.36

Table 1: Summary of Computational Experiments

The CPU times ST, of the global solver of LINGO 8.0 ranged from 7.75 seconds to 7115.56
seconds with an average value of 718.30 seconds. In contrast, the CPU times of the approximating
model STy, using CPLEX 8.1, ranged from 0.28 seconds to 1.55 seconds with an average value
of 0.67 seconds. The approximating model found the exact global optimal solution in 9 out of 27
test cases. The worst result in terms of the value Z—Z occurred for the product category “Rust
Stopper” for total available shelf space of 174 inches. Since P, > P,, it is possible to claim for

this test case that the calculated objective value P, is no worse than 88.24% of the global optimal
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objetive value P,. However, our comparison to the known global solution of the true nonconvex
model shows that the calculated solution is significantly better, determining the value of P, to
be 96.49% of P,. The average ratio % was calculated to be 94.33% whereas the average ratio

% was 99.39%. Hence, on average our method found a feasible solution whose objective value
is’ guaranteed to be within 6% of optimum, but is in fact within 1% of optimum. This indicates
that near-optimal solutions and tight a posteriori error bounds can be expected when solving the
proposed approximating MIP. Both measurements P“ and £ 7 can be improved by imposing lower
and upper bounds on each variable n;. Please note that Such bounds tighten the intervals [A;, B;]
and [A}, B!], and, therefore, improve the piecewise linear estimations of the exponential functions.
For the test cases considered, we have allowed the total available shelf space to be allocated to a
single product. If we make an assumption that a retailer wishes to limit the shelf space allocated
to a product to be no more than 25 percent of the total available shelf space, then the average
ratios % and " increase to 97.77% and 99.69% respectively. This indicates that the additional
bounds not only improve the quality of the calculated solution but also allow the returned solution
to be compared to a tighter a posteriori bound.

To further investigate the ability of the approximating model to handle problems with larger
numbers of individual products, three additional tests were conducted for a problem size of twenty.
For each test, we chose products that had similar characteristics to those of a specific category
(“Bulbs” for the first test, “Enamel” for the second test, and “Rust Stopper” for the third test).
We assumed that not all of the products within a product category were sufficiently similar to be
regarded as substitute products. Thus, we classified the twenty products into four subcategories,
each having five individual products, and further assumed that only cross-elasticities within a
subcategory were negative. Cross-elasticities across subcategories were taken as zero. The amount
of total available shelf space was increased to 2.5 times the amount observed in the store. The
upper bound for each product was set in a way that allowed at most 20 percent of the total available
shelf space to be allocated to a product.

The approximating model was solved with an average ST, value of 1.15 seconds using CPLEX
8.1 with £ 3+ values of 97. 44%, 99.64% and 96.95% for the three tests. In contrast, LINGO 8.0 was
no longer able to compute the global solution in a reasonable time. After a processing time of three
hours on the personal computer mentioned above, the first test case had not been solved and an
optimal solution was expected to take several days. This indicates that realistic problem sizes are
intractable for general global solvers, whereas the proposed approximating model is suitable for
a practical number of products. Please note that a problem size of twenty individual products is
already a realistic size for a product category. The average solution time of the investigated tests
with twenty products was only slightly larger than the average solution time found for six products.
This clearly indicates that our solution technique is capable of solving all realistic problem sizes in
a given product category within reasonable computational time. In contrast to the work of Lim et
al. [18], our shelf space optimization model is not a simplification but an extension of the original
optimization model of Corstjens and Doyle [11]. In addition, our solution procedure not only finds
excellent feasible solutions, but also provides tight a posteriori error bounds to evaluate the quality
of the solution.

6 Extensions

The main model only considers space- and cross-elasticities. This section extends the model to
incorporate additional factors that might be important to a retailer.

6.1 Incorporation of Other Marketing Variables

In the presentation above, we have assumed that effects other than space- and cross-elasticities
are not present (Assumption (iii)). Clearly, this assumption neglects effects of price and other
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marketing variables. Therefore, it might be desirable to include price as well as other variables
that could be used to influence the market. Instead of (1), we now formulate the demand function
as (see Yang and Chen [26] for a similar formulation):

N
d; = a;(Fin;)" H(anj)é'ijpi_ai Hw?v”

j=1 v

J#i
where, for product ¢, the (unknown) selling price is given by p; and &; > 1 denotes the price
elasticity, while, for each v, the influence on the demand for product i (e.g., special in-store
advertising) can be modeled in a multiplicative way via a new variable w;, with shape parameter
0 < 94 < 1). Each variable w;, is likely to cause further expenditures (such as advertising
expenditures) and, therefore, needs to be included in the cost terms of the objective function. In
such a setting, the decision variables are no longer simply the number of facings allocated to each
product, but also its price p; and all other relevant demand influencing variables w;;,.

Although the demand function is now more complex, the model can still be solved using an

extension to the approach followed in Section 4. Now, however, the functions r; and w; in (10) and
(11), respectively, include all variables n;, nj, p;, and w;,.

6.2 Incorporation of Fixed Procurement Costs and Warehouse Space

So far we have not considered fixed procurement costs and the possibility of storing items in a
warehouse. However, such a scenario appears to be very practical in retailing where products
are usually placed in a “backroom” storage area before being brought to the display area. As
stated before, demand within our model is assumed to be deterministic and products are fully
restocked immediately when they stock out, allowing a simple calculation of the reorder point for
each product. Thus, the only decision variables in this setting are the order quantity and the
number of facings allocated to each product.
In order to model this new scenario, the following additional assumptions are made:

(viii) There are no quantity-related or transport-related discounts; and

(ix) If an order arrives, it is either partly or totally used to restock the shelves. (If the number
of units ordered exceeds the available space for shelved units, then the rest of the order is
placed in the warehouse).

Because of Assumption (v), order quantity can only be an integer multiple of the total number
of product-units that fill the shelves, as any other variable would generate a suboptimal solution.
To understand why this must be the case, assume that a retailer orders 1.5 times the number of
product-units that can be placed on the shelves. This means that 33 percent of the ordered units
have to be placed in the warehouse. However, the number of units sitting in the warehouse is not
sufficient to restock this product completely, making it necessary (by Assumption (v)) to place
another order and keep the excess inventory in storage until the new order arrives. Thus, such a
scenario faces additional inventory holding costs, making this strategy apparently suboptimal.

Maintaining the demand function (1), the objective function of the extended model can be
written as:

CR;\ 1 COF;\ 1 C,IG;
= E Nd P -C, —CP, — | —— | — — — n:, —CF:
& zi [dl( = G- OF ( G; ) n; ( G; ) hn> ( 2 )h” ¢ }

i=1

where COF; are the fixed procurement costs per order and h; is a positive integer variable such that
h; — 1 is the number of restocks possible from one order quantity. Observe that G;h;n; represents
the order quantity (say, ¢;) of which G;n; are shelved immediately, whereas (%) (h; — D)n;
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accounts for the additional inventory holding costs of product-units stored in the warehouse, and

(COFy) Z—l = (CgiF ) h‘jju gives the fixed procurement costs. As the available warehouse space
is usually limited, an additional constraint has to be incorporated into the model formulation in
order to ensure that the sum of all order quantities ¢; can never exceed the sum of available shelf
and warehouse space.

Please observe that the appearance of the new decision variable h; in the denominator of the
fixed procurement costs represents the only difficulty in linearizing this extended model in the same
ways as demonstrated in Section 4. However, if lower and upper bounds on h; are introduced, it is

possible to approximate each function hi by a piecewise linear function. The term z;d; (C(O;f ) L

can then be approximated in the same way as z;d; (CGR) %

ng

using linear reformulations analogous

to those derived in Section 4.

6.3 Incorporation of Substitution Effects

So far we have assumed that each product is restocked as soon as it stocks out. However, many
retailers do not restock their products individually, but restock each product at specific times (e.g.,
every morning). In such a scenario, each product will face a stockout if its predicted demand during
restocking cycle R exceeds its number of available units on the shelves. This excess demand (called
a “stockout demand” by Borin et al. [4]) is then potentially available for other substitute products.
In addition, we have ignored the effects of products that are not included in the assortment. In
reality, each of the stocked products receives a portion of the available sales that other products
would have obtained if they had not been excluded. This concept is introduced by Borin et al. [4]
who define this additional demand as “acquired demand.” The authors state that if a product is
excluded from the assortment, its “modified demand” can be potentially transferred to the stocked
products. Their definition of “modified demand” is identical to the demand function (1).

Similar to the work of Smith and Agrawal [22] we allow for one round of substitution. This
means that a customer might either refuse to buy any other product or decide to purchase an-
other item if his/her first choice product is either temporarily or permanently unavailable. If the
customer’s substitution choice is a product that is not available, the sale is lost. We propose the
following structure for the substitution probabilities, p;;, between products ¢ and j, for i # j:

H n Z
ig — i N
2tz

where 7); represents the fraction of the customers who are willing to compromise their initial choice
of product ¢, and Z; is the national market share of product j. In the denominator, Z; is taken out
of the total market share for product ¢ to ensure that Zjvzl tij = n;. This formulation is similar
to the one of Smith and Agrawal [22] and redistributes additional demand in proportion to the
product’s market share. It further allows the determination of the values p;; by solely estimating
7;. Please note that the substitution choice of a customer is not restricted to the products that are
included in the assortment. If a customer wants to substitute his/her first choice with a product
that is not shelved, the sale is consequently lost.

The objective function of the extended maximization model can now be formulated as:

Q=> "% [min {dl—, (}%) Gn} (P, — C; — CP,) — CR; <%) - (C;G> n; — CFZ-] (26)

i=1
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where

N
d; = fi+ tir Z [(1 — 2p) fr + zr max {07 fr— (%) szH (27)
=i
(28)
and
N
fi = ai(Fin) [ (Fyny)®. (29)
Jj#i

Here, T represents the time interval of each demand function (with 7' = 1 for demand per day)
and R is the restocking cycle time.

The minimum operator in objective function (26) guarantees that product sales cannot exceed
available units on the shelves, given by (%) G;n; , within time interval 7. The first term within the
brackets of demand function (27) represents “acquired demand” of products not included in the
assortment. Here, f, is the “modified demand” as defined by (29). The maximum operator in the
second term within the brackets of demand function (27) represents excess demand for product r
(similar to the “stockout demand” of Borin et al. [4]), which is transferred to product i according
to the substitution probability p;;..

With this formulation, only “modified demand” is substituted. Note that demand for some
products is partly reallocated to other products and might then exceed the number of shelved
units of those products, implying additional substitutions. Because we assume that only one
round of substitution can occur, these effects are ignored. Restocking costs of each product in
objective function (26) are now independent of the number of facings allocated to the product.
Inventory holding costs are only an approximation of the actual costs, which are higher if a product
is restocked (even if the number of units sitting on the shelves is greater than zero) and lower if a
product stocks out during restocking cycle R. However, this difference is small and, thus, neglected
in the objective function shown above.

Although the demand function is now significantly more complex, the model can still be lin-
earized using an analogous approach to that demonstrated in Section 4. By making the rea-
sonable assumption that P; — C; — C'P; is always nonnegative (else, z; = 0), we can replace
min {di, (%) Gmi} by e;, and add the following two linear constraints, since our objective is to
maximize {):

IN

d;

Please note that we can only linearize the resulting bilinear term z;e; in the objective function
if we know the upper and lower bounds of e;. Fortunately, these bounds are easy to find. The
variable d; is at its upper bound if n; is at its maximum value U; and n; is at its minimum value
L;. A similar but opposite argument can be made for finding the lower bound of d; . An analogous
argument applies for finding the lower and upper bounds of (%) Gin;.

The maximum operator of (27) can be reformulated by introducing N supplementary binary
variables and 2N additional constraints. The individual functions f; and f, can be approximated
in the same way as the functions r; are approximated in Section 4.

€i

IN

€i

7 Conclusions and Future Work

This paper proposes a piecewise linearization technique, which is accurate, easy to implement,
and flexible enough to be applied to a wide range of shelf space management models in which the
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demand function is of signomial form. It allows large-scale instances of such highly nonlinear models
to be solved efficiently. More importantly, unlike heuristic methods employed in the literature, our
procedure further provides an a posteriori error bound on the closeness of our computed solution
to the true global optimal objective value of the nonconvex shelf space management model.

The optimization models developed in this paper, as well as most optimization models in
the literature, are capable of allocating shelf space to products within a product category. Such
models use a bottom-up approach to assign shelf space to individual products and implicitly assume
that the amount of shelf space assigned to a product category is predetermined and unalterable.
Because of the large number of products found in most retail stores, it is clearly not feasible to
solve one of these existing models for all potentially available products within a store (sometimes
more than 60,000). Please note that the assignment rules of most models, which allocate shelf
space to individual products, are flexible enough to be applied to allocation problems at a higher
level of aggregation. Thus, similar models can be used to allocate store shelf space to product
categories using a top-down approach (see, e.g., Campo et al. [9] for an optimization model that
allocates store shelf space to product categories using the assignment rule originally proposed by
Bultez and Naert [6]). In theory, the output of the top-down approach (shelf space allocated to
a product category) becomes a constraint for the bottom-up procedure (amount of available shelf
space within a product category). However, these two different hierarchical approaches have not
yet been connected. Consequently, a globally optimal allocation of store shelf space to products has
not yet been achieved. In a forthcoming companion paper, the authors overcome this limitation by
developing a bilevel hierarchical modeling and optimization method that finds accurate solutions
for very large and complex shelf space management problems in a computationally efficient fashion.
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Appendix A: Data for Computational Experiments
(Please see Table 2 at end of paper.)
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Appendix B: Convex and Concave Envelopes of a Bilinear
Form in R?

For a bilinear form 2y, where (z,y) € R2, Al-Khayyal and Falk [2] prove that the convex envelope®
over the rectangular domain [z1, 2Y] x [yX, yY], where L (U) denotes a known lower (upper) bound

on the variable, is given by

max{zly + ytz — 2ty oYy + Yz — 2VyY}.

Analogously, the concave envelope® of 2y, where (z,y) € R2, over the rectangular domain [z%, 2] x
[y, yY] is given by (see Al-Khayyal [1])

min{zYy + yLz — 2Yy" 2Py + yY2 — 2lyV}.
By definition we have,

L, L U

yE 2%y + yVz — Uy} Ty (30)

max{zty + ytzr — <
< min{a¥y +yPz — 2Vy" 2Py + Yz — 2tyY}
for all (z,y) € [2L,2Y] x [yL,yY]. Tt is easy to show that if either = or y is at one of its bounds,
then equality in (30) holds throughout.

If we replace the term zy everywhere in a model by a new variable g, then from the convex
envelope we have

g > ary+yte—atyt (31)

g > aVy+yle—ayY (32)
and from the concave envelope we have

g < aYy+yla—2Uy* (33)

g < aly+yYz—atyY. (34)

Replacing zy everywhere in a model by g and augmenting the model’s constraint set by the four
constraints (31) through (34) linearizes the zy term in the model and ensures that the product
xy satisfies (30). However, in general, there are infinitely many feasible points for which g # xy.
Fortunately, as pointed out above, if either x € {2, 2V} or y € {y¥,yY} we must have g = zy.

Appendix C: Summary of Linear MIP Approximating Model

Find (Zi, ni,wi,li,ti, 045 8i5Yis Gis mi,m;, /\iv) that

maximize ﬁ = vazl OéiFiﬁi Hi\Ll Ff” ((Pi - CZ - CPl)tl + (CGRi) Oi) - (%) w; — CEZZ
J#L ‘

subject to

5The convex envelope of a function over a convex domain is the highest convex underestimating function over
the domain.

6The concave envelope of a function over a convex domain is the lowest concave overestimating function over the
domain.
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where D; = e?:i{” and D = %

Constraints (37) through (52) are the output of the linearization technique of Al-Khayyal et al.
[2] and Al-Khayyal [1] and guarantee that w; = n;z;, l; = m;y;, t; = s;z;, and 0; = ¢;2; hold at an
optimal solution, since z; € {0,1} and y; € {0,1} (see Appendix B). Constraints (58) through (62)
are the piecewise linear function representations of constraints (14) and (15), where V; denotes the
number of grid points used for the piecewise linear approximation of each In(n;) and X;, specifies

the value of grid point v.
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Product Product|Product Dimensions (in) | Assigned | Sales Unit | Units [Shelf Space (in)| Cross Elasticity ¢;; for Product j Scale
Category 4 Height Depth Width |Space(in) |Price($)|Cost($)| Sold |Height Depth =1j=23j=3j=4j=5j=6 a;
Bulbs 1 7.0 3.0 5.0 30 1.37 0.92 651 40 37 0.23 -0.04 -0.02 -0.01 -0.03 -0.02| 442.22
2 7.0 3.0 5.0 30 1.37 0.92 627 -0.05 0.24 -0.01 -0.02 -0.03 -0.05| 474.64
3 7.0 3.0 4.0 16 2.17 1.45 130 -0.03 -0.03 0.21 -0.05 -0.04 -0.04| 138.59
4 7.0 3.0 5.0 30 1.37 0.92 451 -0.05 -0.02 -0.03 0.23 -0.04 -0.01| 337.15
5 7.0 3.0 5.0 30 0.96 0.64 | 1268 -0.03 -0.03 -0.05 -0.03 0.25 -0.03| 936.05
6 7.0 3.0 5.0 30 1.37 0.92 845 -0.02 -0.04 -0.03 -0.04 -0.05 0.21| 748.78
Enamel 1 8.0 7.0 7.0 42 22.97 14.59 100 26 37 0.09 -0.01 -0.03 -0.01 -0.01 -0.04| 99.68
2 8.0 7.0 7.0 28 23.97 15.50 123 -0.02 0.06 -0.02 -0.02 -0.02 -0.05| 156.58
3 8.0 7.0 7.0 28 20.97 14.59 22 -0.05 -0.03 0.06 -0.01 -0.01 -0.04| 29.31
4 8.0 7.0 7.0 28 18.97 13.59 17 -0.03 -0.03 -0.04 0.08 -0.04 -0.02| 22.46
5 8.0 7.0 7.0 28 17.98 12.57 10 -0.01 -0.03 -0.01 -0.03 0.06 -0.02| 11.47
6 8.0 7.0 7.0 28 15.98 12.53 25 -0.04 -0.02 -0.02 -0.05 -0.04 0.08| 34.29
Rust 1 8.0 3.0 3.0 18 3.27 2.33 61 10 37 0.18 -0.03 -0.05 -0.03 -0.04 -0.03| 58.04
Stopper 2 8.0 3.0 3.0 18 3.27 2.33 135 -0.03 0.16 -0.02 -0.03 -0.02 -0.01| 113.61
3 8.0 3.0 3.0 15 3.67 1.53 31 -0.02 -0.05 0.20 -0.02 -0.02 -0.03| 26.28
4 8.0 3.0 3.0 12 3.27 2.33 61 -0.01 -0.03 -0.02 0.18 -0.03 -0.01| 51.05
5 8.0 3.0 3.0 12 3.27 2.33 90 -0.05 -0.04 -0.03 -0.02 0.16 -0.04| 98.76
6 8.0 3.0 3.0 12 3.98 2.39 104 -0.03 -0.04 -0.03 -0.05 -0.01 0.18| 102.49
Plastic 1 7.0 34.0 6.0 84 15.97 9.35 51 26 37 0.24 -0.03 -0.03 -0.02 -0.02 -0.04| 31.48
Sheets 2 7.0 28.0 6.0 72 18.97 9.71 12 -0.01 0.23 -0.05 -0.04 -0.01 -0.03 7.94
3 7.0 34.0 6.0 36 15.97 9.35 72 -0.05 -0.04 0.23 -0.05 -0.05 -0.01| 75.62
4 9.0 35.0 10.0 80 39.97 28.05 47 -0.05 -0.02 -0.03 0.21 -0.01 -0.03| 33.64
5 9.0 35.0 10.0 80 39.97 28.05 27 -0.03 -0.02 -0.04 -0.04 0.24 -0.02| 17.57
6 7.0 34.0 7.0 70 24.97 14.03 43 -0.05 -0.05 -0.03 -0.05 -0.05 0.25| 39.65
Flood 1 5.5 4.5 4.5 36 5.97 3.98 140 26 37 0.06 -0.04 -0.03 -0.03 -0.03 -0.02| 192.56
Lights 2 5.5 4.5 4.5 27 5.97 3.98 167 -0.02 0.07 -0.03 -0.01 -0.05 -0.01| 207.01
3 6.0 4.0 4.0 16 5.99 4.02 132 -0.03 -0.02 0.09 -0.04 -0.02 -0.04| 181.15
4 5.5 4.0 4.0 40 4.27 2.92 286 -0.02 -0.01 -0.01 0.08 -0.04 -0.02| 312.34
5 6.0 4.0 2.0 72 9.97 8.51 141 -0.02 -0.03 -0.02 -0.02 0.08 -0.03| 152.33
6 5.0 5.0 9.0 54 8.97 5.98 424 -0.02 -0.05 -0.03 -0.04 -0.05 0.07| 633.67
Tube 1 2.0 35.0 3.0 39 3.99 2.66 103 26 37 0.21 -0.05 -0.03 -0.01 -0.04 -0.04| 75.11
Lights 2 1.0 35.0 2.0 20 3.99 2.66 19 -0.04 0.24 -0.01 -0.05 -0.02 -0.05| 15.03
3 2.0 350 3.0 18 5.97 4.95 38 -0.01 -0.01 0.24 -0.02 -0.03 -0.01| 23.63
4 2.0 350 3.0 18 5.97 4.95 69 -0.01 -0.01 -0.01 0.23 -0.03 -0.03| 44.97
5 1.5  35.0 1.5 11 1.99 1.33 43 -0.02 -0.03 -0.04 -0.04 0.22 -0.05| 42.77
6 1.5 35.0 1.5 11 0.98 0.65 57 -0.04 -0.01 -0.04 -0.04 -0.01 0.23| 51.08
Glass 1 11.0 3.0 5.0 15 1.98 1.35 131 13 37 0.08 -0.03 -0.03 -0.01 -0.02 -0.02| 142.59
Cleaner 2 10.0 3.0 5.0 15 2.50 2.13 151 -0.02 0.08 -0.03 -0.01 -0.03 -0.05| 177.91
3 12.0 6.0 6.0 12 5.97 3.70 30 -0.03 -0.05 0.09 -0.03 -0.04 -0.01| 38.28
4 12.0 6.0 6.0 48 8.92 3.70 30 -0.04 -0.04 -0.03 0.07 -0.02 -0.02| 34.07
5 11.0 3.0 5.0 15 1.98 1.50 78 -0.04 -0.01 -0.03 -0.04 0.09 -0.02| 92.81
6 12.0 5.0 7.0 14 7.97 5.40 48 -0.02 -0.05 -0.02 -0.03 -0.05 0.10| 60.23
Degreaser 1 10.0 3.0 5.0 15 2.50 2.15 78 13 37 0.18 -0.01 -0.03 -0.03 -0.01 -0.02| 67.54
2 11.0 3.0 5.0 15 2.99 2.10 32 -0.04 0.17 -0.03 -0.01 -0.05 -0.02| 32.22
3 12.0 6.0 6.0 48 8.97 4.55 60 -0.02 -0.04 0.17 -0.03 -0.02 -0.05| 49.91
4 12.0 6.0 6.0 48 8.93 7.32 50 -0.04 -0.02 -0.02 0.17 -0.03 -0.05| 41.23
5 10.0 3.0 5.0 20 2.50 2.15 51 -0.03 -0.02 -0.05 -0.02 0.18 -0.01| 45.88
6 11.0 3.0 5.0 15 3.49 1.80 10 -0.02 -0.01 -0.04 -0.05 -0.02 0.17| 10.30
Trash 1 9.0 5.5 11.0 33 13.77 7.40 65 40 37 0.18 -0.04 -0.02 -0.04 -0.01 -0.03| 56.41
Bags 2 9.0 5.5 11.0 33 14.93 8.11 58 -0.05 0.18 -0.05 -0.01 -0.05 -0.04| 61.12
3 9.0 4.5 9.0 36 9.77 4.53 110 -0.03 -0.05 0.18 -0.02 -0.05 -0.01| 98.50
4 10.0 4.5 8.0 32 9.88 5.44 85 -0.03 -0.04 -0.02 0.16 -0.02 -0.03| 79.20
5 11.0 5.0 10.0 20 9.96 7.00 71 -0.02 -0.03 -0.02 -0.01 0.18 -0.01| 56.85
6 9.0 4.5 120 36 9.77 6.07 67 -0.04 -0.05 -0.02 -0.05 -0.05 0.17| 74.06

Table 2: Data and Parameters for Nine Product Categories




